蓄电池容量均衡方法概述

2011-06-22 07:44李永东
电源学报 2011年5期
关键词:变流器串联充放电

董 博,李永东

(清华大学电机工程与应用电子技术系,北京 100084)

引言

在由蓄电池作为储能单元的系统中,由于蓄电池单体往往容量比较低,不能够满足大容量系统的要求,因此需要将蓄电池单体串联,形成蓄电池组以提高供电电压和存储容量,例如在电动汽车、微电网系统等领域大多需要蓄电池串联。由于蓄电池单体自身制作工艺等原因,不同单体之间诸如电解液密度、电极等效电阻等都存在着差异,这些差异导致即便串联蓄电池组每个单体的充放电电流相同,也会使每个单体的容量产生不同,进而影响整个蓄电池组的工作。最坏的情况,在一个蓄电池组中,有一个单体的剩余容量接近为100%,另一个单体的剩余容量为0,则这个蓄电池组既不能充电也不能放电,完全不能使用。因此对蓄电池容量的均衡是非常重要的,尤其是在大量蓄电池单体串联的情况。

蓄电池容量均衡的方法主要有电阻消耗均衡法、开关电容法、双向DC-DC变流器法、多绕组变压器法、多模块开关均衡法、开关电感法等。

1 电阻消耗均衡法

电阻消耗均衡法是通过与电池单体连接的电阻,将高于其他单体的能量释放,以达到各单体的均衡,如图1所示。每个蓄电池单体通过一个三极管与一个电阻连接,通过控制三极管的导通与关断实现蓄电池单体对电阻的放电。该种结构控制简单,放电速度快,可多个单体同时放电。但缺点也很明显,能量消耗大,只能对单体进行放电不能充电,而且其他蓄电池单体要以最低的单体为标准才能实现均衡,效率低[1,2]。

图1 电阻消耗均衡法结构图

2 开关电容法

开关电容法是在每两个相邻的蓄电池之间通过开关器件与一个电容并联,如图2所示。通过控制开关器件驱动信号PWM的占空比实现相邻两个电池之间能量的传递。例如若蓄电池单体容量B1高于B2,G1开通G2关断时,电容C1和电池单体B1并联,B1将能量传递给C1;G1关断G2开通时,电容C1和电池单体B2并联,C1将能量传递给B2,完成这个周期内的能量传递。以此类推,通过控制开关器件的开通与关断,利用电容实现能量的逐个传递。

该电路可以等效成如图3所示电路,在每两个电池单体之间连接一个等效电阻,可以推出如等式(1)给出的等效阻值[3]。这种方法由于能量逐个传递,因此均衡时间较长,可以根据等式(1),通过改变开关器件的开关频率和电容容值的方法调节等效电阻,改变充放电电流。

图2 开关电容均衡法结构图

式中:f为开关频率;τ=RC;D为占空比。

开关电容法控制简单,可实现充电和放电均衡,但由于是逐级传递能量,因此均衡速度较慢[4-6]。

图3 开关电容法等效电路

3 双向DC-DC变流器法

该方法每个蓄电池单体都连接一个双向DCDC变流器后再串联,如图4所示。由于蓄电池单体电压等级比较低,一般情况下将蓄电池单体作为低压侧。在给蓄电池组充电时,根据图5的控制策略,可以实现对每个蓄电池单体的恒压充电,如果将该控制策略的电压外环打开,可以根据均衡的需要进行恒流充放电控制。在放电时,如果连接负载较重,有些双向DC-DC变流器的电感可能工作在断续状态,在文献[7]中有详细的介绍。

图4 双向DC-DC变流器法结构图

图5 蓄电池单体恒压充电控制框图

这种均衡方法可以同时对所有电池单体进行充放电,并针对不同电池单体的容量情况控制充放电电流。此方法控制灵活,充放电均衡时间短。但由于每个蓄电池单体都需要一个双向DC-DC变流器,因此成本较高[8,9]。

4 多绕组变压器均衡法

多绕组变压器法是将每个蓄电池单体连接到变压器的一个副边,如图6所示。在对蓄电池组进行电压均衡时,控制变压器副边电压首先高于最低的一个蓄电池单体,此时这个单体电路中的二极管导通,其他单体连接的二极管由于承受反压关断,仅给电压最低的蓄电池单体充电,等到这个单体充至倒数第二高时,再提高副边电压,给最低的两个单体充电,照这种方法持续下去[10],充电电压如图7所示。

图6 多绕组变压器法结构图

图7 变压器副边充电电压波形图

这种充电方式的多绕组变压器设计复杂,而且价格较贵,需要根据不同的蓄电池单体数量改变绕组个数,不易于蓄电池组的扩展;仅能通过给蓄电池单体充电的方式实现均衡。

还有多变压器均衡等通过变压器均衡的方法,在文献[11]中有介绍。

5 多模块开关选择均衡法

该种方法的结构如图8所示,由于串联蓄电池单体数量较多,可以将这些单体分为M个模块,每个模块有K个单体。每个蓄电池单体均有一组开关与双向DC-DC变流器连接,开关由两个反向串联的MOSFET组成,在单体未选中进行充放电时,控制芯片控制相应MOSFET关断,单体与变流器断开;由控制器选择给某个单体进行充电时,通过控制芯片开通对应的光耦,令MOSFET导通,将该蓄电池单体接入DC-DC变流器[12],如图9所示。

