末次盛冰期临沂城区段的沂河古河槽

2014-07-02 00:26曹光杰闫克超
地球环境学报 2014年3期
关键词:沂河河槽基岩

曹光杰,闫克超,吴 婷,曹 原

(1.山东师范大学 人口·资源与环境学院,济南 250014;2.临沂大学 资源环境学院,临沂 276005)

末次盛冰期临沂城区段的沂河古河槽

曹光杰1,2,闫克超1,2,吴 婷1,2,曹 原2

(1.山东师范大学 人口·资源与环境学院,济南 250014;2.临沂大学 资源环境学院,临沂 276005)

选择沂河临沂城区段作为研究河段,根据九曲沂河大桥附近、G327沂河大桥附近的地质勘探钻孔资料,绘制了九曲沂河大桥附近、G327沂河大桥附近沂河古河槽地质剖面示意图,并在临沂城区段沂河河槽底部及岸边进行了采样分析。研究发现,沂河古河槽底部断裂带发育,G327沂河大桥附近约56 m以下的河槽为末次盛冰期时的沂河河槽,九曲沂河大桥附近约53~55 m以下河槽为末次盛冰期时沂河、祊河的古河槽;末次盛冰期,祊河在九曲沂河大桥的下游汇入沂河,沂河古河槽宽深比较大,河槽宽浅,具有分汊–辫状河特征。

末次盛冰期;沂河;临沂城区段;古河槽

关于末次冰期的环境,长期以来一直是国内外研究的一个热点。要恢复末次冰期的地表环境,没有对当时河流状况的了解,是不全面的。对古河道的研究不仅可以了解一个地区的河流地貌演变历史,也是研究古地理环境的重要手段,同时对于预测未来环境变化具有重要意义(Baker et al,1993;Starkel,1993),因此引起了越来越多国内外科学家的关注(Fish and Mcfarland,1955;Allen and Posamentier,1993;Hou et al,2003;Blum and Aslan,2006;Sidorchuk et al,2009;Westaway and David,2010)。目前国内对末次冰期古河道的研究,多集中在长江(杨达源,1986;夏东兴和刘振夏,2001;Li et al,2002;李广雪等,2005;曹光杰等,2009,2012;刘奎等,2009)、黄河(吴忱等,1986,1991;张祖陆,1990)及珠江(黄镇国等,1995)等(傅先兰登,1998;Lin et al,2003)大江大河上,对非直接入海的区域性河流研究很少,目前还没有对沂河古河道的研究成果。进行末次盛冰期沂河古河道研究,将为探讨末次盛冰期华北季风区的古水文与古环境提供重要的线索。

沂河发源于山东省沂源县的鲁山南麓,是淮河的重要支流,向南流经沂源、沂水、沂南、兰山、河东、罗庄、郯城,在郯城南部入江苏境内,进入苏北平原后,部分经灌河口入黄海,部分注入骆马湖经运河与淮河相通。全长574 km,流域面积17325 km2,在山东省境内流域面积约9383 km2,长约280 km。沂河自源头至跋山水库为上游,跋山水库至祊河口为中游,祊河口以下为下游(国家一级河流)。祊河是沂河的最大支流,在临沂市城东北汇入沂河。选择沂河城区段作为研究河段(见图1),具有一定的代表意义。

图1 沂河临沂城区段位置示意图Fig.1 Stratigraphical cross-section of the Yihe River bridges at Linyi Urban Reach

1 资料与方法

搜集整理九曲沂河大桥地质勘探钻孔243个,G327沂河大桥地质勘探钻孔29个。分别对各大桥附近的钻孔进行配准定位,选出在同一直线方向上的钻孔。运用ArcGIS 9计算所选钻孔之间的距离。根据钻孔的距离及深度,分别确定横比例尺、纵比例尺。根据确定的比例尺,绘制九曲沂河大桥附近、G327沂河大桥附近沂河横断面地质剖面简图,用Mapinfo软件绘制地质剖面示意图。

在G327沂河大桥附近沂河河槽上,结合工程挖掘,在河床底部约55 m处,采集光释光测年样品2个(样品为粗砂砾石,位置见图1),在河床接近基岩处采集粒度样品36个。光释光年代样品在中国科学院青海盐湖所进行年代测试,河床底部样品年代测试结果为22810 ± 2580 a BP。在上游沂河右岸埋深3.91~3.96 m处采集光释光年代样品1个(样品为砾砂),样品年代测试结果为16520 ± 3600 a BP。

祊河大桥南岸地层,上部约2 m为杂填土,埋深约3 ~ 5 m是砂质黏土层,在埋深3.92 ~ 3.96 m、4.34 ~ 4.38 m处采集14C年代样品2个(样品为泥质黏土,位置见图1),年代测定结果分别为12210 ± 50 a BP、14020 ± 60 a BP。

