哈拉哈塘凹陷奥陶系原油芳烃生物标志物特征及油源

2015-05-15 03:34常象春王铁冠陶小晚
石油与天然气地质 2015年2期
关键词:奥陶统海相哈拉

常象春,王铁冠,陶小晚,程 斌

(1.山东科技大学 山东省沉积成矿作用与沉积矿产重点实验室,山东 青岛 266590; 2.中国石油大学 油气资源与探测国家重点实验室,北京 102249; 3.中国石油 石油勘探开发研究院,北京 100083)



哈拉哈塘凹陷奥陶系原油芳烃生物标志物特征及油源

常象春1,王铁冠2,陶小晚3,程 斌2

(1.山东科技大学 山东省沉积成矿作用与沉积矿产重点实验室,山东 青岛 266590; 2.中国石油大学 油气资源与探测国家重点实验室,北京 102249; 3.中国石油 石油勘探开发研究院,北京 100083)

哈拉哈塘凹陷是近些年的勘探热点地区,为了进一步明确其原油母源输入、沉积环境、成熟度和可能烃源层,对26个哈拉哈塘凹陷和塔河奥陶系原油样品、4个台盆区烃源岩样品进行了系统的芳烃生物标志物分析。研究结果表明,哈拉哈塘原油均具有高萘、高菲、低联苯、贫1,2,5-和1,2,7-三甲基萘而富1,3,6-三甲基萘、高4-MDBT/DBT和(2+3)-MDBT/DBT比值、轻芳烃碳同位素的特点,与塔河奥陶系原油非常相似,反映出其属于典型的海相成因,且以低等藻类和细菌占生源优势。高丰度的二苯并噻吩和较低的DBT/P、Pr/Ph比值,指示其源岩沉积于强还原的碳酸盐沉积环境。等效镜质体反射率Rc1和Rc2揭示哈拉哈塘原油成熟演化处于中等-较高范畴。甲基三芳甾烷异构体组成型式对比表明,中-上奥陶统烃源岩与哈拉哈塘和塔河奥陶系原油对比良好,推测其为本区奥陶系原油的烃源层。

母源输入;沉积环境;成熟度;油-源对比;芳烃;生物标志物;原油;哈拉哈塘凹陷

石油中芳烃馏份的组成是成岩作用与后生作用过程中复杂变化的结果[1],故芳烃生物标志物被广泛用于反映母源输入[2-3]、沉积环境[4-5]、热演化程度[6-8]、油油对比[9]和油藏内生物降解影响的研究中[10-11]。

哈拉哈塘凹陷位于塔北隆起中部,面积约4 369 km2(图1)。2006年,哈拉哈塘凹陷哈6井分别在石炭系底砾岩钻获低产工业油气流、奥陶系见到良好油气显示。自此以后,有100余口井在哈拉哈塘凹陷的中奥陶统一间房组(O2yj)获得高产油流,展示出哈拉哈塘地区良好的勘探前景。

塔里木盆地的海相原油有效源岩问题一直存在学术争议[12-13],哈拉哈塘凹陷奥陶系原油的来源亦概莫能外。有人认为环哈拉哈塘凹陷周缘(英买力1、英买力2油藏、东河塘油田、雅克拉油气藏、哈得逊油田、轮古西)原油具有低伽马蜡烷、低规则甾烷C28/(C27+C28+C29)比值和高重排甾烷的特征,表明其油气来自于中-上奥陶统(O2-3)烃源岩[14-17],饱和烃主体生物标志物与塔河原油高度相似且与中-上奥陶统烃源岩对比好,但一些反映沉积环境的生物标志物参数也显示出明显差异[18];而有些人认为哈拉哈塘东西两侧原油具有相似的成藏过程,源岩来自寒武系—下奥陶统[19],或认为哈拉哈塘地区的油气主要来自寒武系—下奥陶统和中-上奥陶统两套烃源岩[20]。