图8 多模块开关选择均衡法结构图

这种方法可以对任何一个单体进行单独充放电,充放电电流可控,但是每次只能针对一个电池单体,因此整个蓄电池组的充放电均衡时间较长,尤其在单体数量很大的情况下。

图9 多模块开关选择均衡法控制电路

6 开关电感法

开关电感法是在相邻两个蓄电池单体之间通过MOSFET与一个电感相连,如图10所示,若当单体容量B1大于B2时,首先令开关Q1导通Q2断开,B1给电感L1充电,然后Q1断开Q2闭合,此时电感将存储的能量释放给B2,为了保证Q1和Q2不同时导通,会加入死区,在死区时间里,电感L1通过B2,D2续流。同时B2也可以给B3传递能量,也可以实现能量反方向的流动,直到所有电池单体容量相同为止[13]。

图10 开关电感法电路结构图

开关电感法可以实现相邻电池单体间能量的同时传递,可以减少均衡时间,对于N个蓄电池单体,需要2N-2个MOSFET和N-1个电感。

7 结论

蓄电池组各单体容量的均衡对于串联蓄电池组的工作效率和安全起着非常重要的作用,长时间的不均衡会导致整个蓄电池组寿命缩短,严重影响整个系统的工作。本文介绍了各种蓄电池均衡方法的工作原理和优缺点,从中我们可以看出,没有一种方法是十全十美的,需要根据应用场合、均衡时间、串联数量、成本等因素综合考虑,进行实际应用的选择。

[1]Stuart T A,Wei Zhu.Fast Equalization for Large Lithium Ion Batteries.Aerospace and Electronic Systems Magazine,IEEE,2009,24(7):27-31.

[2]B Lindemark.Individual cell voltage equalizers (ICE)for reliable battery performance.in Proc.13th Annu.Int.Telecommun.Energy Conf.,Kyoto,Japan,Nov.1991,pp.196-201.

[3]Kimball J W,Krein P T.Analysis and design of switched capacitor converters. Applied Power Electronics Conference and Exposition,2005,vol.3,pp.1473-1477.

[4]Kimball J W,Kuhn B T,Krein P T.Increased Performance of Battery Packs by Active Equalization. Vehicle Power and Propulsion Conference,2007,pp.323-327.

[5]Baughman A C,Ferdowsi M.Double-Tiered Switched-Capacitor Battery Charge Equalization Technique.Industrial Electronics,IEEE Transactions on,June 2008,55(5):2277-2285.

[6]Pascual C,Krein P T.Switched Capacitor System for Automatic Series Battery Equalization.Applied Power Electronics Conference and Exposition,1997,vol.2,pp.848-854.

[7]Chin-Sien Moo,Kong-Soon Ng,Jin-Shin Hu.Operation of Battery Power Modules with Series Output.Industrial Technology,2009,pp.1-6.

[8]Wei Hong,Kong-Soon Ng,Jin-Hsin Hu,Chin-Sien Moo.Charge Equalization of Battery Power Modules in Series.Power Electronics Conference (IPEC),2010,vol.2,pp.1568-1572.

[9]Moo C S,Ng K S,Hsieh Y C.Parallel Operation of Battery Power Modules.Power Electronics and Drives Systems,2005,vol.2,pp.983-988.

[10]Kutkut N H,Wiegman H L N,Divan D M,Novotny D W.Charge Equalization foran Electric Vehicle Battery System. Aerospace and Electronic Systems, IEEE Transactions on,Jan 1998,34(1):235-346.

[11]Jian Cao,Schofield N,Emadi A.Battery balancing methods:A comprehensive review.Vehicle Power andPropulsion Conference,2008.

[12]Chol-Ho Kim,Moon-Young Kim,Daeyoun Cho,Gun-WooMoon.A ModularizedChargeEqualizerUsing Battery Monitoring IC for Series Connected Li-Ion Battery Strings in an Electric Vehicle.Energy Conversion Congress and Exposition(ECCE),2010,pp.3923-3928.

[13]Kutkut N H.A Modular Non Dissipative Current Diverter For EV Battery Charge Equalization.Applied Power Electronics Conference and Exposition,1998,vol.2,pp.686-690.

猜你喜欢
变流器串联充放电
V2G模式下电动汽车充放电效率的研究
基于SG3525的电池充放电管理的双向DC-DC转换器设计
串联法写记叙文的概括
审批由“串联”改“并联”好在哪里?
我曾经去北京串联
中压一体化储能变流器的设计
基于背靠背变流器的并网控制研究
串联攻坚弹后级引信自适应起爆方法
锂离子电池充放电保护电路的研究
改进PR控制在直驱风机变流器中的应用