2 结果

2.1 九曲沂河大桥附近剖面

图2是根据九曲沂河大桥的地质勘探钻孔资料绘制的沂河古河槽地质剖面图。钻孔揭示,九曲沂河大桥附近,古河槽位于现在河床的下方。K1—K7孔、K36—K41孔、K44—K55孔是一组相对深槽,在约53~55 m是埋藏阶地。河槽底部切割到溶蚀带微风化灰岩、中风化泥岩、强风化砂岩、强风化安山岩等,岩性较复杂,有断裂带发育。K49—K53孔河槽底部沉积的是褐黄色粗砂,中等密实,饱和,分选性一般,主要成分是石英和长石,含有少量圆砾、卵石,磨圆度较好,系搬运而来。深槽底部其他部分沉积的是黄褐色粉质黏土,可塑,含较多砂粒及少量卵石。往上整个河槽中沉积的是黄褐色粗砂,中等密实,饱和,主要成分是石英和长石,分选性一般,含有少量圆砾。现代河床的东侧底部沉积了厚约4 ~ 9 m的黄褐色中砂,稍密—中等密实,饱和,分选性一般,下部含有卵砾石,磨圆度较好。上部沉积了厚约5 ~7 m的黄褐色粉质黏土,可塑,土质较均匀。最上部是厚1 m左右的杂填土。K1—K7孔处,最深处在50.98 m到达基岩,K1孔到达基岩的深度是55.13 m,槽深约4.15 m,槽宽约120 m,宽深比(B/H)28.92;K36—K41孔处, K40孔最深处在47.26 m到达基岩,K41孔到达基岩的深度是52.24 m,槽深约4.98 m,槽宽约80 m,宽深比为16.06;K44—K55孔处, K51孔最深处在48.68 m到达基岩,K44孔、K55孔均在53.33 m到达基岩,槽深约4.65 m,槽宽约340 m,宽深比约73.12。

图2 临沂九曲沂河大桥附近沂河古河槽地质剖面示意图Fig.2 The stratigraphical cross-section of the Yihe River incised-valley near the Jiuqu Yihe River Bridge

2.2 G327沂河大桥附近剖面

图3是根据G327沂河大桥的地质勘探钻孔资料绘制的沂河古河槽地质剖面图。钻孔揭示,G327沂河大桥附近,古河槽位于现在河床的下方。第四系沉积厚度一般3~5 m,西侧河漫滩处5~8 m。第四系沉积物下覆基岩由东往西依次是强风化的凝灰岩、安山岩、灰岩、角砾安山岩、碎裂岩、黏土岩、砂岩,岩性复杂,断裂带发育。在约56.5 m处有埋藏阶地。河床最低处在54.2 m切割到碎裂岩。56.5 m以下河槽宽约758 m,深约2.3 m,宽深比329.57。河槽中第四系砂层自下而上依次为:砾砂,零星分布于河槽底部,成透镜状产出,厚0~1 m,黄褐色,灰紫色,饱和,稍密。采集的36个样品中,粒径2~60 mm的砾石平均含量29.82%,成分为石英岩、安山岩、砂岩等。粒径2.0~0.5 mm的粗砂含量50.28%,成分为石英、长石;中粗砂,分布于整个河槽,厚3~5 m,黄褐色,饱和,松散,以中砂为主,含少量粗砂,成分为石英、长石;粉砂,分布于河两侧的河漫滩,厚2~3 m,黄褐色,松散,东侧的粉砂层含少量黏土。图3中年代样品采样点样品的光释光年代为22810±2580 a BP。

图3 G327沂河大桥附近沂河古河槽地质剖面示意图Fig.3 The stratigraphical cross-section of theYihe River incised-valley near the G327 Yihe River Bridge

3 讨论

沂河河槽底部埋藏岩性复杂,有断裂带发育。图2中,据钻探揭示,在K38—K42孔处,岩石有泥岩、砂岩、灰岩,是断裂破碎带,宽约80 m。因断裂破碎,容易侵蚀,因此侵蚀河槽在该处最深。在K1—K7孔、K44—K55孔处也是相对深河槽。图3中,据钻探揭示,河槽中部埋藏岩性为角砾安山岩、碎裂岩、黏土岩,是断裂破碎带,侵蚀河槽在该处最深。