图1 哈拉哈塘凹陷构造位置(a)及样品分布(b)Fig.1 Structural location of the Halahatang Sag(a)and distribution of samples(b)

芳烃类生物标志物作为原油重要组成,可以作为饱和烃研究的重要补充,能提供母源输入、沉积环境和成熟度等信息,目前对于哈拉哈塘凹陷尚未有芳烃研究的公开报道。本文的目的是通过对哈拉哈塘地区奥陶系原油芳烃馏份的系统分析,为深化本区勘探认识提供重要参考。

1 地质背景

哈拉哈塘凹陷北邻轮台断裂,南接顺托果勒低隆起,东为轮南低凸起,西为英买力低凸起。多期构造运动,造成该区断裂和裂缝发育,如早-中加里东期大型走滑断裂、晚加里东期—早海西期小型走滑断裂、晚海西期火山岩活动和印支-燕山期断裂[16]。平面上,哈拉哈塘地区以一组“X”型共轭剪切断裂和一组反“S”型断裂为主要特征,对油气的运聚有明显的控制作用。奥陶系一间房组和鹰山组碳酸盐岩储层经历了多期岩溶的叠加改造,风化岩溶缝洞体储层发育[15,21]。

2 样品和实验

2.1 样品准备

原油样品共有26个。其中,17个取自哈拉哈塘凹陷奥陶系,9个取自塔河油田中-下奥陶统鹰山组(O1-2y);烃源岩样品包括两个中-上奥陶统样品和两个寒武系样品。所有样品均经过抽提,后用正己烷沉淀去掉沥青质,接下来用硅胶/氧化铝柱层析分离成饱和烃、芳烃和非烃组分。

2.2 色谱/质谱分析

色谱/质谱分析使用Finnigan SSQ-710四极杆分析系统,配置DB-5熔硅弹性毛细管柱(30 m×0.32 mm内径)和IAIS数据处理系统。

色谱:色谱柱初始温度为80 ℃,恒温1 min,以3 ℃/min升至300 ℃,恒温15 min;对于吡咯类含氮化合物,色谱柱初始温度为35 ℃,以2 ℃/min升至120 ℃,恒温5 min,以3 ℃/min升至310 ℃,恒温15 min。进样器温度300 ℃,载气为He。质谱:离子源采用电子轰击(EI),电离电压70 eV,发射电流300 A,扫描范围 50~550 u/s。

3 结果与讨论

3.1 原油总体特征

3.2 母源输入特征

3.2.1 萘系列

烷基萘系列化合物在沉积有机质中广为分布[22],其组成受到源岩、热应力和生物降解等影响[23]。基于在沉积物和低成熟度原油中均具较高的相对丰度和极为相似的结构组成特征,源于微生物和植物的倍半萜和三萜类被认为是烷基萘,如1,2,5- 三甲基萘(TMN),1,2,7-三甲基萘的主要前身物[24-25],在海相成因原油中含量较低[26]。哈拉哈塘奥陶系原油中1,2,5-/1,3,6-TMN介于0.09~0.42,与塔河奥陶系原油(0.21~0.34)、TZ30井和LN46井中-上奥陶统烃源岩(0.49~0.57)、H3井和TD2井寒武系烃源岩(0.37~0.53)呈现相似特征,均富含1,3,6-三甲基萘,少见1,2,5-三甲基萘和1,2,7-三甲基萘特征(图2;表1),表明这些原油来自海相环境中低等藻类和细菌生源有机质占优势的源岩[25-27]。

图2 哈拉哈塘凹陷原油芳烃馏分质谱(H601-3 井)Fig.2 Mass spectrograms of aromatic fractions of oils from the Halahatang Sag(Well H601-3)

