兔笼类型对肉兔屠宰性能和宰后肉质的影响

2016-07-18 09:32周勤飞贺稚非李洪军
中国农业科学 2016年12期

周勤飞,贺稚非,李洪军

(1西南大学食品科学学院,重庆 400715;2西南大学荣昌校区动物科学系,重庆 402460)



兔笼类型对肉兔屠宰性能和宰后肉质的影响

周勤飞1,2,贺稚非1,李洪军1

(1西南大学食品科学学院,重庆 400715;2西南大学荣昌校区动物科学系,重庆 402460)

摘要:【目的】通过测定单层大笼和三层兔笼饲养肉兔的屠宰性能和宰后肌肉成熟过程中肉质的变化,为肉兔养殖圈舍建设中兔笼的选择和兔肉加工消费提供参考。【方法】选择分别用单层大笼和三层兔笼饲养在同一栋兔舍内的70日龄、健康、接近群体平均体重的加利福尼亚肉兔各10只(公母各半),按家兔屠宰方法屠宰后测定其屠宰性能和肌肉成熟过程中的 pH、肉色、剪切力、蒸煮损失和失水率。【结果】相同日龄下,两种兔笼饲养对肉兔的屠宰重影响不显著;单层大笼饲养的肉兔和三层兔笼饲养的肉兔相比,全净膛中段的百分率显著降低(P<0.05),而后段的百分率显著增加(P<0.05),腹腔脂肪率极显著降低(P<0.01),全净膛率和半净膛率均显著降低(P<0.05);单层大笼饲养肉兔的股骨重、径骨重和后腿肌肉率较高,而三层兔笼饲养肉兔的肝重和肾重较高。三层兔笼饲养肉兔肌肉L*值在成熟的第2天达到最大值,单层大笼饲养的肉兔在第3天达最大值;三层兔笼饲养肉兔的肌肉L*值在第6天显著高于单层大笼饲养肉兔(P<0.05),第7天极显著高于单层大笼肉兔(P<0.01);但在成熟的前3天,单层大笼饲养肉兔的肌肉L*值高于三层兔笼饲养肉兔。单层大笼饲养肉兔的肌肉a*值在成熟的第2、3和5天显著高于三层兔笼饲养的肉兔(P<0.05),在第4天极显著高于三层兔笼饲养的肉兔(P<0.01)。成熟过程中,三层兔笼饲养肉兔的肌肉 b*值比单层大笼饲养肉兔的高,在第 1天极显著高于单层大笼饲养的肉兔(P<0.01)。在兔肉成熟过程中的1—3 d,三层兔笼饲养肉兔的肌肉pH比单层大笼饲养的高,3天后比单层大笼饲养的低,整个成熟过程肌肉pH差异不显著。单层大笼饲养肉兔的肌肉剪切力在宰后和成熟的第1天和第3天显著高于三层兔笼饲养的肉兔(P<0.05),第2天极显著高于三层兔笼饲养的肉兔(P<0.01);第4天后,单层大笼饲养肉兔肌肉的剪切力低于三层兔笼饲养肉兔(P>0.05)。三层兔笼饲养肉兔的肌肉蒸煮损失在成熟过程中均大于单层大笼饲养的肉兔。兔肉在压力作用下的失水率情况和蒸煮损失一致。【结论】单层大笼饲养肉兔与三层兔笼饲养相比,能改变肌肉在胴体中的分布,改善兔肉肉质。

