前景广阔的导电高分子材料

2016-05-14 10:42刘宇航盖业民陈语诗
艺术科技 2016年6期
关键词:绝缘体高分子导电

刘宇航 盖业民 陈语诗

摘 要:物质按电学性能可以分为绝缘体、半导体、导体和超导体四类。而高分子材料大多数都属于绝缘体范围,但自从美国科学家黑格(A.J.Heeger)和麦克迪尔米德(A.G.MacDiarmid)以及日本科学家白川英树(H.Shirakawa)与1977年发现用五氟化砷或碘掺杂的聚乙炔薄膜(Polyacetylene)具有金属导电的性质,电导率达到10S/m。具有金属导电特性,将传统的高分子材料不可作为电解质的说法彻底打破,这一物质的出现不仅打破了高分子材料只能作为绝缘体的传统观念,更是为低维固体电子学和分子电子学的建立打下了坚实的基础,是一座非常重要的里程碑。

关键词:高分子材料;导电;2000年诺贝尔化学奖;掺杂乙炔

说到导电高分子材料,我们就不得不谈谈其构成,导电高分子是由具有共轭π键的高分子经过化学或者电化学“掺杂”,使其由绝缘体变为导体的一类高分子材料。也有一些人认为,某一类具有导电功能(包括半导电性、金属导电性和超导电性)、电导率在10-6S/m以上的物质与高分子聚合物混合后的产物也可以称之为导电高分子材料。

导电高分子材料的特点:

第一,室温电导率范围大,导电高分子材料的电导率可以在绝缘体与半导体导电区间内变化。目前为止,任何一种高分子材料都不能进行比拟,拥有很广阔的前景,可以用于线路信号的屏蔽、特种导线的选材、防静电等一系列用途。

第二,绝缘体与半导体之间转换完全可逆,由于其是由共轭π键的高分子经过化学或者电化学“掺杂”,将绝缘体变为导体的高分子材料,因而将导电高分子材料通过特殊技术,将其“脱杂”,就可以变成绝缘体,将其“掺杂”,就可以成为半导体,这也是导电高分子材料的一大特性。

第三,绝缘体与半导体之间氧化还原完全可逆,一切物质的反应都伴随着能量的变化,而所有的物质都会进行氧化还原反应,而导电高分子材料在掺杂、“脱杂”过程中,发生了氧化反应与还原反应,因此,其氧化还原也是完全可逆的。

总的来说,导电高分子材料由于具有密度小、易加工、耐腐蚀、可大面积成膜以及电导率可在十数个数量级的范围内进行调节等特点,不仅可成为多种金属材料和无机导电材料的替代品,而且已成为工业部门和尖端技术领域不可缺少的一类高分子材料。在黑格等人才发现第一个导电的高分子材料后,科学家们又相继开发出了聚吡咯、聚苯胺、聚噻吩、聚苯硫醚、聚酞菁类化合物等能导电的高分子材料。

导电高分子材料的用途:

导电高分子材料具有良好的导电性和电化学可逆性,可用作充电电池的电极材料。利用聚乙炔薄膜制作的可充电电池,经300次循环充放电试验后,充放电效果依旧没有明显的衰退,这样的试验足以说明导电高分子材料已具有商业应用价值。而美国科学家Jeskocheim利用聚吡咯和聚氧化乙烯固态电介质膜试制了光电池试验后,更加向我们证明了这种重量较轻、易成形、工艺简单,并能生成大面积膜,且绿色环保的导电高分子材料具有十分诱人的发展前景。

经过世界范围内科学家们多年的广泛研究,导电高分子材料在新能源材料方面的应用已获得了很大的发展,但离实际大规模生产应用还有一定的距离。由于其加工性不好、价格较其他的导电材料昂贵、稳定性不高等因素,并没有很快地进入大众家庭中。

导电高分子材料通常分为复合型和结构型两大类:

第一,复合型导电高分子材料。由通用的高分子材料与各种导电性物质通过分散聚合、层积复合或表面形成导电膜的方式制得。常用的导电填料有炭黑、金属粉、金属箔片、金属纤维、碳纤维等。其由于复合方式的不同又可分为表面镀膜型(将金属等导电材料通过各种工艺方法涂覆于聚合物材料的表面,使其形成具有导电特性的聚合物材料)和复合填充型(通常在绝缘体中加入导电性填料,填充剂采取一定方法而制得)。主要品种有导电塑胶、导电纤维织物、导电涂料以及透明导电薄膜等。其性能与导电填料的种类、用量、粒度和状态以及它们在高分子材料中的分散状态有很大的关系。