3.2.2 二苯并噻吩系列

原油中二苯并噻吩(DBT)系列会随源岩沉积环境变化而变化,主要取决于还原硫和有机质的结合能力,以及由Fe和还原硫反应生成黄铁矿的能力[28]。海相油中4-MDBT(4-甲基二苯并噻吩)/DBT比值大于1.2,湖相中其比值小于1.0,成为有效的判识标志[28]。哈拉哈塘和塔河原油中4-MDBT/DBT比值分别为1.40~2.41和1.20~1.41,亦反映典型的海相原油特征。

3.2.3 芳烃稳定碳同位素

原油稳定碳同位素值(δ13C)-29‰被用作区分海相Ⅰ型和Ⅱ型有机质的界线,小于该值指示腐泥型的菌藻类生源[29]。哈拉哈塘原油芳烃δ13C 值为-31.7‰~-32.8‰,与塔河奥陶系原油芳烃(-32.0‰~-33.2‰)非常相似,既旁证了上述烷基萘系列指示的低等生源成烃母质结论,又暗示其与TZ30井和LN46井中-上奥陶统烃源岩(-31.4‰~-31.7‰)存在可能的成因联系,而与H3井和TD2井寒武系烃源岩(-25.8‰~-28.1‰)差异较大。

3.3 源岩沉积环境

硫芴(DBT)、氧芴(DBF)和芴(F)具有相似的基本骨架结构,可能源于相似的前身物。氧芴在弱氧化或弱还原条件下有利于形成,而芴和硫芴分别在正常还原条件、强还原条件下更易于形成[30]。在“三芴系列”三角图中(图3),哈拉哈塘奥陶系原油样品分布集中,硫芴相对含量介于61.18%~74.19%,塔河奥陶系原油(45.77%~71.69%)、TZ30井和LN46井中-上奥陶统烃源岩(57.36%~61.02%)、H3井寒武系烃源岩(88.14%),亦呈现硫芴相对含量的绝对优势,反映一种碳酸盐岩源岩沉积的强还原环境[31]。而TD2井寒武系烃源岩则以较高的氧芴相对含量(47.92%)与之相区别,指示一种正常还原条件。

图3 “三芴”系列三角图Fig.3 Triangle diagram of DBT-DBF-F

图4 Pr/Ph与DBT/P相关图Fig.4 Correlation between Pr/Ph and DBT/P

二苯并噻吩/菲(DBT/P)与Pr/Ph(姥鲛烷/植烷)比值相结合,经常用来研究源岩的古沉积环境[4]。哈拉哈塘凹陷奥陶系原油样品均落于Ⅳ区(图4),指示哈拉哈塘凹陷原油源于海相页岩。此外,其原油具有较低的Pr/Ph(0.94~1.18)比值,这与其缺氧的、碳酸盐沉积环境相一致[32-33]。TZ30井和LN46井中-上奥陶统烃源岩、H3井和TD2井寒武系烃源岩亦落于Ⅳ区,表现出与之相似的沉积环境,塔河油田奥陶系原油则以略低的Pr/Ph比值而落于Ⅲ区,呈现微弱的环境条件差异,指示其页岩的烃源岩贡献较哈拉哈塘可能要少。

3.4 成熟度

相比而言,评价原油成熟度时,菲系列参数要比萘系列参数更为可靠[7]。哈拉哈塘凹陷原油中菲成熟度参数MPI1和MPI3具有很好的相关性,进一步证实了其在评价原油成熟度中的有效性[8]。依据Boreham等[34]提出的经验公式求得等效镜质体反射率(Rc1),哈拉哈塘凹陷奥陶系原油、塔河油田奥陶系原油、TZ30井和LN46井中-上奥陶统烃源岩、H3井和TD2井寒武系烃源岩分别为0.80%~0.95%,0.61%~0.87%,0.67%~0.68%和0.52%~0.77%,均反映中等成熟度特征(表1)。