关键词:肉兔;兔笼类型;屠宰性能;肉质变化

联系方式:周勤飞,E-mail:zhouqinfei@163.com。通信作者李洪军,E-mail:983362225@qq.com

0 引言

【研究意义】兔肉的营养成分与消化利用率均居各种畜禽肉之首,兔肉与其他畜禽肉相比,其优势在于其“三高、三低”的特性,即高蛋白质、高赖氨酸、高消化率、低脂肪、低胆固醇和低能量,此外在降低心血管疾病和其他慢性疾病的发病方面有明显作用[1]。研究兔笼类型对肉兔屠宰性能和宰后肉质的影响,对肉兔养殖圈舍建设中兔笼的选择和兔肉加工具有重要指导意义。【前人研究进展】家兔的屠宰性能和肉质除受遗传、饲料、饲养管理等影响外,圈舍类型也会产生影响[2]。笼舍的大小和复杂程度的改变,会增强动物的感官效应,增加与环境接触的多元化;笼舍内动物群体的改变,会改变动物和不同个体间的相互作用关系[3]。COMBES等[4]研究发现,大群围栏养殖,会改善家兔胴体质量,增加肉色红度和后腿骨断裂强度。XICCATO等[5]研究表明,家兔饲养密度会对生产性能、胴体品质和肉色产生影响,但消费者很难发现肉色的改变。GONDRET[6]和TROCINO[7]等研究得出,家兔养殖期内的自由运动对肉色L*值没有影响,但会提高a*值和b*值。【本研究切入点】肉的成熟是指动物屠宰后经过一系列生物化学变化,使肉风味增加、改善嫩度和多汁性的过程,使生理意义上的肌肉转变为食品加工的肉。肉的成熟受动物宰前状态、屠宰过程和宰后成熟条件等的影响,而不同兔笼饲养同时对肉兔屠宰和屠宰后肌肉成熟过程肉质指标的影响还未见研究报道。【拟解决的关键问题】选择中国肉兔养殖中普遍使用的单层大笼和三层兔笼所饲养的加利福尼亚肉兔为研究对象,测定其屠宰特性和屠宰后在成熟过程中肉质的变化,以期为中国肉兔养殖圈舍建设中兔笼的选择和兔肉加工消费提供理论依据。

1 材料与方法

试验于2015年在西南大学荣昌校区进行。

1.1 试验动物

在重庆市荣昌区正坤养兔专业合作社购买饲养于传统三层兔笼(每个兔笼长宽高为60 cm×50 cm×40 cm,2只/笼)和单层大笼(兔笼长宽高为150 cm×100 cm× 30 cm,无笼顶,10只/笼),70日龄、健康、接近群体平均体重的加利福尼亚肉兔各10只(公、母各半)。试验用兔均饲养于同一养殖场、同一栋兔舍内,兔舍为半开放式兔舍,养殖过程中饲养管理保持基本一致。

1.2 屠宰方法及屠宰性能测定

肉兔屠宰方法参照家兔屠宰方法进行[8]。肉兔放血后去皮、头和保留肝、肾、腹壁脂肪的内脏,并沿肘关节和跗关节分别割下前肢和后肢,称半净膛重;去掉肝、肾和腹壁脂肪后称全净膛重;同时称肝脏、肾脏和腹壁脂肪重。用半净膛重、全净膛重、肝脏重、肾脏重和腹壁脂肪重除以宰前活重,分别计算半净膛率、全净膛率、肝脏百分率、肾脏百分率和腹壁脂肪百分率。

参照ZOTTE等[9]方法,在全净膛胴体7—8胸椎和6—7腰椎处割开,称前段、中段和后段重。用前、中和后段重除以全净膛重,分别计算前、中和后段的百分率。

将后腿肉、骨分割,股骨、胫骨、肌肉分别称重;用后腿肌肉重除以分割前后腿重,计算后腿百分率。

1.3 宰后成熟过程肉质指标的测定

将1.2屠宰肉兔的背最长肌分割后贮藏于0—4℃冰箱中,用于屠宰后1、2、3、4、5、6和7 d测定成熟过程中的肉质指标。

1.3.1 pH测定 取5—6腰椎处背最长肌肉样,用肌肉专用pH计电极插入肉样中心部位测定。

1.3.2 肉色测定 取6—7腰椎处背最长肌肉样,用Lovidond RT colour 3.0色差仪测定肌肉的亮度(L*)、红度(a*)和黄度(b*)。

1.3.3 蒸煮损失 取厚度约3 cm的背最长肌肉样,称重后装入样品袋并排尽空气后,在80℃的水浴锅中恒温加热,肉样中心温度达到75℃时,恒温保持5 min后取出,冷却至室温后再称重。用煮后损失重量除以煮前重,计算蒸煮损失。

1.3.4 剪切力 将测定蒸煮损失后的肉样用取样器沿肌纤维方向取直径为1.27 cm的肉块,用C-LM3型嫩度仪垂直肌纤维方向剪切肉块,记录每个肉块的剪切力。

1.3.5 失水率 取1 cm厚的背最长肌肉样,上下各垫18层滤纸后,施加35 kg 的静压力,保持5 min,测定3次取平均值。用压后水分损失量除以压前重,计算失水率。

