杜仲叶的化学成分研究

2014-02-10 20:56范田运张建新黄烈军郝小江
天然产物研究与开发 2014年5期
关键词:波谱杜仲丙酮

董 芬,范田运,张建新,黄 滔,黄烈军*,郝小江*

1贵州大学生命科学学院,贵阳 550025;2 贵州省中国科学院天然产物化学重点实验室,贵阳 550002

杜仲(Eucommia ulmoides Oilv.)为杜仲科杜仲属植物,又名木棉、丝连皮、思仲、思仙等,是我国特有的落叶乔木植物,其干燥树皮为我国名贵滋补药材[1]。杜仲入药已有2000 多年的历史,《神农本草经》和《本草纲目》均将其列为药之上品,具补中益气、坚筋骨、强志、安胎、久服轻身耐劳之功效。《本草汇言》中记载:“凡下焦之虑,非杜仲不补;下焦之湿,非杜仲不利。”多年来,国内外许多学者对杜仲的化学成分和药理作用进行了大量研究,发现杜仲具有调节血压、降低血糖、调节血脂、抗菌、抗病毒、抑制肿瘤细胞生长等药理作用,具有延缓衰老、美白养颜、滋阴补肾、强壮筋骨等功效[2-4]。其主要活性成分包括木脂素类、环烯醚萜类、苯丙素类、多糖类、黄酮类和萜类等[5]。传统入药部位是树皮,但近年来的研究表明,杜仲传统非药用部位如杜仲叶、杜仲雄花和翅果等,含有药用部位结构相同或相似的生物活性成分,如杜仲叶浸膏对麻醉猫具有非常明显的降压作用[6],杜仲叶的氯仿提取物对免疫的抑制活性[7],以及杜仲叶提取物因其补肾、强筋骨、抗衰老、安胎、调血脂、抗氧化等方面研究具有较好活性而受到关注,已在医药和保健品方面都有应用[1]。本课题组对杜仲叶化学成分进行了系统的研究,分离得到14 个化合物,其中化合物6、8、10、12 和13为首次从该属植物中分离得到。

1 仪器与材料

1H,13C NMR 和2D NMR 图谱用INOVA-400 核磁共振仪测定,以TMS 为内标。EI-MS 质谱用安捷伦-5973 型质谱仪测定,ESI-MS 以美国Thermo Finnigan 公司的Waters 2695 LCQ-MS 联用仪测定。柱层析硅胶(40~80 目、200~300 目、300~400目)、薄层层析硅胶H(60 型)、薄层层析使用硅胶GF254均为青岛海洋化工有限公司产品;柱色谱用反相硅胶RP-18 和薄层层析反相硅胶RP-18,RP-8 为Merck 公司产品;MCI(75~150 μm)柱层析材料为Mitsubishi Chemical 公司(日本东京)产品;大孔吸附树脂D101 为南开大学树脂厂产品;葡聚糖凝胶Sephadex LH-20 为Amersham Biosciences 公司(瑞典)产品;所用的有机溶剂(石油醚、氯仿、乙酸乙酯、丙酮和甲醇等)均为工业级,使用前重蒸处理;核磁共振用氘代试剂均为中科院武汉波谱公司产品;HPLC 所用试剂均为色谱纯;其它试剂均为分析纯。显色方法为254 和365 nm 荧光、10%浓硫酸的乙醇溶液,5%磷钼酸乙醇溶液以及碘蒸气显色。

实验用药材于2012 年7 月采自贵州省贵阳市三江农场,并由贵阳中医学院付志明教授鉴定为杜仲科杜仲属植物杜仲Eucommia ulmoides Oilv.的干燥叶。

2 提取与分离

取干燥的杜仲叶样品10 kg,粉碎后用10 倍量65%的乙醇溶液加热回流提取3 次(提取时间依次为5、4、3 h)后过滤,合并滤液,减压回收乙醇,加入适量蒸馏水混悬,依次用石油醚、乙酸乙酯、正丁醇各萃取3 次,减压回收溶剂,得石油醚萃取物650 g,乙酸乙酯萃取物1043 g,正丁醇萃取物220 g。

