水下地形测量技术探讨

2012-04-23 06:08邱文星
城市建设理论研究 2012年35期
关键词:定位精度水深激光

邱文星

摘要:目前,随着社会生产对水下地形测量的质量要求越来越高,水下地形测量作业中有一些问题值得我们学习与探讨。本文介绍了水下地形测量的特点,探讨了现代水下地形测量技术。

关键词:水下地形特点测量技术

中图分类号:Q142.4 文献标识码:A 文章编号:

所谓水下地形测量, 就是利用测量仪器来确定水底点的三维坐标的过程。由于水上无任何参照物, 在水域较大时, 船只只有在导航仪器的指导下, 才能利用测量仪器来获得均匀布满测区的测点。水深测量主要靠回声测深仪进行,利用水声换能器垂直向下发射声波并接收水底回波, 根据回波时间和声速来确定被测点的水深, 通过水深的变化就可以了解水下地形的情况。

一、水下地形测量的特点

1、按断面法采集水下地形测点

由于水下地形的不可见性,施测时其地形点没有选择取舍的余地,且在流动的水中还容易产生重测或漏测的情况,因此,按比例尺的要求水下地形点只能沿着于岸上预选好的断面方向均匀布设。如果水面流速过大,无法沿断面布设时可采用散点法。水下地形点的断面间隔,一般为图上1~1.5cm。

2、水下地形点的平面位置测定方法与常规测量方法有所不同生产中常用的方法:

(1)断面索定位法:在测绘1:500 比例尺水下地形图时,由于水面窄、测深浅、测深点的密度大,测量精度要求高,如采用其他方法很难满足要求,故多采用断面索定位法。

(2) 交会法:可分为前方交会法和后方交会法。

(3)极坐标法:为经纬仪配合平板仪的极坐标法,适用于水面不宽、流速很小、无风浪的水域上。

(4)无线电定位法:适用于水域宽广的湖泊、河口、港湾和海洋上进行的测深定位。此方法是根据电磁波测距原理进行的。精度高、操作方便、不受通视和气候条件的影响。

(5)GPS 定位:我们将在下面重点讨论GPS 定位方法。

3、水下地形点的高程是间接求得的

陆域地形特征点的高程可直接测定,而水下地形点的高程是由水面高程减去相应的水深间接

求取的,H=W-d

其中H—图上高程;

W—相应水位;

d—水深。

这样,水下地形点高程测量由水位测量和水深测量两部分组成。

4、水下地形测量的同步性

在进行水下地形测量时,地形点的平面位置和高程(水位和水深)的测定是分别进行的,此时应特别注意平面位置、水位、水深在时间上的同步性,以保证水下地形测量的精度。由上述可知,水下地形测量的主要内容是:测定水下地形点的平面位置,并同时进行水深测量,以及在水深测量期间的水位观测。水下地形点测定的精度,取决于定位、测深、水位观测的质量以及三者的同步性。

二、现代水下地形测量技术

1、卫星定位技术

前苏联从20 世纪80 年代开始建设与美国GPS系统相类似的卫星定位系统GLONASS ( Global Or-biting Navigation Satellite System) ,是由24 颗卫星组成,现由俄罗斯空间局管理。

美国和俄罗斯的卫星定位系统分为军用码和民用码两种信号。民用用户只能接收精度较低的民用信号。民用信号的定位精度为10 m。美国出于国家自身利益的考虑, 在敏感时期会对GPS 信号实施加密、人为降低定位精度, 如在科索沃战争和阿富汗战争期间, 欧洲军队使用的GPS 技术在实施上都受到了限制。为摆脱对美国GPS 系统的依赖, 2002 年3 月24 日, 欧盟首脑会议冲破美国政府的干扰, 批准了建设Galileo ( 伽利略) 卫星导航定位系统的实施计划。该系统计划于2008 年完成。我国也参与了Galileo 计划的实施。2000 年10 月31 日, 我国自行研制的第一颗导航定位卫星“北斗一号”成功发射。2007 年2月3 日发射了第4 颗卫星。北斗卫星导航系统空间段由5 颗静止轨道卫星和30 颗非静止轨道卫星组成, 提供开放服务和授权服务两种服务方式:开放服务是在服务区免费提供定位、测速和授时服务, 定位精度为10 m, 授时精度为50 ns, 测速精度0.2 m/s 每秒; 授权服务是向授权用户提供更安全的定位、测速、授时和通信服务以及系统完好性信息。