1.4 数据统计与分析

数据用软件 Spss11.5中 Independent Samples T Test程序进行t检验,用Excel 2010软件作图。

2 结果

2.1 不同兔笼类型的肉兔屠宰性能

两种兔笼饲养对肉兔屠宰性能的影响见表 1。相同日龄下,两种兔笼饲养对肉兔的屠宰重影响不显著。单层大笼饲养的肉兔和三层兔笼饲养的肉兔相比,全净膛中段的百分率显著降低(P<0.05),而后段的百分率显著增加(P<0.05),腹腔脂肪率极显著降低(P<0.01),全净膛率和半净膛率均显著降低(P<0.05)。肝重和肾重在三层兔笼饲养的肉兔较高,而股骨重、径骨重和后腿肌肉率在单层大笼饲养的肉兔较高。说明单层大笼饲养肉兔提高了肉兔后腿比例和后腿产肉率,同时也降低了腹腔脂肪的沉积。

表1 兔笼类型对肉兔屠宰性能的影响Table 1 effect of cage type on slaughter performance of meat rabbit

2.2 不同兔笼类型兔肉成熟过程的肉质

由表2可知,兔肉L*值在成熟过程中呈先上升后下降趋势,三层兔笼饲养的肉兔宰后在第2天达到最大值,单层大笼饲养的肉兔在第3天达最大值;三层兔笼饲养肉兔的肌肉L*值在宰后45 min比单层大笼饲养肉兔高(P >0.05),第6天显著高于单层大笼饲养肉兔(P<0.05),第7天极显著高于单层大笼饲养肉兔(P<0.01);但在成熟的前3 d,单层大笼饲养肉兔的肌肉 L*值高于三层兔笼饲养肉兔。兔肉 a*值在成熟过程中呈下降趋势;单层大笼饲养肉兔的肌肉a*值在第2天、3天和第5天显著高于三层兔笼饲养的肉兔(P<0.05),在第4天极显著高于三层兔笼饲养的肉兔(P<0.01)。兔肉b*值在成熟过程中呈上升趋势;三层兔笼饲养肉兔的肌肉b*值均比单层大笼饲养肉兔的高,第 1天极显著高于单层大笼饲养的肉兔(P<0.01)。说明单层大笼饲养提高了成熟过程中的亮度和红度,而降低了黄度。

表2 兔笼类型对兔肉成熟过程中肉色的影响Table 2 Effect of cage type on meat color change during postmortem aging of meat rabbit

由图1可知,兔肉pH在成熟过程中呈先降低后缓慢升高的趋势,在第2天达到最低值,这说明兔肉在48 h左右出现极限pH。在1—3 d,三层兔笼饲养肉兔的肌肉pH比单层大笼饲养的高,3 d后比单层大笼饲养的低,整个成熟过程肌肉 pH差异不显著。

图1 兔笼类型对兔肉成熟过程中pH的影响Fig. 1 Effect of cage type on meat pH value during postmortem aging of meat rabbit

图2 兔笼类型对兔肉成熟过程中剪切力变化的影响Fig. 2 Effect of cage type on meat shear stress during postmortem aging of meat rabbit

从图2可以看出,兔肉剪切力在成熟过程中呈先上升后下降趋势,在成熟的第2天最大,而后缓慢降低。单层大笼饲养肉兔的肌肉剪切力在宰后和成熟的第 1天和第 3天显著高于三层兔笼饲养的肉兔(P<0.05),第2天极显著高于三层兔笼饲养的肉兔(P<0.01);第4天后,单层大笼饲养肉兔肌肉的剪切力低于三层兔笼饲养肉兔(P>0.05)。这说明成熟过程有利于降低单层大笼饲养肉兔肌肉的嫩度;结合图1中pH变化趋势可以看出,肌肉在pH最低点时剪切力也最大。

由图3可知,蒸煮损失在肌肉成熟过程中呈先上升后下降趋势,在第2天值最大;三层兔笼饲养肉兔的肌肉蒸煮损失在成熟过程中均大于单层大笼饲养的肉兔,两种兔笼饲养对成熟过程中兔肉的蒸煮损失影响不显著。第2—3天的这24 h内,曲线斜率变化最大,说明兔肉在成熟过程中的48—72 h内,系水力得到很大提高。

图4反应的是兔肉在压力作用下的失水率情况,变化趋势和蒸煮损失一致。从第3天开始,兔肉失水率变化趋于平缓,结合图2和图3可以看出,兔肉在成熟的第3天已进入解僵成熟期。