由于二甲基二苯并噻吩具有较高的热稳定性和较强的抗生物降解能力,4,6-/1,4-二甲基二苯并噻吩(4,6-/1,4-DMDBT)比值被认为是评价原油成熟度更为理想的工具[35]。利用该比值建立的经验公式[36],求得哈拉哈塘凹陷奥陶系原油另一组等效镜质体反射率(Rc2)值为0.78%~1.34% (表1),亦表明属于中等-较高成熟范畴。

3.5 油源

由于塔里木盆地海相原油具有相对较高的成熟度,钻遇可能烃源层的钻井较少[37],当前进行塔里木盆地海相原油油源对比时经常选用台盆区较为公认的烃源岩样品,如TZ12井、TZ30井和LN46井的中-上奥陶统烃源岩,TD2井、KN1井和H3井的寒武系烃源岩等[31,37-39,41]。

前述分析对比表明,哈拉哈塘凹陷奥陶系原油与塔河油田奥陶系原油具有相似的主体芳烃生物标志物特征。除芳烃碳同位素外,TZ30井和LN46井中-上奥陶统烃源岩、H3井和TD2井寒武系烃源岩不但未能展示出明显的芳烃生物标志物区别,而且均与哈拉哈塘凹陷原油显示出较高相似性,并不能有效确认其可能的烃源层。

芳烃化合物中有一类特殊生物标志物——甲基三芳甾烷。它由多个异构体组成,其组成型式可以有效应用于油油、油源对比[39-41]。特别是其中的三芳甲藻甾烷,是芳构化作用造成的具有3个芳香环的甲藻甾烷,属于沟鞭藻属的生物标志物,生源意义明显[41]。塔里木盆地台盆区中-上奥陶统烃源岩含有低丰度的甲基三芳甾烷系列(图5a中4、6~9号峰),且不具三芳甲藻甾烷的丰度优势。而寒武系烃源岩则发育较为丰富的甲基三芳甾烷系列(图5b),且具有显著的C29三芳甲藻甾烷的丰度优势(3号峰),可以有效区别这两套烃源岩[41-42]。

哈拉哈塘凹陷O2yj原油中,甲基三芳甾烷系列的丰度更低,检测不到三芳甲藻甾烷(图5c,d),其甲基三芳甾烷系列的分布型式仍然与TZ30井O2-3烃源岩如出一辙,对比良好,而与TD2井寒武系黑色泥岩反差甚大。

前人研究亦表明,塔河油田奥陶系原油由于呈现与中-上奥陶统烃源岩分布相似,与寒武系烃源岩明显不同的甲基三芳甾烷、甲藻甾烷和三芳甾烷的分布[43-44],既表明出其源于中-上奥陶统烃源岩,又反映出其与哈拉哈塘凹陷奥陶系原油成因上的相似性。

4 结论

2) 哈拉哈塘凹陷奥陶系原油具极低丰度的甲基三芳甾烷系列,且基本检测不到三芳甲藻甾烷,芳烃δ13C 值较轻,为-31.7‰~-32.8‰,与塔河油田奥陶系原油和台盆区中-上奥陶统烃源岩对比良好,而与寒武系黑色泥岩区别显著,表明其与中-上奥陶统烃源岩有成因上的相关性。

图5 原油及源岩甲基三芳甾烷系列对比Fig.5 Comparison of methyl triaromatic sterane between oil samples from the Halahatang Sag and potential source rocksa.TZ30井,埋深4 918 m,O2-3,黑色泥灰岩;b.TD2井,埋深4 777.2 m,,黑色泥岩;c.H601-2井,埋深6 556.08~6 664.72 m,O2yj,轻质油;d.XK9C井,埋深6 757.01~7 011.67 m,O2yj,轻质油

[1] Peters K E,Walters C C,Moldowan J M.The biomarker guide(Volumes 2)[M].London:Cambridge University Press,2005.

[2] Requejo A G,Sassen R,McDonald T,et al.Polynuclear aromatic hydrocarbons as indicators of the source and maturity of marine crude oils[J].Organic Geochemistry,1996,24:1017-1033.