以上介绍的卫星定位系统单点定位的精度都为10 m 左右, 不能满足需要较高定位精度的用户的要求。为提高用户端的定位精度, 可使用差分定位(Differential Global Positioning System) 技术。DGPS测量至少需要2 台GPS 信号接收机, 分别安设在运动载体( 移动站) 和1 个已知坐标的地面点( 基准站) 上。2 台接收机对相同的卫星进行同步观测, 基准站上的接收机根据已知的坐标计算出改正数, 再将改正数发送到移动站, 移动站根据接收到的改正数解算三维坐标。按照基准站发给移动站的数据类型不同, 可分为位置DGPS 测量、伪距DGPS 测量、载波相位DGPS 测量3 种类型。1995—2000 年, 中国海事局组织建立了覆盖我国沿海海域、由20 个航海无线电信指向标构成的RBN ( Radio Beacons) - DGPS。该系统的基准站测定各颗在视卫星的伪距差分改正数, 并通过播发台以最小频移键控调制到无线电信标载波频率上, 发给GPS 用户。用户接收GPS 信号和差分信号便可实现DGPS 测量。测量精度随着移动台与基准台之间的距离增加而降低。在100 km 范围内, 定位精度优于3 m 的置信度为91%, 在300 km 范围内,定位精度优于5 m 的置信度为97%。目前, RBNDGPS测量定位方式在我国海洋测绘中被广泛采用。

2、水声定位

水声定位技术是近30 年来发展起来的一种海洋测量定位手段。其原理是在某一局部海域海底设置若干个水下声标, 首先利用一定的方法测定这些水下声标的相对位置, 然后在测量确定船只相对陆上大地测量控制网位置的同时, 确定船只相对水下声标的位置, 依这样同步测量的处理结果, 就可以确定水下声标控制点在陆地统一坐标系统的坐标。实施测量定位时, 水下声标接收到测量设备载体( 可以是测量船或水下机器人) 发出的声波信号后发出应答信号( 也可以由水下声标主动发射信号) 。通过测定声波在海水中的传播时间和相位变化, 就可以计算出声标到载体的距离或距离差, 从而解算出载体的位置。

水声定位系统的工作方式主要有长基线定位系统和超短基线定位系统。长基线定位系统原理通过安装在船底的一个换能器向布设在水下、相距较远的3 个以上水下声标发射询问信号并接收水下声标的应答信号, 测距仪根据声速和声信号的传播时间计算出换能器至各声标的距离从而确定船位坐标。长基线定位系统的定位精度为5~20 m; 短基线定位系统是在船底安装由3 个水听器组成的正交水听器阵和1 个换能器, 在海底布设1 个水下声标。通过测定声标发出的声脉冲到不同水听器之间的时差或相位差计算测量船的位置; 超短基线定位系统的工作原理与短基线相同, 只是3 个正交水听器之间的距离很短, 小于半个波长, 只有几厘米。

3、单波束水深测量数字化、自动化

我国于20 世纪90 年代初开始广泛采用数字化测深仪进行水深测量, 这就使得水深测量的数字化、自动化成为可能。单波束水深测量自动化系统包括数字化测深仪、定位设备( 通常为GPS) 、数据采集和处理设备、数据采集和处理软件。在有较高精度要求的测量中, 还使用了运动传感器实时测量船舶姿态并通过软件对测得的数据进行姿态改正。在自动化测量系统中, 测深仪测得的水深数据和GPS 测得的定位数据通过RS232 接口传输到计算机, 计算机通过数据采集软件将收到的数据以一定的格式形成电子文件存储到计算机硬盘。外业测量结束后利用数据处理软件剔除假水深、加入仪器改正数和潮位改正, 形成水深数字文件, 再由软件的绘图模块驱动绘图机自动成图。