根据G327沂河大桥附近河槽底部沉积物的光释光年代(22810±2580 a BP),及上游沂河右岸样品的光释光年代(16520±3600 a BP),可以判定约57 m以下的河槽为末次盛冰期时的沂河河槽。根据祊河大桥附近沉积物样品的14C年代(14020±60 a BP),可以推断九曲沂河大桥附近K1—K7孔处约55 m以下的河槽应为盛冰期时的祊河河槽,K36—K41、K44—K55孔处约53 m以下的河槽为盛冰期时的沂河河槽。末次盛冰期,祊河在九曲沂河大桥附近尚未汇入沂河,两河之间还有约620 m的分水岭。据钻探发现,河槽底部埋藏灰岩有溶洞,裂隙发育,因此古河槽局部相对较深。

G327沂河大桥附近沂河古河槽宽深比较大,约330,河槽宽浅,略有起伏。末次盛冰期,气候干冷,沂河流量小,季节变化大,夏季水量大,冬春流量小,在宽浅河道上形成分汊–辫状河特征。

4 结论

(1) 沂河古河槽底部岩性复杂,断裂带发育。

(2) G327沂河大桥附近约57 m以下的河槽为末次盛冰期时的沂河河槽。九曲沂河大桥附近约53~55 m以下河槽为末次盛冰期时沂河、祊河的古河槽。末次盛冰期时,祊河在九曲沂河大桥附近尚未注入沂河。

(3) 沂河古河槽宽深比较大,河槽宽浅,具有分汊–辫状河特征。

曹光杰, 王 建, 张学勤, 等. 2009.末次盛冰期长江南京段河槽特征及古流量[J]. 地理学报, 64(3): 331–338. [Cao G J, Wang J, Zhang X Q, et al. 2009. Characteristics and runoff volume of the Yangtze River’s Paleovalley at Nanjing reach in the Last Glacial Maximum [J]. Acta Geographica Sinica, 64(3): 331–338.]

曹光杰,爨景波,李彦彦. 2012.长江江苏段末次盛冰期古河槽特征[J].地理科学, 32(8): 986 – 992. [Cao G J, Cuao J B, Li Y Y. 2012. Characteristics of the Yangtze River paleovalley in Jiangsu Province in the Last Glacial Maximum [J]. Scientia Geographica Sinica, 32(8): 986–992.]

傅先兰,李容全. 1998.淮南地区淮河故道的初步研究[J].北京师范大学学报(自然科学版), 34(2): 276–79. [Fu X L, Li R Q. 1998. Apreliminary study on the paleochannel of the Huaihe River in the Huannan ared [J]. Journal of Beijing Normal University (Natural Science), 34(2): 276–279.]

黄镇国,张伟强,蔡福祥. 1995.珠江水下三角洲[J].地理学报, 50(3): 206–214. [Huang Z G, Zhang W Q, Cai F X. 1995. The submerged Zhujiang delta [J]. Acta Geographica Sinica, 50(3): 206–214.]

李广雪, 刘 勇, 杨子赓, 等. 2005.末次冰期东海陆架平原上的长江古河道[J]. 中国科学D辑(地球科学), 35(3): 284–289. [Li G X, Liu Y, Yang Z G, et al. 2005. The Paleochannel of the Yangtze River on the continental shelf of east China sea at Last Glacial [J]. Science in China (Series D:Earth Sciences), 35(2):284–289.]

刘 奎, 庄振业, 刘冬雁, 等. 2009.长江口外陆架区埋藏古河道研究[J]. 海洋学报, 31(5): 80–88. [Liu K, Zhuang Z Y, Liu D Y, et al. 2009. Study of the buried ancient channels in the continental shelf ared out of the mouth of the Changjiang River in China [J]. Acta Oceanologica Sinica, 31(5): 80–88.]

吴 忱, 王子惠, 许清海. 1986.河北平原的浅埋古河道[J].地理学报, 41(4): 332–340. [Wu C, Wang Z H, Xu Q H. 1986. The shallow burried paleochannels in Hebei plain [J]. Acta Geographica Sinica, 41(4):332–340.]

吴 忱, 朱宣清, 何乃华,等. 1991.华北平原古河道的形成研究[J]. 中国科学B辑, (2):188–197. [WU C, ZHU X Q, HE N H, et al. 1991. Study on formed of paleochannels in Huabei plain [J]. Science in China (Series B), (2):188–197.]

夏东兴, 刘振夏. 2001.末次冰期盛期长江入海流路探讨[J]. 海洋学报, 23(5): 87–95. [Xia D X, Liu Z X. 2001. Tracing the Changjiang River's flowing route entering the sea during the last ice age maximum [J]. Acta Oceanologica Sinica, 23(5):87–95.]