图3 兔笼类型对兔肉成熟过程中蒸煮损失的影响Fig. 3 Effect of cage type on meat cooking loss during postmortem aging of meat rabbit

图4 兔笼类型对兔肉成熟过程中失水率的影响Fig. 4 Effect of cage type on meat water losing during postmortem aging of meat rabbit

3 讨论

3.1 兔笼类型对肉兔屠宰性能的影响

养殖环境是影响动物生长发育的重要因素,养殖群体和圈舍的可利用空间会影响动物的好斗性和活动积极性[10]。动物群居会因为争夺食物或其他资源时发生争斗,从而降低福利水平,使弱势个体得不到充足的食物或其他资源,但在食物或其他资源充足的情况下,这种竞争的水平会很低或没有[11-12]。本试验中单层笼和三层兔笼饲养肉兔密度相同,在群体上有差异(单层大笼为10只/笼,而三层兔笼为2只/笼),虽然两种兔笼养殖肉兔的屠宰重(相同日龄)差异不显著,但单层大笼饲养的标准差比三层兔笼高22.79%。

肉兔饲养在大笼里,自由活动空间增大,会导致体重、胴体重和脏器重量下降,而骨骼比例上升;同时,由于摄入的能量用于运动后,体内脂肪的沉积也相应的下降[13-15]。LAMBERTINI等[16]研究也发现运动量增大后会降低屠宰率。METZGER等[17]研究发现围栏饲养的肉兔与笼养肉兔相比,胴体前段比例和后段比例高(P<0.01和P<0.001),而中段比例低。本试验中,单层大笼饲养肉兔的半净膛率和全净膛率显著低于三层兔笼的肉兔(P<0.05),胴体后段百分率增加(P<0.05),而腹腔脂肪率极显著低于三层兔笼饲养肉兔(P<0.01)。单层大笼饲养肉兔的胴体中段百分率显著低于三层兔笼饲养肉兔(P<0.05),但SZENDRŐ等[18]和ZOTTE等[19]发现肉兔饲养在兔笼和大群饲养的肉兔胴体中段比例一样。

3.2 兔笼类型对肉兔宰后肌肉pH质的影响

ZOTTE等[19]认为,如果兔长期大群饲养,因数量较多,在平时的相互接触和斗殴中,其肌肉已适应由应激所产生的大量自由基;所以,大笼养殖的肉兔宰前应激小、糖酵解少,导致宰后有大量的糖元酵解,pH偏低。本试验也发现,单层大笼饲养的肉兔宰后3天内肌肉的 pH低于三层兔笼饲养的肉兔,与COMBES等[4]研究结果一致。由于宰后动物肌肉内氧气供应中断,肌糖原无氧糖酵解产生的乳酸和三磷酸腺苷分解生成磷酸导致肌肉的pH下降[20]。此后,随着成熟时间的增加,肌肉中的蛋白质和含氮化合物被微生物和酶分解,产生碱性含氮物质,这些碱性物质的积累使pH缓慢增加[21]。本试验中,兔肉pH在成熟过程中也呈现出先下降,48 h后开始缓慢上升的趋势,与刘佳东等[22]研究牦牛肉排酸过程中pH变化规律一致。

3.3 兔笼类型对肉兔宰后肌肉系水力和剪切力的影响

ZOTTE等[9]究表明,大群饲养肉兔的肌肉具有高的剪切力和蒸煮损失。但本试验发现单层大笼饲养肉兔的剪切力比三层兔笼饲养肉兔的高,但蒸煮损失和失水率降低。动物宰后其系水力的变化主要由pH变化所致,当 pH下降到或接近肌原纤维蛋白质等电点时,持水力就变小,当 pH缓慢上升时,持水力逐渐上升[4]。本试验结果也证明兔肉的蒸煮损失和失水率的变化趋势和肌肉pH变化趋势负相关,这和田甲春等[23]研究牦牛肉成熟过程一致。

