高功率重频电化学HF激光器

2011-05-12 12:02BULAEVGUSEVFIRSOVKAZANTSEVYuKONONOVLYSENKOMOROSOVYuPOZNYSHEV
中国光学 2011年1期
关键词:俄罗斯科学院弗拉基米尔高功率

BULAEV V D,GUSEV V S,FIRSOV K N,KAZANTSEV S Yu,KONONOV I G,LYSENKO S L,MOROSOV Yu B,POZNYSHEV A N

(1.国家科学研究中心激光实验室,俄罗斯,弗拉基米尔地区;2.俄罗斯科学院普罗霍罗夫普通物理研究所,莫斯科119991)

高功率重频电化学HF激光器

BULAEV V D1,GUSEV V S1,FIRSOV K N2,KAZANTSEV S Yu2,KONONOV I G2,LYSENKO S L1,MOROSOV Yu B1,POZNYSHEV A N1

(1.国家科学研究中心激光实验室,俄罗斯,弗拉基米尔地区;2.俄罗斯科学院普罗霍罗夫普通物理研究所,莫斯科119991)

(1.Federal State Unitary Enterprise Kosminov State Scientific Research Test Laser Center(Range)of the Russian Federation《RADUGA》,Raduzhnyi,Vladimir Region,Russia 2.Prokhorov General Physics Institute,Russian Academy of Science,Moscow 119991,Russia)

1 Introduction

Now nonchain electric discharge HF(DF)lasers are unique ecologically safe sources with high peaks and average generation powers at close to the diffraction limit of laser beam divergence in a practically important area of spectrum λ =2.6/4.2 μm.Such sources represent doubtless interest not only for monitoring an atmosphere[1,2],but also for carrying out some physical experiments on interaction IR radiation with liquids[3,4]and for optical pumping other gas lasers of IR range[5-7],including obtaining short pulse[8]and powerful generation in the terahertz region of the spectrum[9].

The purpose of the present work is to research an opportunity of achievement of the big radiation energy in a pulse-periodic mode of functioning the nonchain electric discharge HF laser with continuous metal electrodes in absence of additional measures on stabilization of Self-sustained Volume Discharge(SVD).

2 Experiments

Experimental installation looked as follows.The discharge gap of the laser has been formed by two identical flat electrodes from the duralumin,rounded on perimeter in radius r=2 cm.The size of a flat part of a surface of electrodes made 15 cm×100 cm. The interelectrode distance could vary in limits d= 10/20 cm,experiments were carried out at d=15 cm.The electrode which was used as the cathode has been subjected to sandblasting with the purpose of formation on its surface small-scale nonuniformity(~50 μm),that,as shown in Ref.[10],facilitates development the self initiating volume discharge.Electrodes were placed in to a glass-epoxide tube with internal diameter 80 cm and length 250 cm symmetrically and were relative its axes.Photograph of the electrode system,available through the output window of the discharge chamber is shown in Fig.1.

Fig.1 Discharge chamber with electrode system.

The working mixtures of the laser SF6∶C2H6= 20∶1,SF6∶C3H8C4H10=30∶1 and SF6∶H2=9∶1 with the full pressure about 6/10 kPa were used. Change of working mixtures in volume discharge was provided due to circulation of gas in the closed contour.For this purpose it was applied the special fan block similar described in Ref.[11].The gas mixtures were blown along an axis of the discharge chamber,speed of a stream in the discharge zone made 40 m/s.

The resonator of the laser has been formed by a copper mirror with the radius of curvature R=20 m and a plane-parallel plate from KCl.The mirror was installed in the adjusting unit connected to the flash chamber by sylphon.The plane-parallel plate fastened directly at an end face of the discharge chamber.The radiation energy of the laser was measured in a single pulse mode with the help of a matrix of calorimeters such as E-60 with the size of 18 cm× 18 cm,installed in a direct laser beam on distance of 1 m from a window of the discharge chamber.

The pulse high-voltage generator using for formation SVD consist of 4 identical sections,connected in parallel to electrodes of a discharge gap copper trunks.Sections are placed in the uniform metal case filled SF6at atmospheric pressure.Sections of the generator are collected under two-level Fitch circuit on low inductive condensers C=50 nF with rated voltage 100 kV marking KMKI-100-50.Electric circuit used in high-voltage generator is shown in Fig.2.Controlled spark-gaps[12]are filled with mixtures SF6∶N2=1∶10 with overpressure up to 6 bars. The construction of spark-gaps allows to operate the laser by duration up to 60 s with frequency of following of discharge pulses in 20 Hz without replacement in them of gas.Charging voltage Uchin experiments varied in limits Uch=50/75 kV.In a circuit of spark-gaps,the inductance using for the coordination of a contour of polarity inversion of a voltage on the condenser with a discharge contour was fitted experimentally.The pulse voltage of the discharge was measured by a resistive divider,and a pulse current was measured by a Rogowski coil covering a part of the current carrying trunk.Such quality monitoring at the big trunks width(~1 m in examined installation)does not give an opportunity of exact measurements of a discharge current,but allows to determine its maximum time position.The system of synchronization provides simultaneous start 8 spark-gaps of the high-voltage generator with accuracy±10 ns.

