免疫系统人源化小鼠模型的研究进展

2017-01-16 03:22连晶瑶丁苗慧秦国慧王纯耀
中国比较医学杂志 2017年10期
关键词:人源异种移植物

连晶瑶,丁苗慧,秦国慧,张 毅,王纯耀*

(1.郑州大学第一附属医院,郑州 450052; 2.郑州大学临床医学系,郑州 450052; 3.郑州大学,郑州 450052)

研究进展

免疫系统人源化小鼠模型的研究进展

连晶瑶1,3,丁苗慧2,秦国慧1,张 毅1,王纯耀1,3*

(1.郑州大学第一附属医院,郑州 450052; 2.郑州大学临床医学系,郑州 450052; 3.郑州大学,郑州 450052)

动物模型是生物医学科学研究中所建立的具有人类模拟性表现的动物材料,作为实验假说和临床假说的实验基础,可以缩短研究时间,观察疾病的发生、发展或预防与治疗的全过程,并可在人为控制条件下进行各种实验研究,对各种疾病的相关机制研究有着重要意义。人类的生物医学研究主要受限于生物体复杂性,为了克服这个限制,基于可接受异种移植物的严重联合免疫缺陷(SCID)或重组激活基因(Ragnull)无效小鼠的免疫缺陷特征开发人源化小鼠模型,这些具有人体免疫力的小鼠模型已被广泛用于研究人类免疫生物学的基本原理以及人类疾病的复杂病理的潜在机制。这种方法是促进医学科学发展的重要途径之一,具有实用性和前瞻性。本文将对人源化小鼠模型的应用及研究进展进行综述。

动物模型;人源化小鼠;治疗;进展

人源化小鼠应用于研究人类免疫细胞、人类自身免疫性疾病、病毒感染、移植生物学和肿瘤生物学的发展和应用。通过移植成熟的人类免疫细胞、胎儿人类胸腺、骨髓、肝组织等,构建具有人体免疫力的小鼠模型。具有人源化免疫系统的动物模型将显著促进我们对人类免疫生物学和免疫相关疾病如自身免疫性疾病、病毒感染以及肿瘤和移植排斥的认识。这些动物模型是研究人淋巴细胞生物学和免疫应答的重要研究工具[1,2]。现已经有探究人源化小鼠人源细胞的检测方法[3]。人源化小鼠由人类细胞、组织、器官甚至人类基因构成的小鼠[4],包括用人的肺、肾、胰腺、胃、肝、卵巢、子宫内膜、神经和皮肤组织移植的模型[5-8]。严重联合免疫缺陷(SCID)或重组激活基因(Rag)小鼠缺乏T和B细胞,最初被用作重建人体免疫的接受者[9]。最近,越来越多的基因修饰的SCID或Rag小鼠模型被使用,包括SCID[10],NOD/SCID[11],Ragnull[12]和NOD/LtSz-Rag1nullPfpnull[13]等,这些小鼠是先天免疫缺陷的。人源化小鼠模型作为研究人类疾病的活体模型,在阐明发病机制、药物筛选等方面具有巨大的优势和广泛的应用前景[14]。本综述主要介绍免疫系统人源化小鼠模型的现状及研究进展。

1 人源化小鼠模型的建立

1.1接种小鼠选择用于移植异种人造血和免疫细胞

为了提高人类免疫细胞或组织的移植效率,要求不同的条件治疗方案和移植手段,包括宿主先天免疫细胞的清除以及植入成熟的人类免疫细胞、胎儿胸腺、肝组织、骨髓和CD34+血液干细胞(HSC)[15]等的小鼠模型的构建。SCID小鼠缺乏T细胞受体和免疫球蛋白基因的重排,导致T细胞和B细胞的缺失[16],SCID小鼠中功能性T和B细胞的缺失有助于同种异体移植物或异种移植物的接受,没有严重的排斥反应[17]。Rag1或Rag2通过产生DNA双链断裂引发TCR和免疫球蛋白基因的VDJ重排,因此小鼠中的纯合突变体导致不能产生成熟的T和B细胞,导致SCID样表型[18]。具有Rag1和穿孔素基因的靶向突变的NOD小鼠,命名为NOD/LtSz-Rag1nullPfpnull小鼠,其缺乏成熟的T、B和NK细胞[19]。现在越来越多的科学家来开发具有更多缺陷先天免疫修饰的SCID小鼠或其他人源化小鼠模型。NOD/Shi-SCID小鼠也具有类似于NOD/LtSz-SCID小鼠的严重免疫功能障碍[20]。NOD/LtSz-SCID或NOD/Shi-SCID小鼠的先天免疫缺陷可能很好地解释了体内人异种移植物存活增加的问题[21]。CD47可以通过与巨噬细胞上表达的信号调节蛋白(SIRP)反应,有效地保护靶细胞免受巨噬细胞吞噬作用[22]。