3.4 兔笼类型对肉兔宰后肌肉肉色的影响

SZENDRŐ等[24]发现大群饲养肉兔会增加L*值,但本试验中只在成熟过程的前3 d比三层兔笼饲养的肉兔高,其余均低。本研究中,兔肉L*值在肌肉pH降低的前3 d内呈上升趋势,而后缓慢下降;其主要原因是pH下降导致肌肉收缩,内部水分渗出堆积在肉块表面,增强了光反射所致[25]。MILLET等[26]研究发现,有机养殖条件下猪肉和传统养殖的相比,肌肉pH降低而肉色红度增加。本研究中也发现单层大笼饲养肉兔肌肉的a*值比三层兔笼的高,主要原因是由于长期运动使肌肉的有氧代谢增强,从而增加了肌肉中I型肌纤维和IIA型肌纤维的比例所致[27]。兔肉成熟过程中,a*值呈下降趋势,而b*值呈上升趋势;主要原因是随着成熟时间的延长,肌红蛋白与氧气充分接触,被氧化生成高铁肌红蛋白,导致a*值下降;脂肪在贮藏过程中与氧气接触后被氧化,b*值增加[28]。本试验中单层大笼饲养肉兔肌肉和三层兔笼饲养的相比,a*值升高而b*值降低,与ZOTTE等[9]和COMBES等[4]研究结果一致。

4 结论

4.1 单层大笼饲养能改变肌肉在胴体中的分布,增加胴体前段和后段的重量,增加后腿肌肉率和股骨、径骨重量;降低腹腔脂肪沉积以及肝脏和肾脏的重量,降低肉兔半净膛率和全净膛率。

4.2 与三层兔笼饲养肉兔肌肉相比较,单层大笼饲养使肌肉成熟过程中肉色的L*值(前3 d)和a*值较高,而b*值较低;前3 d的pH降低;前4 d的剪切力较高,而后降低;整个成熟过程中,肌肉的蒸煮损失和失水率均降低。因此,建议采用单层大笼饲养肉兔。

References

[1] ZOTTE A D, SZENDRŐ Z. The role of rabbit meat as functional food. Meat Science, 2011, 88: 319-331.

[2] 张敬, 周勤飞, 王永才, 陈杰. 圈舍类型对家兔肉质的影响研究进展. 中国养兔, 2014(3): 17-19. ZHANG J, ZHOU Q F, WANG Y C, CHEN J. Research progress of the housing system on rabbit meat quality. Chinese Journal of Rabbit Farming, 2014(3): 17-19. (in Chinese)

[3] HUZARD D, MUMBY D G, SANDI C, POIRIER G L, VAN DER KOOIJ M A. The effects of extrinsic stress on somatic markers and behavior are dependent on animal housing conditions. Physiology & Behavior, 2015, 151: 238-245.

[4] COMBES S, POSTOLLEC G, CAUQUIL L, GIDENNE T. Influence of cage or pen housing on carcass traits and meat quality of rabbit. Animal, 2010, 4(2): 295-302.

[5] XICCATO G, TROCINO A, MAJOLINI D, TAZZOLI M,ZUFFELLATO A. Housing of growing rabbits in individual, bicellular and collective cages: Growth performance, carcass traits and meat quality. Animal, 2013, 7(4): 627-632.

[6] GONDRET F, HERNANDEZ P, RÉMIGNON H AND COMBES S. Skeletal muscle adaptations and biomechanical properties of tendons in response to jump exercise in rabbits. Journal of Animal Science,2009, 87: 544-553.

[7] TROCINO A, MAJOLINI D, TAZZOLI M, FILIOU E AND XICCATO G. Housing of growing rabbits in individual, bicellular and collective cages: Fear level and behavioural patterns. Animal, 2013,7(4): 633-639.

[8] 李福昌. 兔生产学. 北京: 中国农业出版社, 2009. LI F C. Rabbit Production. Beijing: China Agriculture Press, 2009. (in Chinese)

[9] ZOTTE A D, SZENDRŐ K, GERENCSÉR Z, SZENDRŐ Z,CULLERE M, ODERMATT M, RADNAI I, MATICS Z. Effect of genotype, housing system and hay supplementation on carcass traits and meat quality of growing rabbits. Meat Science, 2015, 110:126-134.

[10] PACID G, PREZIUSO G., D'AGATA M, RUSSO C, ZOTTE A D. Effect of stocking density and group size on growth performance,carcass traits and meat quality of outdoor-reared rabbits. Meat Science,2013, 93: 162-166.

[11] ANDERSEN I L; BOE K E, HOVE K. Behavioural and physiolgical thermoregulation in groups of pregnant sows housed in a kennel system at low temperatures. Canadian Joural of Animal Science, 2000,80(1): 1-8.