Fig.2 Electric circuit of Fitch high-voltage generator(one of 4 section).

3 Results and discussion

Fig.3 Photograph of discharge chamber(front view) and SVD in mixtures SF6∶C2H6=20∶1.

Fig.4 Distribution of intensity glow of discharge plasma to coordinate a plane parallel to the surface of electrodes.

After the coordination of a contour of polarity inversion of the condenser in Fitch generator with a discharge contour steady SVD in mixtures SF6with hydrocarbons has been received in all range of voltage change Uch=50/75 kV at frequency of following of discharge pulses up to 20 Hz.Opportunities of the further increase in frequency of following were limited to speed the change of a working gas mix in a discharge chamber.Fig.3 shows a photograph of SVD in a mixture SF6∶C2H6at the maximum charging voltage in Uch=75 kV,illustrating the uniformity of SVD in high edge to strengthen the electric field,which is characteristic for the intervals used here type.Fig.4 shows the distribution of the intensity of the glow discharge plasma to coordinate a plane parallel to the surface of the electrodes. The distribu-tion reflects the distribution of input power for the interval[14].Fig.4 shows that,despite the marginal gain of the electric field,the maximum energy deposition is achieved in the central zone of the gap. Fig.5 shows typical oscillograms of the voltage across the discharge gap and discharge current when the ignition SVD in a mixture of SF6∶C2H6.These oscillograms allow with sufficient accuracy to estimate the duration of the discharge current tdis≈320 ns.With such a relatively large,the duration of the input electrical energy into the discharge plasma in mixtures of SF6with hydrogen SVD is stable only in the charging voltages Uch≤60 kV.In mixtures of SF6with the same hydrocarbons as follows from the above experimental data,SVD implemented in the whole range of Uchwithout whatever additional measures to stabilize it as a pulse and a pulse-periodic modes of the HF laser.Laser pulse was typical nonchain electric discharge HF laser form[13],its duration at half amplitude was about 150 ns,the generation began near the current maximum.

Experimentally dependence of radiation energy Wgfrom charging voltage is submitted on Fig.6. Apparently from Fig.6, the maximal energy of generation Wg=67 J is reached on mixtures SF6∶C2H6,at Uch=75 kV,that corresponds to electric efficiency~3%on energy,reserved in condensers. Low efficiency of the laser on mixtureses SF6with hydrogen is caused,apparently,by pumping heterogeneity because of rather big duration of a discharge current.We shall also note,that in the present work the efficiency is lower than that in Ref.[14]at close characteristics of a discharge gap and identical structures of a mixtures.Probably,the given fact can be connected to the big losses of electric energy in circuits of the Fitch generator.

Fig.6 Dependences of laser generation energy Wgfrom Uchat use different mixtures of hydrocarbons

4 Conclusions

Thus,by us it is developed and investigated powerfulthe nonchain electric discharge repetitively pulsed HF laser.The opportunity of realization SVD on mixtures SF6with hydrocarbons in a discharge gap with high edge electric field gain without additional measures of stabilization of the discharge both in pulse, and in a repetitively pulsed mode is shown.Laser generation energy Wg=67 J is received at frequency of pulses following of 20 Hz.

In summary,we shall notice that,for reception of generation on DF as the donor of deuterium can be used C6D12.Stability SVD in mixtures SF6with deuterocarbons,as is known,not worse,than in mixes with hydrocarbons,and energy of generation on DF in identical conditions on pumping in plasma of the discharge makes~0.8 from energy of generation on HF[15].

[1]VELIKANOV S D,ELUTIN A S,KUDRYASHOV E A,et al.Use of a DF laser in the analysis of atmospheric hydrocarbons [J].Quantum Electron,1997,27(3),273-276.

[2]AGROSKIN V Y,BRAVY B G,CHERNYSHEV Y A,et al..Aerosol sounding with a lidar system based on a DF laser [J].Appl.Phys.B,2005,81:1149.

[3]ANDREEV S N,FIRSOV K N,KAZANTSEV S Y,et al..Explosive boiling of water induced by the pulsed HF-laser radia-tion[J].Laser Phys.,2007,17(6):834.

[4]ANDREEV S N,KAZANTSEV S Y,KONONOV I G,et al..Temporal structure of an electric signal produced upon interaction of radiation from a HF laser with the bottom surface of a water column[J].Quantum Electron,2009,39(2):179-184.

