免耕秸秆覆盖对大豆田土壤含水量的影响

2015-05-30 10:48张敬涛刘婧琦赵桂范盖志佳蔡丽君张伟郭伟李春华刘秀芝郑海燕孟凡祥张茂明李奥翔李敏柴丽丽徐宝臣
农学学报 2015年8期
关键词:免耕大豆

张敬涛 刘婧琦 赵桂范 盖志佳 蔡丽君 张伟 郭伟 李春华 刘秀芝 郑海燕 孟凡祥 张茂明 李奥翔 李敏 柴丽丽 徐宝臣

摘要:试验采用微区定位方法,研究免耕栽培条件下不同秸秆覆盖量对大豆田土壤含水量的影响。结果表明:随着秸秆覆盖量的增加,不同生育时期各处理不同土层的土壤含水量变化均呈增加趋势,0%、30%、60%、100%秸秆覆盖免耕处理平均土壤含水量均显著高于常规垄作处理,平均增幅0.99%~3.77%,其中以100%秸秆覆盖处理保水效果最佳;秸秆覆盖后,免耕大豆在前期表层土壤水分富集现象显著,不同秸秆覆盖处理5 cm土层土壤含水量在播种至出苗期分别较常规垄作处理增加4.81%~9.43%。因此,秸秆覆盖地表还田应因地而异,干旱区适宜,而低湿易涝区则不适宜应用秸秆覆盖地表还田技术。

关键词:免耕;秸秆覆盖;大豆;土壤含水量

中图分类号:S359.1 文献标志码:A 论文编号:cias15030018

0 引言

黑龙江省地处世界上最珍贵的黑土、草甸土带。但近年来,长期犁耕造成风蚀、水蚀及土壤养分下降等现象日趋严重。免耕条件下秸秆覆盖是当前乃至今后农业生产上秸秆资源利用的最主要方式之一,是促进农业可持续性生产发展的有效措施。

目前关于秸秆覆盖对土壤性状、作物生长发育、产量及其构成因素的研究较多。实行免耕,秸秆覆盖,具有保护农田、减少扬尘、抗旱节水、培肥地力、提高单产、降低成本、增加收入等多种功效,可降低农田扬尘60%以上,减少地表径流量50%~60%、减少土壤流失80%左右、增加土壤含水量,提高水分利用效率,同时大量作物秸秆、残茬覆盖农田,秸秆、残茬腐烂后,年增加土壤有机质含量可达0.01~0.06个百分点,增产幅度5%-15%。覆盖措施成本低廉,又能抑制土壤水分的无效蒸发,提高作物的水分利用效率。秸秆覆盖后土壤0~30 cm土壤含水率比常规耕作高1~5个百分点。另有研究结果认为,免耕秸秆覆盖和传统耕作秸秆覆盖土壤贮水少,但水分利用效率较高n。一。前人对小麦、玉米等农作物土壤水分变化研究较多,而对高纬度地区免耕栽培条件下秸秆覆盖对玉米大豆轮作耕作土壤水分变化研究较少。笔者研究免耕栽培条件下不同玉米秸秆覆盖量的土壤水分变化规律,旨在为窄行免耕栽培大豆农田水管理技术研究提供理论依据。

1 材料与方法

试验于2013—2014年在黑龙江省农业科学院佳木斯分院试验地进行。试验地土壤为粘质草甸土。试验采用微区定位方法,定位试验始于2010年。

1.1 试验设计

试验共设5个处理,随机排列,3次重复。各处理为:①45 cm行距,平播,0%秸秆覆盖量;②45 cm行距,平播,30%秸秆覆盖量;③45 cm行距,平播,60%秸秆覆盖量;④45 cm行距,平播,100%秸秆覆盖量;⑤70 cm垄作,0%秸秆覆盖量。小区行长6 m,行距0.45 m,9行区,小区面积24.3 m2。施肥量:N 45 kg/rm2,P2O575 kg/tm2,K2O 60 kg/hm2。5月5日播种,品种选用‘佳2329-26,土壤封闭化学除草,生育期间免耕管理。

秸秆处理:2013年大豆秸秆还田,2014年玉米秸秆还田,按秸秆干重的0%、30%、60%、100%秸秆覆盖还田。

1.2 测定项目和方法

1.2.1 测定时期在播种前、苗期(Ve)、花期(R1)、鼓粒期(R5)进行测定。土壤水分每处理取3点,每点分4层,即5、10、20、30 cm取样测定土壤含水量,取样后的土样采用烘干法测定。

1.2.2 测定方法新鲜土样水分的测定:将盛有新鲜土样的大型铝盒在分析天平上称重,精确至0.01 g。将铝盖倾斜放在铝盒上,置于已预热至(105±2)℃的恒温干燥箱中烘6~8 h(一般样品烘6 h,含水量较多、质地黏重的样品烘8 h)。取出,盖好,在干燥器中冷却至室温(约30 min),立即称重,精确至0.01 g。将烘干后铝盒及土样质量除以烘干前铝盒及土样质量来计算新鲜土样水分含量。