[12] TURNER S P, ALLCROFT D J. Housing pigs in large social groups:A review of implications for performance and other economic traits. Livestock Production Science, 2003, 82: 39-51.

[13] BOSCO A D, CASTELLINI M, MUGNAI C. Rearing rabbits on a wire net floor or straw litter: Behaviour, growth and meat qualitative traits. Livestock Product Science, 2002, 75: 149-156.

[14] XICCATO G, TROCINO A, FILIOU E, MAJOLINI D, TAZZOLI M ,ZUFFELLATO A. Bicellular cage vs. collective pen housing for rabbits: growth performance, carcass and meat quality. Livestock Science, 2013, 155: 407-414.

[15] MATICSA Z, SZENDRŐA Z, ODERMATTB M, GERENCSÉRA Z,NAGYA I, RADNAIA I, DALLE ZOTTEC A. Effect of housing conditions on production, carcass and meat quality traits of growing rabbits. Meat Science, 2014, 96: 41-46.

[16] LAMBERTINI L, VIGNOLA G, ZAGHINI G. Alternative pen housing system for fattening rabbits: Effects of group density and litter. World Rabbit Science, 2001, 9: 141-147.

[17] METZGER S, KUSTOS K, SZENDRŐ Z, SZABÓ A, EIBEN C,NAGY I. Effect of Alternative Housing on Carcass Traits of Rabbits.Agriculturae Conspectus Scientific, 2003, 68(3): 151-154.

[18] SZENDRŐ Z, PRINCZ Z, ROMVÁRI R, LOCSMÁNDI L, SZABÓ A, BÁZÁR GY, RADNAI I . Effect of group size and stocking density on productive, carcass and meat quality traits and aggression of growing rabbits. World Rabbit Science, 2009, 17: 153-162.

[19] ZOTTE D A, PRINCZ Z, METZGER SZ, SZABÓ A. Response of fattening rabbits reared under different housing conditions. 2. Carcass and meat quality. Livestock Science, 2009, 122: 39-47.

[20] 莎丽娜, 靳烨, 苏席其乐木格, 李小波. 苏尼特羊肉食用品质的研究. 内蒙古农业大学学报, 2008, 29(1): 106-109. SHA L N, JIN Y, XI QILEMUGE, LI X B. The study on edible quality of sunit sheep. Journal of Inner Mongolia Agricultural University,2008, 29(1): 106-109. (in Chinese)

[21] 王振华, 侯诗夏, 李兴艳, 夏杨毅, 尚永彪, 李洪军, 彭增起. 兔肉宰后成熟过程中理化性质的变化. 食品科学, 2015, 36(3): 80-85. WANG Z H, HOU S X, LI X Y, XIA Y Y, SHANG Y B, LI H J,PENG Z Q. Physical and chemical properties of rabbit meat during postmortem aging. Food Science, 2015, 36(3): 80-85. (in Chinese)

[22] 刘佳东, 余群力, 李永鹏. 宰后冷却牦牛肉排酸过程中肉用品质的变化. 甘肃农大学学报, 2011, 46(2): 111-114. LIU J D, YU Q L, LI Y P. Quality changes of chilled yak meat during discharge acid process. Journal of Gansu Agricultural University,2011, 46(2): 111-114. (in Chinese)

[23] 田甲春, 韩玲, 刘昕, 师希雄, 王文婷, 郭兆斌. 牦牛肉宰后成熟机理与肉用品质研究. 农业机械学报, 2012, 43(12): 146-150. TIAN J C, HAN L, LIU X, SHI X X, WANG W T, GUO Z B. Ageing mechanism and meat quality during postmortem ageing of yak meat. Transactions of the Chinese Society for Agricultural Machinery, 2012,43(12): 146-150. (in Chinese)

[24] SZENDRŐ Z, PRINCZ Z, ROMVÁRI R, LOCSMÁNDI L, SZABÓ A, BÁZÁR G, RADNAI I, BIRÓ-NÉMETH E, MATICS Z, NAGY I. Effect of group size and stocking density on productive, carcass and meat quality traits and aggression of growing rabbits. World Rabbit Science, 2009, 17: 153-162.