4、侧扫声纳

侧扫声纳应用于海底地貌探测是在20 世纪50年代由英国海洋地质学家提出的, 60 年代后, 英、美、法等国陆续开发出侧扫声纳的实用产品。80年代以后, 计算机技术广泛应用于侧扫声纳, 90年代, 出现了数字化的侧扫声纳, 使这一技术得到了进一步的发展。

侧扫声纳可以显示微地貌形态和分布, 可以得到连续的具有一定宽度的二维海底图象。侧扫声纳由拖鱼式换能器、拖曳电缆和显示控制平台组成。侧扫声纳的换能器线阵向拖鱼两侧发出扇形声波波束, 可以使声波照射拖鱼两侧各一条狭窄的海底( 照射到海底的宽度与水深成正比) , 海底各点的回波以不同的时间差返回换能器, 换能器将声信号转换为不同强度的电脉冲信号, 各脉冲信号的幅度高低包含了对应海底的起伏和海底底质的信息。依靠测量船向前的移动完成两侧带状海底的扫描, 通过显示器可得到二维海底的伪彩色或黑白声图, 可以显示出海水中和海底的物体轮廓和海底的地貌。

传统的侧扫声纳只能形成二维的声图, 而得不到水深数据, 为了提高测量效率, 开发出了三维侧扫声纳, 其工作原理是在每侧至少使用两条接收换能器阵元, 通过测量信号到达两阵元间的相位差, 得到侧向水深数据。

5、机载激光测量

机载激光测深技术是在20 世纪70 年代初由澳大利亚国防科学技术机构提出来的, 经过数十年的研制、试验, 机载激光测深技术已进入实用阶段。由于它的灵活机动性、高效率以及管理和使用上的方便性, 这一技术被认为是当今快速完成浅水测深最具发展潜力的手段之一。机载激光测深技术是以飞机作为测量平台, 向海面发射激光波束, 激光穿透海水到达海底后返回机上接收装置, 通过测量飞机的空间位置、姿态、激光波束的旅行时间可得到海底水深。

激光测深系统一般由测深系统、导航系统、数据处理分析系统、控制监视系统、地面处理系统5 部分组成。测深系统使用红、绿两组激光束,红光脉冲被海面反射, 绿光则穿透到海水中, 到达海底后被发射回来, 根据两束激光被接收的时间差可以得到水深; 导航系统采用GPS 定位设备;数据处理分析系统用来记录位置数据、载体姿态数据和水深数据并进行处理; 控制监视系统用于对设备进行实时控制和监视; 地面数据处理系统用来对采集的数据进行滤波、各种改正计算, 得到正确水深。机载激光技术的测深能力受水体浑浊度的影响较大, 在理想条件下穿透深度可达30~100 m。测深精度0.3~1 m。

目前世界上机载激光技术比较发达的国家有澳大利亚、美国、加拿大和瑞典。我国也于2001 年在上海研制成功了机载海洋测深系统, 主要技术指标如下: 激光器重复频率200Hz, 测量航高500m, 飞行速度6 070m/s, 测深点格网密度10m×10m, 测线带宽240m, 测深能力2~50m, 测深精度0.3m。

参考文献:

[1] 刘忠强,杨清臣.GPS RTK配合测深仪在水下地形测量中的应用[J]. 吉林水利. 2010(11)

[2] 沈诚学.GPS RTK技术在水下地形测量中的应用[J]. 甘肃水利水电技术. 2008(05)

[3] 高斌,吴向阳,刘娟.GPS在水下地形测量工程中的应用[J]. 测绘科学. 2009(S2)

猜你喜欢
定位精度水深激光
GPS定位精度研究
GPS定位精度研究
趣图
送餐机器人
基于WiFi的室内定位中AP选择方法研究
激光3D长绳
神奇的激光
医疗定位系统的精度测试方法研究
水缸的宽度,要不要?
航道水深计算程序的探讨