[3] Oliveira C R,Oliveira C J F,Ferreira A A,et al.Characterization of aromatic steroids and hopanoids in marine and lacustrine crude oils using comprehensive two dimensional gas chromatography coupled to time-of-flight mass spectrometry[J].Organic Geochemistry,2012,53:131-136.

[4] Hughes W B,Holba A G,Dzou L I.The ratios of dibenzothiophene to phenanthrenes and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks[J].Geochimica et Cosmochimica Acta,1995,59:3581-3598.

[5] Sivan P,Datta G C,Singh R R.Aromatic biomarkers as indicators of source,depositional environment,maturity and secondary migration in the oils of Cambay Basin,India[J].Organic Geochemistry,2008,39:1620-1630.

[6] Radke M.Application of aromatic compounds as maturity indicators in source rocks and crude oils[J].Marine and Petroleum Geology,1988,5:224-236.

[8] Chang Xiangchun,Wang Tieguan,Li Qiming,et al.Maturity assessment of severely biodegraded marine oils from the Halahatang Depression in Tarim Basin[J].Energy Exploration and Exploitation,2012,30:331-350.

[9] Dahl J,Moldowan J M,Summons R E,et al.Extended 3b-alkyl steranes and 3-alkyl triaromatic steroids in crude oils and rock extracts[J].Geochimica et Cosmochimica Acta,1995,59:3717-3729.

[10] Wardroper A M K,Hoffmann C F,Maxwell J R,et al.Crude oil biodegradation under simulated and natural conditions-Ⅱ aromatic steroid hydrocarbons[J].Organic Geochemistry,1984,6:605-617.

[11] Asif M,Grice K,Fazeelat T.Assessment of petroleum biodegradation using stable hydrogen isotopes of individual saturated hydrocarbon and polycyclic aromatic hydrocarbon distributions in oils from the Upper Indus Basin,Pakistan[J].Organic Geochemistry,2009,40:301-311.

[12] 云金表,金之钧,解国军.塔里木盆地下古生界主力烃源岩分布[J].石油与天然气地质,2014,35(6):827-837 Yun Jinbiao,Jin Zhijun,Xie Guojun.Distribution of major hydrocarbon source rocks in the Lower Palaeozoic,Tarim Basin[J].Oil and Gas Geology,2014,35(6):827-837.

[13] 黄继文,顾忆,丁勇,等.塔里木盆地北部地区上奥陶统烃源条件[J].石油与天然气地质,2012,33(6):853-858. Huang Jiwen,Gu Yi,Ding Yong,et al.Upper Ordovician source rocks in northern Tarim Basin[J].2012,33(6):853-858.

[14] 卢玉红,肖中尧,顾乔元,等.塔里木盆地环哈拉哈塘海相油气地球化学特征与成藏[J].中国科学(D辑),2007,37(增Ⅱ):167-176. Lu Yuhong,Xiao Zhongyao,Gu Qiaoyuan,et al.Geochemistry and accumulation of marine petroleum around the Halahatang Depression of Tarim Basin[J].Science in China(D Series),2007,47(SⅡ):167-176.

[15] 朱光有,刘兴旺,朱永峰,等.塔里木盆地哈拉哈塘地区复杂油气藏特征及其成藏机制[J].矿物岩石地球化学通报,2013,32(2):231-242. Zhu Guangyou,Liu Xingwang,Zhu Yongfeng,et al.The characteristics and the accumulation mechanism of complex reservoirs in the Hanilcatam area,Tarim Basin[J].Acta Petrologica Sinica,2013,32(2):231-242.

[16] 朱光有,杨海军,朱永峰,等.塔里木盆地哈拉哈塘地区碳酸盐岩油气地质特征与富集成藏研究[J].岩石学报,2012,27(3):827-844. Zhu Guangyou,Yang Haijun,Zhu Yongfeng,et al.Study on petroleum geological characteristics and accumulation of carbonate reservoirs in Hanilcatam area,Tarim Basin[J].Acta Petrologica Sinica,2012,27(3):827-844.