杨达源. 1986.晚更新世冰期最盛时长江中下游地区的古环境[J].地理学报, 41(4):302–310. [Yang D Y. 1986. The paleoenvironment of the mid-lower regions of Changjiang in the full-glacial period of Late Pleistocene [J]. Acta Geograpinca Sinica, 41(4): 302–310.]

张祖陆. 1990.鲁北平原黄河古河道初步研究[J]. 地理学报, 45(4): 457 – 466. [Zhang Z L. 1990. A preliminary study of the Yellow River's paleo-channels in north Shandong plain [J]. Acta Geographica Sinica, 45(4): 457 – 466.]

Allen G P, Posamentier H W. 1993. Sequence stratigraphy and facies model of an incised valley fll the Gironde Estuary, France [J]. Sedimentary Petrology, 63: 378–91.

Baker V R, Benito G, Rudoy A. 1993. Paleohydrology of Late Pleistocene superflooding [J]. Altay Mountains, Siberia. Science, 259: 48–350.

Blum M D, Aslan A. 2006. Signatures of climate vs. sea-level change within incised valley-fll successions: Quaternary examples from the Texas Gulf Coast [J]. Sedimentary Geology, 190: 177–211.

Fisk H N, Mcfarland D J. 1955. Late quaternary deltaic deposits of the Mississippi river-local sedimentation and basin tectonics.Geol [J]. Soc. Am. Bull., Special paper, 62, 279–302.

Hou B, Alley N F, Frakes L A, et al. 2003. Facies and sequence stratigraphy of eocene palaeovalley fills in the eastern Eucla Basin, South Australia [J]. Sedimentary Geology, 163: 111–130.

Li C X, Wang P, Sun H P, et al. 2002. A Late Quaternary incisedvalley fill of the Yangtze delta (China): its stratigraphic framework and evolution [J]. Sedimentary Geology, 152: 133–158.

Lin C M, Zhuo H C, Gao S. 2003. Sedimentary facies and evolution in the Qiantang River incised valley, eastern China [J]. Marine Geology, 219: 235–259.

Sidorchuk A, Panin A , Borisova O. 2009. Morphology of river channels and surface runoff in the Volga River basin(East European Plain) during the Late Glacial period [J]. Geomorphology, 113: 137–157.

Starkel L. 1993. Late Quaternary continental palaeohydrology as related to future environmental change [J]. Global and Planetary Change, 7: 95–108.

Westaway R, David R B. 2010. Causes, consequences and chronology of large-magnitude palaeofows in Middle and Late Pleistocene river systems of northwest Europe [J]. Earth Surface Processes and Landforms, 35: 1071–1094.

The Yihe River's paleo-valley in Linyi urban reach in the Last Glacial Maximum

CAO Guang-jie1,2, YAN Ke-chao1,2, WU Ting1,2, CAO Yuan2
( 1. School of Population, Resources and Environment, Shandong Normal University, Jinan 250014, China; 2. School of Resources and Environment, Linyi University, Linyi 276005, China )

The Linyi urban reach of the Yihe River was selected as the research reach. Two stratigraphical cross-sections of paleo-valley were established with bore datum near Jiuqu Yihe River Bridge and G327 Yihe River Bridge. And we also analyzed the samples from bottom and bank of the Yihe River in Linyi urban reach. The results showed that: the Yihe River's paleo-valley located on the fault zone. In the Last Glacial Maximum, the paleo-valley of Yihe River laid 56 m below near G327 Yi River Bridge, while that of Yihe River and Benghe River laid 53~55 m below near Jiuqu Yihe River Bridge. During the Last Glacial Maximum, Benghe River f owed into Yihe River in the downstream of Jiuqu Yihe River Bridge. The Yihe River's paleo-valley had a relatively large width-depth ratio which meant a wide and shallow river channel, and it had the characteristics of braided river.

the Last Glacial Maximum; the Yihe River; Linyi urban reach of the Yihe River; the paleovallye of the Yihe River

P512;P534

:A

:1674-9901(2014)03-0216-05

10.7515/JEE201403005

2014-04-16

国家自然科学基金项目(41372182);国家自然科学基金主任基金项目(41340028);山东省自然科学基金项目(ZR2012DL02)

曹光杰,E-mail: guangjiecao@163.com

猜你喜欢
沂河河槽基岩
缺水基岩山区蓄水构造类型划分及其属性分析
薄基岩工作面开采覆岩运移规律*
阿克肖水库古河槽坝基处理及超深防渗墙施工
水沙条件及河岸边界条件对河型转化影响的研究
造船厂
柴达木盆地东坪基岩气藏裂缝发育规律研究
风吹过沂河淌(组诗)
山东省水资源合理开发利用
沂河临沂城区段重金属污染调查
河北省基岩热储开发利用前景