乙酸乙酯萃取物用硅胶(40~80 目)拌样。将拌好的样品采用硅胶(200~300 目)柱层析分离,先用石油醚:乙酸乙酯(1∶0~0∶1),然后用乙酸乙酯:甲醇(1∶0~0∶1)进行梯度洗脱。合并相似部分,共分为6 段,标记为Fr.1 (13.2 g)、Fr.2 (20.5 g)、Fr.3 (62.3 g)、Fr.4 (53.3 g)、Fr.5 (502.5 g)和Fr.6 (273.4 g)。Fr.3 经多次正相硅胶柱色谱、凝胶柱色谱以及制备液相分离制备得到化合物10(23 mg)、11 (426 mg)、14 (42 mg);Fr.4 经MCI、正相、反相硅胶、Sephadex LH-20 等柱色谱分离制备得到化合物1(67 mg)、2 (56 mg)、8 (6 mg)、12 (7 mg)、13 (23 mg);Fr.5 经大孔树脂、正相、反相硅胶、凝胶等柱色谱以及HPLC 法等手段分离制备得化合物3 (1.6 g)、4 (11 mg)、5 (27 mg)、6 (25 mg);正丁醇部位经D101 大孔树脂及ODS 柱色谱分离得到化合物7 (8 mg)、9 (6 mg)。

3 结构鉴定

化合物1 黄色粉末,C15H10O6,易溶于丙酮;ESI-MS (positive)m/z 309 [M+Na]+;1H NMR(CD3COCD3,400 MHz)δ:8.15 (2H,dd,J=6.8,2.0 Hz,H-2',6'),7.01 (2H,dd,J=7.2,2.0 Hz,H-3',5'),6.54 (1H,d,J=2.0 Hz,H-8),6.28(1H,d,J=2.0 Hz,H-6);13C NMR (CD3COCD3,100 MHz)δ:146.9 (C-2),136.6 (C-3),176.5 (C-4),160.1 (C-5),99.1 (C-6),164.9 (C-7),94.4(C-8),157.7 (C-9),104.1 (C-10),123.2 (C-1'),130.4 (C-2'),116.3 (C-3'),160.1 (C-4'),116.3(C-5'),130.4 (C-6')。以上波谱数据与文献[8]报道基本一致,鉴定化合物1 为kaempferol。

化合物2 黄色粉末,C15H10O7,易溶于丙酮;ESI-MS (positive)m/z 303[M+H]+,325[M +Na]+;1H NMR (CD3COCD3,400 MHz)δ:7.66(1H,d,J=1.6 Hz,H-2'),7.54 (1H,dd,J=6.7,1.8 Hz,H-6'),6.88 (1H,d,J=6.7 Hz,H-5'),6.39 (1H,d,J=1.4 Hz,H-8),6.18 (1H,d,J=1.4 Hz,H-6);13C NMR (CD3COCD3,100 MHz)δ:146.8 (C-2),135.8 (C-3),175.8 (C-4),156.1 (C-5),98.2 (C-6),163.9 (C-7),93.3 (C-8),160.7(C-9),103.0 (C-10),121.9 (C-1'),115.0 (C-2'),145.0 (C-3'),147.7 (C-4'),115.6 (C-5'),119.9(C-6')。以上波谱数据与文献[8]报道基本一致,鉴定化合物2 为quercetin。

化合物3 黄色粉末,C21H20O12,易溶于丙酮;ESI-MS (positive)m/z 465[M+H]+,487[M +Na]+;1H NMR (CD3COCD3,400 MHz)δ:7.97(1H,s,H-2'),7.58 (1H,d,J=8.4 Hz,H-5'),6.95 (1H,d,J=8.4 Hz,H-6'),6.51 (1H,s,H-8),6.28 (1H,s,H-6),5.28 (1H,d,J=7.2 Hz,H-1',β-构 型);13C NMR (CD3COCD3,100 MHz)δ:156.4 (C-2),133.3 (C-3),177.5 (C-4),161.3 (C-5),99.0 (C-6),164.4 (C-7),93.6 (C-8),156.2(C-9),103.9 (C-10),121.7 (C-1'),115.3 (C-2'),144.9 (C-3'),148.6 (C-4'),116.2 (C-5'),121.2(C-6'),Glu 100.8 (C-1″),74.1 (C-2″),77.7 (C-3″),69.9 (C-4″),76.5 (C-5″),60.9 (C-6″)。以上波谱数据与文献[9]报道基本一致,鉴定化合物3 为hirsutin。