[17] 张丽娟,范秋海,朱永峰,等.塔北哈6区块奥陶系油藏地质与成藏特征[J].中国石油勘探,2013,18(2):7-12. Zhang Lijuan,Fan Qiuhai,Zhu Yongfeng,et al.Geological and accumulations characteristics of Ordovician oil reservoir in Ha 6 block of Tabei[J].China Petroleum Exploration,2013,18(2):7-12.[18] Chang Xiangchun,Wang Tieguan,Li Qiming,et al.Geochemistry and possible origin of petroleum in Palaeozoic reservoirs from Halahatang Depression[J].Journal of Asian Earth Sciences,2013,74:129-141.

[19] 廖泽文,张绿惠,杨楚鹏,等.塔里木盆地哈拉哈塘凹陷东西两侧海相稠油地球化学特征:以LG9井和DH1-6-9井稠油为例[J].地球化学,2010,39(2):149-153. Liao Zeweng,Zhang Lvhui,Yang Chupeng,et al.Geochemical characteristics of heavy oils from the east and west sides of Halahatang Depression,Tarim Basin,China:exemplified by the oils of LG7 and DH1-6-9[J].Geochimica,2010,39(2):149-153.

[20] 崔海峰,郑多明,滕团余.塔北隆起哈拉哈塘凹陷石油地质特征与油气勘探方向[J].岩性油气藏,2009,21(2):54-58. Cui Haifeng,Zheng Duoming,Teng Yuanyu.Petroleum geologic characteristics and exploration orientation in Halahatang Depression of Tabei uplift[J].Lithologic Reservoirs,2009,21(2):54-58.

[21] 黄太柱,蒋华山,马庆佑.塔里木盆地下古生界碳酸盐岩油气成藏特征[J].石油与天然气地质,2014,35(6):780-787. Huang Taizhu,Jiang Huashan,Ma Qingyou.Hydrocarbon accumulation characteristics in Lower Paleozoic carbonate reservoirs in Tarim Basin[J].Oil & Gas Geology,2014,35(6):780-787.

[22] Tissot B P,Welte D H.Petroleum formation and occurrence[M].Berlin:Springer,1984.

[23] Aarssen B G K,Bastow T P,Alexander R et al.Distributions of methylated naphthalenes in crude oils:indicators of maturity,biodegradation and mixing[J].Organic Geochemistry,1999,30:1213-1227.

[24] Puttmann W,Villar H.Occurrence and geochemical significance of 1,2,5,6-tetra-methylnaphthalene[J].Geochimica et Cosmochimica Acta,1987,51:3023-3029.

[25] Strachan M G,Alexander R,Kagi R I.Trimethylnaphthalenes in crude oils and sediments:effects of source and maturity[J].Geochimca et Cosmochimca Acta,1988,52:1255-1264.

[26] 朱扬明,张洪波,傅家谟,等.塔里木不同成因原油芳烃组成和分布特征[J].石油学报,1998,19(3): 33-37. Zhu Yangming,Zhang Hongbo,Fu Jiamo,et al.Distribution and composition of aromatic hydrocarbon in various oils from Tarim Basin[J].Acta Petrolei Sinica,1998,19(3):33-37.

[27] Alexander R,Kagi R I,Sheppard P N.1,8-Dimethylnaphthalene as an indicator of petroleum maturity[J].Nature,1984,308:442-443.

[28] 梁狄刚,郭彤楼,陈建平,等.中国南方海相生烃成藏研究的若干新进展(二):南方四套区域性海相烃源岩的地球化学特征[J].海相油气地质,2009,14(1):1-15. Liang Digang,Guo Tongluo,Chen Jianping,et al.Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions,Southern China(Part 2):Geochemical characteristics of four suits of regional marine source rocks,South China[J].Marine Origin Petroleum Geology,2009,14(1):1-15.