[5]BURTSEV A P,BURTSEVA I G,MASHENDZHINOV V I,et al..New HBr-laser with resonant optical pumping by DF-laser radiation[J].SPIE,2004,5479:174-176.

[6]ALEXANDROV B S,ARSENJEV A V,AZAROV M A,et al..Increase of efficiency of optical pumping of a broadband CO2laser amplifier as a result of the use of a multicomponent active medium[J].SPIE,2003,5120:551-556.

[7]AZAROV M A,ALEXANDROV B S,ARSENJEV A V,et al..High pressure with optical pumping by HF laser radiation [J].SPIE,2007,6346:63462B.

[8]VASILIEV G K,MAKAROV E F,CHERNYSHEV Y A.Optical pumping of the N2O-He and N2O-CO2—He mixtures by a pulsed multifrequency HF laser for producing active media to amplify 10-μm high-power ultrashort pulses[J].Quantum E-lectron,2005,35(11):987-992.

[9]SKRIBANOWITZ N,HERMANN I P,MACGILLIVRAY M S,et al..Observation of dicke superadiance in optically pumped HF gas[J].Phys.Rev.Lett.,1973,30:309-312.

[10]APOLLONOV V V,BELEVTSEV A A,KAZANTSEV S Y,et.al..Self-initiated volume discharge in nonchain HF lasers based on SF6-hydrocarbon mixtures[J].Quantum Electron,2000,30(3):207-214.

[11]BULAEV V D,KULIKOV V V,PETIN V N,et al..Experimental study of a nonchain HF laser on heavy hydrocarbons [J].Quantum Electron,2001,31(3):218-220.

[12]GORNOSTAY-POLSKY S A,GRISHIN A V,BALYABIN M G,et al..High-current gas-filled spark-gap:RU,2241288 [P].2004-11-27.

[13]APOLLONOV V V,KAZANTSEV S Yu,ORESHKIN V F,et al..Feasibility of increasing the output energy of a nonchain HF(DF)laser[J].Quantum Electron,1997,27(3):207-209.

[14]ANDRAMANOV A V,KABAEV S A,LAZHINTSEV B V,et al..Formation of the beam profile in a plate electrode HF laser[J].Quantum Electron,2005,35(4):359-364.

[15]BELEVTSEV A A,FIRSOV K N.The encyclopedia of law-temperature plasma[M].Moscow:Physmatlit,2005,XI-4:761.

Author′s biography:Sergey Kazantsev(1971—),Moscow,Russia,graduated from Moscow Engineering Physics Institute(State University)in 1998,His research interests are concerned with experimental investigation of volume self-sustained gas discharge phenomena,development of chemical and high-power electric discharge lasers,and investigation of high power laser beam interaction with matter,laser induced gas breakdown,laser lightning protection.E-mail:kazan@kapella.gpi.ru

High power pulse-periodical electrochemical HF laser

BULAEV V D1,GUSEV V S1,FIRSOV K N2,KAZANTSEV S Yu2,KONONOV I G2,LYSENKO S L1,MOROSOV Yu B1,POZNYSHEV A N1

The high power nonchain repetitively pulsed HF laser is developed and the possibility of realizing the self-sustained volume discharge in SF6-based mixtures in the discharge gap with a high edge enhancement of the electric field without any additional stabilization measures in a pulsed discharge as well as in pulse-periodic modes is investigated.The obtained laser energy is 67 J at the efficiency in 3%and pulse repetition rate in 20 Hz.

chemical laser;non-chain pulsed HF laser;self-sustained volume discharge;SF6-based mixture

研制了高功率、高重频非链式HF激光器,并研究了脉冲模式和重频模式下在SF6的混合气中增加电极边缘电场强度而不使用其它措施即可实现自持体引发放电的可能性,得到了重复频率为20 Hz,脉冲能量为67 J,转换效率为3%的激光输出。

化学激光器;非链式脉冲HF激光器;自引发体放电;SF6混合气体

Supported by Russian Foundation for Basic Research Project(Grants No.09-02-00475,No.08-08-00242).

1674-2915(2011)01-0026-05

TN248.5

A

2010-08-21;

2010-10-15

猜你喜欢
俄罗斯科学院弗拉基米尔高功率
俄罗斯弗拉基米尔大公号核潜艇
两位弗拉基米尔干架
俄开发治疗老年人脑部疾病有效药物
高功率发动机活塞冷却喷油嘴安装位置检具的设计与制造
脚手架楼(大家拍世界)
高功率绿激光前列腺增生治疗仪的研制
高功率微波电磁脉冲辐射防护专刊前言
高功率低燃油耗的新一代蜗壳式增压器
与弗拉基米尔·普京对话
新摩登时代