化合物4 黄色粉末,C21H20O11,易溶于二甲亚砜;ESI-MS (positive)m/z 449[M+H]+,471[M+Na]+;1H NMR (DMSO-d6,400 MHz)δ:8.00(2H,d,J=8.8 Hz,H-2',6'),6.87 (2H,d,J=8.8 Hz,H-3',5'),6.41 (1H,s,H-8),6.17 (1H,s,H-6),5.44 (1H,d,J=7.2 Hz,H-1″,β-构型);13C NMR (DMSO-d6,100 MHz)δ:156.5 (C-2),133.1(C-3),177.3 (C-4),161.1 (C-5),99.0 (C-6),165.5 (C-7),93.8 (C-8),156.1 (C-9),103.5 (C-10),120.7 (C-1'),130.8 (C-2'),115.2 (C-3'),160.3 (C-4'),115.2 (C-5'),130.8 (C-6'),Glu 100.9 (C-1″),74.2 (C-2″),77.5 (C-3″),69.9 (C-4″),76.4 (C-5″),60.8 (C-6″)。以上波谱数据与文献[9]报道基本一致,鉴定化合物4 为astragalin。

化合物5 无定型粉末,C20H22O7,易溶于丙酮;ESI-MS (positive)m/z 397 [M+Na]+;1H NMR(CD3COCD3,400 MHz) δ:6.74-7.10 (6H,m,arom.H),4.81 (1H,d,J=4.8 Hz,H-6),4.65(1H,s,H-2),4.40-4.48 (1H,m,H-4b),3.84-4.06(3H,m,H-4a,8),3.82 (6H,s,2 × OCH3),2.87-3.06 (1H,m,H-5);13C NMR (DMSO-d6,125 MHz)δ:91.1 (C-1),87.1 (C-2),70.3 (C-4),60.8 (C-5),85.4 (C-6),74.7 (C-8),128.0 (C-1'),112.3(C-2'),146.9 (C-3'),145.9 (C-4'),114.6 (C-5'),120.2 (C-6'),132.4 (C-1″),110.7 (C-2″),147.5 (C-3″),145.9 (C-4″),115.2 (C-5″),118.9(C-6″),56.1 (2 × OCH3)。以上波谱数据与文献[10]报道基本一致,鉴定化合物5 为(+)-1-hydroxypinoresinol。

化合物6 无定型粉末,C20H22O7,易溶于丙酮;ESI-MS (positive)m/z 397 [M+Na]+;1H NMR(CD3COCD3,400 MHz) δ:6.74-7.08 (6H,m,arom.H),5.13 (1H,d,J=6.0 Hz,H-6),4.38(1H,s,H-2),4.21 (1H,d,J=9.2 Hz,H-4b),3.86(1H,s,H-8b),3.84 (6H,s,2 ×OCH3),3.75 (1H,s,H-8a),3.60 (1H,d,J=9.2 Hz,H-4a),2.85-2.95 (1H,m,H-5);13C NMR (CD3COCD3,100 MHz)δ:91.6 (C-1),81.9 (C-2),68.6 (C-4),58.5(C-5),90.1 (C-6),76.8 (C-8),129.2 (C-1'),112.2 (C-2'),147.8 (C-3'),147.0 (C-4'),115.1(C-5'),121.1 (C-6'),131.0 (C-1″),110.0 (C-2″),148.1 (C-3″),146.3 (C-4″),115.5 (C-5″),118.9 (C-6″),56.1 (2 ×OCH3)。以上波谱数据与文献[11]报道基本一致,鉴定化合物6 为(+)-1-hydroxy-6-epipinoresinol。