[29] 张敏,张俊.塔里木盆地原油噻吩类化合物的组成特征及地球化学意义[J].沉积学报,1999,17(1): 121-125. Zhang Min,Zhang Jun.Composition characteristics and geochemical significance of thiophene-type compounds for crude oils in Tarim Basin[J].Acta Sedimentol Sinica,1999,17(1):121-126.

[30] 林壬子,王培荣,戴允键,等.矿物燃料中多环芳烃的石油地球化学意义[C]∥有机地球化学论文集,北京:地质出版社,1987:129-140. Lin Renzi,Wang Peirong,Dai Yunjian,et al.Petroleum geochemical significance of polycyclic aromatic hydrocarbons in fossil fuels[C]∥Collection on Organic Geochemistry,Beijing:Geological Press,1987:129-140.

[31] Li J G,Li M,Wang Z Y.Dibenzofuran series in terrestrial source rocks and crude oils and applications to oil-source rock correlations in the Kuche Depression of Tarim Basin,NW China[J].Chinese Journal of Geochemistry,2004,23:113-123.

[32] Didyk B M,Simoneit B R T,Brassell S C,et al.Organic geochemical indicators of palaeo-environmental conditions of sedimentation[J].Nature,1978,272:216-222.

[33] Haven H L,Leeuw J W,Sinninghe D J S,et al.Application of biological markers in the recognition of palaeo-hypersaline environments in lacustrine petroleum source rocks[C].Geological Society Special Publication,1988.

[34] Boreham C J,Crick I H,Powell T G.Alternative calibration of the methyl phenanthrene index against vitrinite reflectance:application to maturity measurements on oils and sediments[J].Organic Geochemistry,1988,12:289-294.

[35] Chakhmakhchev A,Suzukf N.Aromatic sulfur compounds as maturity indicators for petroleums from the Buzuluk Depression,Russia[J].Organic Geochemistry,1995,23:617-625.

[36] 罗健,程克明,付立新,等.烷基二苯并噻吩——烃源岩热演化新指标[J].石油学报,2001,22(3):27-31. Luo Jian,Cheng Keming,Fu Lixin,et al.Alkylated dibenzothiophene index:a new method to assess thermal maturity of source rocks[J].Acta Petrolei Sinica,2001,22(3):27-31.

[37] Li S M,Pang X Q,Jin Z J,et al.Petroleum source in the Tazhong Uplift,Tarim Basin:New insights from geochemical and fluid inclusion data[J].Organic Geochemistry,2010,41:531-553.

[38] Hanson A D,Zhang S C,Moldowan J M.Molecular organic geochemistry of the Tarim Basin,northwest China[J].AAPG Bulletin,2000,84:1109-1128.

[39] Zhang S C,Hanson A D,Moldowan J M,et al.Paleozoic oil-source rock correlations in the Tarim Basin,NW China[J].Organic Geochemistry,2000,31:273-286.

[40] Zhang S C,Huang H P.Geochemistry of Palaeozoic marine petroleum from the Tarim Basin,NW China[J].Organic Geochemistry,2005,36:1204-1214.

[41] 张水昌,梁狄刚,黎茂稳,等.分子化石与塔里木盆地油源对比[J].科学通报,2002,47 (增刊):16-23. Zhang Shuichang,Liang Digang,Li Maowen,et al.Molecular fossils and oil-source rock correlations in Tarim Basin,NW China[J].Chinese Science Bulletin,2002,47(S):16-23.

[42] 王招明,肖中尧.塔里木盆地海相原油的油源问题的综合评述[J].科学通报,2004,49(增I):1-8. Wang Zhaoming,Xiao Zhongyao.Comprehensive discussion on the source rocks of marine oils in Tarim Basin[J].Chinese Science Bulletin,2004,49(SI):1-8.