1.3 数据统计分析

应用Excel 2003软件进行数据处理和绘图。

2 结果与分析

2.1 播前不同秸秆覆盖处理对土壤含水量的影响

4月28日大豆播种前调查结果显示(图1),随着秸秆覆盖量的增加,各处理不同土层的土壤含水量变化均呈增加趋势,其中,以各处理表层5 cm土壤含水量差异最大,且秸秆覆盖的免耕处理显著高于常规垄作处理,即免耕0%、30%、60%、100%秸秆覆盖处理5 cm土层土壤含水量较分别垄作高5.27%、6.28%、6.66%、8.27%其次是处理10 cm土层,各处理土壤含水量较分别较常规垄作高0.81%、1.24%、1.65%、2.74%120 cm和30 cm土层各处理间土壤含水量差异相对较小。

2.2 出苗期不同秸秆覆盖处理对土壤含水量的影响

图2可见,随着秸秆覆盖量的增加,各处理不同土层的土壤含水量变化与播种前规律相似,仍以表层5 cm各处理间土壤水分差异较大,且免耕0%、30%、60%、100%秸秆覆盖处理土壤含水量显著高于常规垄作处理,各处理分别较常规垄作处理高4.81%、6.1%、8.43%、9.43%其次是处理10、20、30 cm土层各处理间土壤含水量差异较小。

2.3 初花期不同秸秆覆盖处理对土壤含水量的影响

大豆初花期土壤水分调查结果,与播种前和苗期相比,各处理不同土层间土壤含水量差异变小,尤其表层5 cm表现更为明显,但秸秆覆盖的免耕处理土壤含水量仍显著高于常规垄作处理,即免耕0%、30%、60%、100%秸秆覆盖处理0~30 cm平均土壤含水量分别为11.57%、12.35%、12.62%、13.09%,分别较常规垄作处理高0.99%、1.77%、2.04%、2.51%。其中,以100%秸秆覆盖处理平均土壤含水量较高,这为大豆花期生长提供良好的水分保障(图3)。

2.4 鼓粒期不同秸秆覆盖处理对土壤含水量的影响

随着生育时期推进,大豆冠层越来越繁茂,一方面繁茂的冠层影响各处理土壤水分蒸发量下降,也导致大豆群体叶片的蒸腾作用加强,这使各处理不同土层间水分差异相对生育前期逐渐变小(图4)。分析0~30 cm土层平均土壤含水量,0%、30%、60%、100%秸秆覆盖处理土壤含水量分别为9.49%、9.55%、10.33%、10.60%,分别较常规垄作处理高1.45%、1.51%、2.29%、2.56%。免耕秸秆覆盖处理在大豆开花到鼓粒期始终保持各土层相对较高的土壤含水量,为大豆产量形成奠定了良好基础。

3 结论与讨论

(1)随着免耕秸秆覆盖量的增加,土壤保水效果增强。播种前、苗期、开花期和鼓粒期0%、30%、60%、100%处理秸秆覆盖0~30 cm土壤平均含水量分别较常规垄作处理增加1.51%~3.27%、2.05%~3.77%、0.99%~2.51%、1.45%~2.56%,证明秸秆覆盖的免耕栽培具有很好的土壤保水、储水效果,这为免耕大豆保苗及后期的生长发育、产量形成提供良好的水分保障,研究结果与宁夏南部半干旱区作物播前一定秸秆覆盖量处理有较好的保水效果的结果基本一致。

(2)由于秸秆覆盖,免耕大豆在前期存在表层土壤水分富集现象显著。即播种前、苗期、开花期和鼓粒期0%、30%、60%、100%处理秸秆覆盖5 cm土层土壤含水量分别较常规垄作处理增加5.27%~7.25%、4.81%~9.43%、2.51%~5.40%、3.02%~6.16%,这在干旱区域或年份利于大豆出苗,但在黑龙江省东部低湿易涝区春涝年份,由于地表秸秆阻碍土壤水分散失,影响作物播种,因此,在低湿易涝区不宜采用全量秸秆地表还田。

(3)免耕秸秆覆盖对表层土壤水分含量影响较大,在作物播种期可以减少表层水分蒸发,显著增加表层土壤含水量,但随着生育进程的推进,秸秆覆盖的效果逐渐减弱。

猜你喜欢
免耕大豆
注意防治大豆点蜂缘蝽
大豆带状种植技术如何提升我国大豆产量
从大豆种植面积增长看我国粮食安全
巴西大豆播种顺利
大豆的营养成分及其保健作用
用大豆“炸沉”军舰
一种能处理杂草的免耕玉米播种机
小香蒜免耕种植技术
玉米宽窄行免耕精量播种推广技术
夜间增温及免耕对冬小麦生长及养分吸收利用的影响