化合物7 无定型粉末,C26H32O11,易溶于甲醇;ESI-MS (positive)m/z 543 [M+Na]+;1H NMR (CD3OD,400 MHz)δ:7.14 (1H,d,J=8.4 Hz,H-5),7.02 (1H,s,H-2),6.94 (1H,s,H-2'),6.91 (1H,d,J=8.4 Hz,H-6),6.80 (1H,d,J=9.2 Hz,H-6'),6.76 (1H,d,J=8.0 Hz,H-5'),4.87 (1H,s,H-1″),4.76 (1H,s,H-7),4.65 (1H,d,J=3.6 Hz,H-7'),4.23 (2H,m,H-9β,H-9'β),3.86 (3H,s,OCH3),3.85 (3H,s,OCH3),3.82(2H,m,H-9α,H-9'α),3.71-3.22 (Sugar H),3.12(2H,m,H-8,8');13C NMR (CD3OD,100 MHz)δ:137.5 (C-1),111.6 (C-2),147.3 (C-3),150.9 (C-4),117.9 (C-5),119.8 (C-6),87.1 (C-7),55.3(C-8),72.7 (C-9),133.7 (C-1'),110.9 (C-2'),147.5 (C-3'),149.1 (C-4'),116.1 (C-5'),120.0(C-6'),87.5 (C-7'),55.5 (C-8'),72.7 (C-9'),102.8 (C-1″),74.9 (C-2″),77.8 (C-3″),71.3 (C-4″),78.2 (C-5″),62.5 (C-6″),56.7 (OCH3),56.4(OCH3)。以上波谱数据与文献[12]报道基本一致,鉴定化合物7 为pinoresinol-4-O-glucoside。

化合物8 无色针状,C15H12O5,易溶于丙酮;ESI-MS (positive)m/z 273[M+H]+,295[M +Na]+;1H NMR (CD3COCD3,400 MHz)δ:7.37(2H,d,J=8.8 Hz,H-2',6'),6.80 (2H,d,J=8.8 Hz,H-3',5'),6.30 (1H,s,H-5),6.28 (1H,d,J=2.0 Hz,H-7),5.55 (1H,dd,J=12.0,3.2 Hz,H-3),3.28 (1H,dd,J=16.4,12.0 Hz,H-4a),3.05(1H,dd,J=12.0,3.2 Hz,H-4b);13C NMR(CD3COCD3,100 MHz)δ:170.7 (C-1),81.1 (C-3),35.3 (C-4),143.3 (C-4a),107.4 (C-5),165.3(C-6),101.9 (C-7),165.3 (C-8),101.8 (C-8a),130.5 (C-1'),128.8 (C-2'),116.1 (C-3'),158.6(C-4'),116.1 (C-5'),128.8 (C-6')。以上波谱数据与文献[13]报道基本一致,鉴定化合物8 为thunberginol C。

化合物9 白色粉末,C27H34O12,易溶于甲醇;ESI-MS (positive)m/z 551[M+H]+,573[M +Na]+;1H NMR (CD3OD,400 MHz)δ:6.61-6.82(5H,m,arom.H),3.85 (9H,s,3 ×OCH3),3.55~3.81 (4H,m,H-4,8);13C NMR (CD3OD,100 MHz)δ:55.3 (C-1),87.6 (C-2),72.7 (C-4),55.5 (C-5),87.4 (C-6),72.9 (C-8),135.5 (C-1'),105.3(C-2'),154.4 (C-3'),139.6 (C-4'),154.4 (C-5'),104.8 (C-6'),133.7 (C-1″),110.9 (C-2″),149.3 (C-3″),149.1 (C-4″),116.1 (C-5″),120.0(C-6″),Glu 104.4 (C-1'),75.7 (C-2'),77.8 (C-3'),71.3 (C-4'),78.3 (C-5'),62.5 (C-6'),56.8(OCH3),56.4 (OCH3),55.8 (OCH3)。以上波谱数据与文献[14]报道基本一致,鉴定化合物9 为(+)-medioresinol 4'-O-β-D-glucopyranoside。

化合物10 白色粉末,C9H6O3,易溶于丙酮;ESI-MS (positive)m/z 185 [M+Na]+;1H NMR(CD3COCD3,400 MHz)δ:7.87 (1H,d,J=9.6 Hz,H-4),7.52 (1H,d,J=8.4 Hz,H-5),6.85(1H,dd,J=8.4,2.4 Hz,H-6),6.17 (1H,d,J=9.2 Hz,H-3);13C NMR (CD3COCD3,100 MHz)δ:161.0 (C-2),112.8 (C-3),144.7 (C-4),130.4 (C-5),113.7 (C-6),161.9 (C-7),103.2 (C-8),156.9(C-9),112.8 (C-10)。以上波谱数据与文献[15]报道基本一致,鉴定化合物10 为7-hydroxycoumarin。