[43] 马安来,张水昌,张大江,等.轮南、塔河油田稠油油源对比[J].石油与天然气地质,2004,25(1):31-38. Ma Anlai,Zhang Shuichang,Zhang Dajiang,et al.Oil and source correlation in Lunnan and Tahe heavy oil fields[J].Oil & Gas Geology,2004,25(1):31-38.

[44] 郑朝阳,柳益群,段毅,等.塔里木盆地塔河油田原油芳烃地球化学特征及其成因[J].地质科技情报,2011,30(1):96-102. Zheng Zhaoyang,Liu Yiqun,Duan Yi,et al.Geochemical characteristics of aromatic compounds and genesis of crude oils from Tahe oilfield[J].Geological Science and Technology Information,2011,30(1):96-102.

(编辑 张玉银)

Aromatic biomarkers and oil source of the Ordovician crude oil in the Halahatang Sag,Tarim Basin

Chang Xiangchun1,Wang Tieguan2,Tao Xiaowan3,Cheng Bin2

(1.ShandongProvincialKeyLaboratoryofDepositionalMineralizationandSedimentaryMinerals,ShandongUniversityofScienceandTechnology,Qingdao,Shandong266590,China;2.StateKeyLaboratoryofPetroleumResourcesandProspecting,ChinaUniversityofPetroleum,Beijing102249,China;3.ResearchInstituteofPetroleumExplorationandDevelopment,PetroChina,Beijing100083,China)

Halahatang Sag has been one of the focuses for petroleum exploration in recent years.In order to confirm its oil source,depositional environment,thermal maturity and possible source rocks,systematic aromatic biomarkers analyses were performed on 26 oil samples from the Halahatang Sag and the Ordovician in Tahe oilfield as well as 4 potential source rock samples from the unmodified foreland region of the Tarim Basin.The results show that the Halahatang oil samples are characterized by high contents of naphthalenes and phenanthrenes,low content of biphenyl,low abundance of 1,2,5-TMN,high abundance of 1,3,6-TMN,high ratios of 4-MDBT/DBT and(2+3)-MDBT/DBT,and light carbon isotope of aromatics,which are similar to those of oil samples from the Tahe oilfield,indicating typical marine origin with contribution of lower algae and bacteria in predominance.High relative content of dibenzothiophene and low values of DBT/P and Pr/Phinfer a strong reducing depositional environment and carbonate lithology for the source rock.The equivalent vitrinite reflectances,i.e.Rc1 and Rc2,reveal a moderate to high maturity.Comparison of methyl triaromatic sterane isomeride shows that the Halahatang and Tahe oils correlate well with the Middle-Upper Ordovician source rocks,indicating a genetic affinity.

oil source,depositional environment,thermal maturity,oil-source correlation,aromatic,biomarker,crude oil,Halahatang Sag

2014-10-03;

2014-11-25。

常象春(1974—),男,教授、博士,油气地质与地球化学。E-mail:xcchang@sina.com。

国家自然科学基金项目(41272139);山东省自然科学杰出青年基金项目(JQ201311);山东科技大学科技计划项目(2012KYJQ101)。

0253-9985(2015)02-0175-08

10.11743/ogg20150201

TE122.1

A

猜你喜欢
奥陶统海相哈拉
“源控论”再探讨——以四川盆地海相碳酸盐岩气藏勘探为例
是谁对书不敬
塔里木盆地下奥陶统与上覆地层间的不整合
哈拉和卓384号墓葬出土棉布袋的修复
《海相油气地质》作者须知
《海相油气地质》2016年总目次(期-页)
塔中东部上奥陶统礁滩体古岩溶特征及发育模式
草原光辉:哈拉和林与元上都
塔里木盆地玉北地区中-下奥陶统储集体断裂与裂缝特征
玉北地区中下奥陶统储层主控因素分析