[25] 崔丽娟. 负向近冰点温度下绵羊宰后肌肉主要理化指标变化的研究. 呼和浩特: 内蒙古农业大学, 2007. CUI L J. Study on changes of biochemical properties of sheep muscle meat stored at the temperature close to cryoscopic point. Huhhot:Inner Mongolia Agricultural University, 2007. (in Chinese)

[26] MILLET S, HESTAA M, SEYNAEVEB M, ONGENAEB E, DE SMETB S, DEBRAEKELEERA J, JANSSENSA J. Performance,meat and carcass traits of fattening pigs with organic versus conventional housing and nutrition. Livestock Production Science,2004, 87: 109-119.

[27] DUCOMPS C, MAURIÈGE P, DARCHE B, COMBES S, LEBAS F,DOUTRELOUX J P. Effects of jump training on passive mechanical stress and stiffness in rabbit skeletal muscle: Role of collagen. Acta Physiologica Scandinavica, 2003, 178: 215-224.

[28] 余小领, 李学斌, 陈会. 猪肉色泽和保水性的相关性研究. 食品科学, 2009, 30(23): 44-46. YU X L, LI X B, CHEN H. Relationship between pork color and water-holding capacity. Food Science, 2009, 30(23): 44-46. (in Chinese)

(责任编辑 赵伶俐)

Effect of Cage Type on Slaughter Performance and Meat Quality Change During Postmortem Aging of Meat Rabbit

ZHOU Qin-fei1,2, HE Zhi-fei1, LI Hong-jun1
(1College of Food Science, Southwest University, Chongqing 400715;2Department of Animal Science, Southwest University Rongchang Campus, Chongqing 402460)

Abstract:【Objective】 Aimed to provide reference for the selecting of meat rabbit breeding pens construction and meat consumption, the carcass traits and meat quality changing during postmortem aging of meat rabbit that reared in monolayer large cage and three layer cage were detected in the study. 【Method】 10 California rabbits (half male and half female) , reared in the same building, 70 days, health and the weight close to the average population, in each monolayer large cage and three layer cage were selected and slaughtered as the rabbit slaughtering methods, then the slaughter performance and the pH value, color, shear force,cooking loss and water loss of muscle during postmortem aging were determined. 【Result】 The influence of two kinds of cages on the slaughter weight was not significant. Compared to the monolayer large cage, rabbits reared in the three layer cage had a significant decrease in fore part and increase in hind part ratio of eviscerated carcass (P<0.05), a significant decrease in abdominal fat ratio (P<0.01), and a significant decrease in the eviscerated and semi-eviscerated (P<0.05). Liver weight and kidney weight were higher in the three layer cage reared rabbits. Femur weight, tibia weight and muscle ratio of hind leg were higher in monolayer large cage reared rabbits. The time of maximum muscle L * value during postmortem aging of the three layer cage reared rabbits was at the 2nd day, and the monolayer large cage reared rabbits was at the 3rd day. The muscle L* value of the three layer cage reared rabbits at the 6th day was significantly higher than the monolayer large cage (P<0.05), and very significantly higher at the 7th day (P<0.01), but it was lower at 3 days before. The muscle a* value during postmortem aging of monolayer large cage reared rabbits was significantly higher than the three layer cage at the 2nd day, 3rd day and 5th day (P<0.05), and it was very significantly higher at the 4th day (P<0.01). The muscle b* value during postmortem aging of the three layer cage reared rabbits was higher than the monolayer large cage, and it was very significantly higher at the 1stday (P<0.01). The muscle pH value during postmortem aging of the three layer cage reared rabbits was higher than the monolayer large cage at the 3 days before, and lower after 3 days. The monolayer large cage reared rabbits had a significantly higher muscle shear force at the 1st and 3rd day during postmortem aging compared to the three layer cage (P<0.05), and very significant at the 2nd day (P<0.01), but lower after the 4th day. The three layer cage reared rabbits had a higher cooking loss compared to monolayer large cage reared rabbits during the postmortem aging. And the water loss index changing during the postmortem aging was in agreement with cooking loss. 【Conclusion】 Monolayer large cages can change the distribution of muscle in the rabbit carcass , and have a positive effect on meat quality compared to the three layer cage.

Key words:meat rabbit; cage type; slaughter performance; meat quality change

收稿日期:2015-10-30;接受日期:2016-01-27

基金项目:国家公益性行业(农业)科研专项(201303144)、国家兔产业技术体系肉加工与综合利用(CARS-44-D-1)