化合物11 白色粉末,C17H20O9,易溶于丙酮;ESI-MS (positive)m/z 369[M+H]+,391[M +Na]+;1H NMR (CD3COCD3,400 MHz)δ:7.54(1H,d,J=16.0 Hz,H-3'),7.16 (1H,d,J=1.6 Hz,H-5'),7.04 (1H,dd,J=8.0,1.6 Hz,H-9'),6.87 (1H,d,J=8.0 Hz,H-8'),6.25 (1H,d,J=16.0 Hz,H-2'),5.33 (1H,m,H-3),4.17 (1H,m,H-5),3.75 (1H,t,J=8.4,2.8 Hz,H-4),3.73(3H,s,OCH3),2.05-2.30 (2H,m,H-2),5.33 (1H,m,H-3);13C NMR (CD3COCD3,100 MHz)δ:75.9(C-1),37.9 (C-2),72.9 (C-3),71.5 (C-4),71.5(C-5),37.9 (C-6),174.5 (C-7),52.6 (OCH3),166.9 (C-1'),115.1 (C-2'),145.9 (C-3'),127.5(C-4'),115.7 (C-5'),146.4 (C-6'),148.9 (C-7'),116.4 (C-8'),122.6 (C-9')。以上波谱数据与文献[16]报道基本一致,鉴定化合物11 为methylchlorogenate。

化合物12 无色油状,C18H32O2,易溶于氯仿;ESI-MS (positive)m/z 303 [M+Na]+;1H NMR(CDCl3,400 MHz)δ:5.36-5.33 (4H,m,-CH=CH-),2.77 (2H,m,J=6.4 Hz,H-11),2.35 (2H,t,J=7.6 Hz,H-2),2.05 (2H,m,J=6.4 Hz,H-14),2.04 (2H,m,J=7.2 Hz,H-8),1.64 (2H,m,J=7.2 Hz,H-3),1.38-1.30 (6H,m,3 × CH2,H-15-17),1.30-1.22 (8H,m,4 × CH2,H-4-7),0.89(3H,m,J=6.8 Hz,H-18);13C NMR (CDCl3,100 MHz)δ:180.1 (C-1),34.0 (C-2),24.6 (C-3),29.2(C-4,5),29.5 (C-6)29.3(C-7),27.1(C-8),129.7 (C-9),129.9 (C-10),25.6 (C-11),130.2(C-12),127.8 (C-13),27.2 (C-14),31.9 (C-15),31.9 (C-16),31.9 (C-17),14.0 (C-18)。以上波谱数据与文献[17]报道基本一致,鉴定化合物12 为leinoleic acid。

化合物13 白色粉末,C4H6O4,易溶于甲醇;ESI-MS (positive)m/z 141 [M+Na]+;1H NMR(CD3OD,400 MHz)δ:2.50 (4H,s,H-2,3);13C NMR (CD3OD,100 MHz)δ:176.3 (C-1,4),29.7(C-2,3)。以上波谱数据与文献[18]报道基本一致,鉴定化合物13 为butanedioic acid。

化合物14 白色针状结晶(氯仿),C29H50O,易溶于氯仿;ESI-MS (positive)m/z 437[M +Na]+;10%硫酸乙醇溶液显紫色,5%磷钼酸乙醇溶液显蓝色。将化合物与β-谷甾醇标准品在三个溶剂系统下进行共薄层检查,结果显示两者具有相同的显色行为及Rf值一致,可以确定化合物14 为β-sitosterol。

1 Ye WF(叶文峰).Eucommia ulmoides Oliver leaf chemical composition,pharmacological activity and application of research.J Fore Prod Chem Ind(林产化工通讯),2004,38(5):40-44.

2 Xin XM(辛晓明),Feng L(冯蕾),Wang H(王浩),et al.Advances in studies on Eucommia ulmoides chemical constituents and pharmacological activity.Med Recap(医学综述),2007,13:1507-1509.