第二,结构型导电高分子材料。是指高分子结构本身或经过掺杂之后具有导电功能的高分子材料。根据电导率的大小又可分为高分子半导体、高分子金属和高分子超导体。导电高分子材料的结构特点是必须要具有线型或面型大共轭体系,在热或光的作用下通过共轭π电子的活化而进行导电,电导率一般在半导体的范围。采用掺杂技术可使这类材料的导电性能大大提高。例如,掺杂乙炔结构型导电高分子材料用于试制轻质塑料蓄电池、太阳能电池以及传感器件等。但目前这类材料由于技术不成熟,还存在各种问题,尚未进入实用阶段。

在电子工艺方面,导电高分子材料取得了突破性的进展:

第一,电解沉淀中的应用。以往使用沉淀方法印刷电路的过程中,首先在基板上镀上一层金属铜,过去的沉淀方法需要催化剂才可完成,而这些催化剂往往有毒。而现在,使用新型导电高分子材料,如将聚吡咯作为预涂层,涂在基板上,可以避免以上的问题,且无毒、加工简单、附着性好、沉淀在涂层上的金属不易剥离,还可以实现穿孔电镀。

第二,在电容器上的应用。在两电极间加入高分子固体电解质,施加一低于电极和电解质分解电位电压的直流电压,通过电流的导通作用使离子向一端电极移动,从而使电解质和电极之间形成双电层,这种双电层具有容量大的特性,可作为高容量的电容器。

第三,传感器方面的应用。在固体电解质中有许多材料对离子的透过具有选择性,因此高分子固态电解质薄膜两侧如果出现了某种特定离子的浓度差,通过测定其产生的电动势,就能将高分子固体电解质用作离子传感材料。这种传感材料同时具有不必活化、响应速度快、重现性好、内阻小、稳定性好等优点。

在美国和欧洲,导电高分子聚合物的回收已经从90年代的机械回收发展到原料回收和焚烧能量回收一体化。相比之下,我国在该领域的起步较晚,随着对导电高分子材料导电机理研究的不断深入,由于导电高分子复合材料具有极强的可设计性,在我国一般采用以下两种方法回收废弃材料:

第一,物理法回收利用废旧导电高分子材料,对废旧高分子材料经收集、分离、提纯、干燥等程序之后,加入稳定剂等各种助剂,重新造粒,并进行再次加工生产的过程。对于导电高分子材料来说,物理法是最为合适的方法了,早在导电高分子材料的生产公司在单体的选择、合成、材料的制备阶段就考虑到材料使用后可回收利用性,制备易于解聚、降解、可循环再生利用的导电高分子材料。为材料使用后的降解、解聚创造条件。

第二,通过燃烧废旧导电高分子材料的能量回收。

在不久的将来,功能强大的导电高分子材料必然会广泛应用于各个领域,势必会产生越来越多的聚合物废料。充分利用资源和减少环境污染是人们使用这一材料的最终目的,在世界能源日趋紧张的情况下,循环利用显得更为重要。我们应将更加致力于材料的循环研究,应用产品开发、现有技术的改进、设计和优化等,消除这一类物质对环境的影响。

参考文献:

[1] 齐宝森,张刚,栾道成.新型材料及其应用[M].哈尔滨工业大学出版,2007.

[2] 王建国,刘琳.特种与功能高分子材料[M].中国石化出版社,2004.

[3] 董炎明,朱平平,徐世爱.高分子结构与性能[M].华东理工大学出版社,2010.

作者简介:刘宇航(1995—),男,辽宁兴城人,沈阳理工大学。

盖业民(1994—),男,辽宁凌源人,沈阳理工大学。

陈语诗(1995—),女,辽宁沈阳人,沈阳理工大学。

猜你喜欢
绝缘体高分子导电
《功能高分子学报》征稿简则
《功能高分子学报》征稿简则
多孔位插头绝缘体注塑模具设计分析
精细高分子课程教学改革
发电厂直流系统接地故障分析与处理策略解析
多糖类天然高分子絮凝济在污泥处理中的应用
TiO2/PPy复合导电微球的制备
CPS导电回路电动斥力的仿真计算
人体导电与低压触电演示仪
高压开关用导电管冷挤压模具设计