3 Luo XB,Ma M,Chen B,et al.Analysis of nine bioactive compounds in Eucommia ulmoides Oliv.and their preparation by HPLC-photodiode array detection and mass spectrometry.J Liq Chromatogr R T,2004,27:63-81.

4 Matsuda E,Yoshizawa Y,YokosawaY,et al.Effects of Eucommia ulmoides Oliver leaf extract on 3T3-L1 differentiation into adipocytes.J Nat Med,2006,60:126-129.

5 Wang YQ(王亚琴),Zhang KJ(张康健).Advances in studies on secondary metabolites of Eucommia ulmoides.Chin Tradit Herb Drugs(中草药),2004,35:836.

6 Huang WG(黄武光),Zeng QZ(曾庆卓),Pan ZX(潘正兴),et al.Study on the main pharmacodynamics and acute toxicity of eucommia leaves electuary.Guizhou Med J(贵州医药),2000,24:325-326.

7 Hu JL(胡佳玲).Advances in studies on Eucommia ulmoides.Chin Tradit Herb Drugs(中草药),1999,30:394.

8 Lv H(吕辉).Studies on flavonoids from Helichrysum arenarium.Chin J Chin Mater Med(中国中药杂志),2008,43(1):12.

9 Cheng J(成军),Zhao YY(赵玉英),Cui YX(崔育新),et al.Studies on flavonoids from leave of Eucommia ulmoides Oliv.Chin J Chin Mater Med(中国中药杂志),2000,25:284-285.

10 Taksehi Deyama,Takako Ikawa,Shizuka Kitagawa,et al.The constituents of Eucommia ulmoides OLIV.III.isolation and structrue of a new lignan glycoside.Chem Pharm Bull,1986,34:523-527.

11 Hiroki Tsukamoto,Sueo Hisada,and sansei Nishibe.Lignans from bark of the olea plants II.Chem Pharm Bull,1985,33:1232-1241.

12 Dae Keun Kim,Jong Pil Lim,Jin Wook Kim,et al.Antitumor and antiinflammatory constituents from Celtis sinensis.Arch Pharm Res,2005,28:39-43.

13 Masayuki Yoshikawa,Emiko Uchida,Nobuyasu chatani,et al.MURAKAMI.thu-nberginols C,D,and E,new antiallergic and antmicrobial dihydroisocoumarins,and thumberginol G3'-O-glucoside and(-)-hydrangenol 4'-O-glucoside,new dihydroisocoumarin glycosides,from hydrangeae dulcis folium.Chem Pharm Bull,1992,40:3352-3354.

14 Takeshi Deyama,Takako Ikawa,Sansei Nishibe.The constituents of Eucommia ulmoides OLIV.Ⅱ.Isolation and structures of three new lignan glycoside.Chem Pharm Bull,1985,33:3651-3657.

15 Teresa Zolek,Katarzyna Paradowska,and Iwona Wawer.13C CP MAS NMR and GIAO-CHF calculations of coumarins.Solid State Nucl Magn Reson,2003,23:77-87.

16 Wen YX(翁裕馨),Chen XH(陈湘宏),Liu ZH(刘占厚).Chemical constituents of chlorogenic acids from the dried leaves of L.similis Hemsl.J Anhui Agric Sci(安徽农业科学),2011,39:16566-16568.

17 Yang AM(杨爱梅),Lu RH(鲁润华),Shi YP(师彦平).Chemical constituents from Pyrethrum tatsienense.J Chin Med Mat(中药材),2007,30:546-548.

18 Li GZ(李广志),Chen F(陈峰),Shen LG(沈连钢),et al.Study on chemical constituents from roots and rhizomes of Acorus tatarinowii.Chin Tradit Herb Drugs(中草药),2013,44:808-810.

猜你喜欢
波谱杜仲丙酮
盐酸四环素中可交换氢和氢键的核磁共振波谱研究
制药工艺尾气中丙酮的膜法回收
基于CuO/ZnO异质结纳米花的薄膜型丙酮传感器研究
HPLC法同时测定杜仲-当归药对中5种成分
氯代丙酮合成方法的研究进展
琥珀酸美托洛尔的核磁共振波谱研究
略阳杜仲
检疫性杂草假高粱与近缘植物种子的波谱鉴别方法
殃及池鱼
周末