1.2敲除受体小鼠中的先天免疫细胞

SCID或Ragnull小鼠的先天免疫力成为限制人免疫细胞重建的主要因素。在受体小鼠中敲除NK细胞、单核细胞和巨噬细胞等某些亚群的方法可以改善人类HSCs或免疫细胞移植[23,24]。CD122抗体或IL-2R抗体等用于敲除NK细胞,脂质体包封的二氯亚甲基双膦酸盐敲除巨噬细胞[25],这会严重影响小鼠嗜中性粒细胞[26]和粒细胞[27],这可能控制SCID或Ragnull小鼠对人类移植物的天然免疫应答,并与人类移植物的增加显著相关。

1.3人类生长因子的影响

人类免疫细胞在异种免疫缺陷型受体小鼠中的低移植效率可能通过提供人类生长因子而有所改善。在小鼠中,CD4和CD8单阳性胸腺细胞的成熟需要TNF-α的诱导[28]。T细胞的发育、增殖和存活对上皮衍生的IL-7具有重要的依赖性[29],人Fc-IL7融合蛋白的使用大大提高了NOD/SCID小鼠的脾脏和外周血中人T细胞的存活[30]。IL-15对造血功能有促进作用,包括T细胞的增殖,B细胞的成熟和NK细胞的发育[31,32]。rhIL-15可以改善转染人类PBL后NOD/SCID小鼠人T细胞的移植和重建[33]。此外,IL-12或IL-18的使用增强了小鼠中人CD4+和CD8+T细胞的移植[34]。在用人PBL或骨髓细胞(BMC)接种的SCID小鼠中,注射重组人生长激素(rhGH)或重组人催乳素(rhPRL)强烈促进胸腺和脾脏中的人T细胞移植,IgG/M血清水平增强[35]。

1.4通过辐射或化学药剂为供体细胞制造“空间”

尽管通过NK细胞或巨噬细胞的抗体进行预处理可以清除NOD/SCID小鼠的残留免疫力,但是可能需要亚致死辐射或化学试剂的制备方案来制造用于接种异种人类HSCs或免疫细胞的“空间”。这些预处理可能导致生长因子和化学引诱物浓度的增加,并为受体小鼠中人HSC和免疫细胞的发育和再辐射保留一定量的空间,一些免疫抑制剂和烷化剂已经显示出与辐射相似的效果。例如,与3.5 Gy照射相比,单次剂量(35 mg/kg)的Busilvex能够进行人类细胞的等同移植[36]。通常,人类HSC移植在NOD/SCID小鼠中需要2~3 Gy预辐射,并且人类免疫细胞可以在受照射的受体中很好的生存[37]。

1.5直接植入成熟的人免疫细胞获得人源化小鼠

通过用针对受体小鼠NK细胞、巨噬细胞或粒细胞的抗体处理,人免疫细胞的移植显著改善[38]。与SCID小鼠相比,用人PBLs腹膜内移植的Rag2null小鼠显示有限的人类移植率和较低水平的人免疫球蛋白[39]。600Gy照射可以提高Rag2null小鼠人类植入的效率[40]。为了提供适当的微环境,移植到SCID小鼠中,包含必需的细胞组分有T细胞、B细胞和抗原呈递细胞(APC)。在这些小鼠中,人免疫缺陷病毒(HIV)可以正常复制[41],分化成产生人IgM或IgG。分析抗原特异性细胞免疫应答是非常困难的,人T和B细胞介导的这种异种反应不仅引起了致命的移植物抗宿主病(GVHD)[42],而且严重限制了人类PBL对外源性抗原的反应能力[43]。因此,这种方法在生物医学研究中的应用很有限。当人类脐带血CD34+细胞注射到NOD/SCID胎儿中时,人类免疫细胞在胎儿小鼠环境中不能有效地自我更新和分化[44]。

1.6移植人类胸腺和HSC获得人源化小鼠

建立人源化小鼠模型的另一个重要方法是在SCID小鼠的肾胶囊下移植胎儿人胸腺和肝组织,导致良好的血管胸腺样器官[45]。观察到来自胎儿人肝组织移植物的人类HSCs迁移到胸腺移植物中[46]。这些人源化小鼠为体内研究人体免疫功能提供了强大的模型。NOD/SCID或Rag2null小鼠没有T和B细胞,没有NK活性,并且缺失DC功能[47],因此是比较好的小鼠模型。由于人类抗小鼠异种免疫反应引起的GVHD的高发生率或可能性,直接移植高剂量的成熟人类T细胞和其他免疫细胞可能不是理想的选择。因此,在免疫缺陷小鼠中植入胎儿人胸腺组织和HSC以重建人类免疫可能是一种最佳方法。胎儿人胸腺或肝组织和CD34+HSCs的共移植策略可以维持人类免疫细胞多谱系的发育,包括T细胞,B细胞和DC,提供更强大的适应性和先天免疫力。

2 人源化小鼠模型在生物医学研究中的应用

人源化小鼠广泛应用于人类HSCs的自我更新和多能分化能力的研究,以及人类对病毒感染,肿瘤和移植的免疫力。人脐带血(UCB)、骨髓和外周血被用作移植人HSCs的来源。从人UCB移植CD34+细胞与来自骨髓或外周血的CD34+细胞相比,NOD/SCID小鼠的移植水平更高[48]。人类CD34+群体可以分为两个独特特征的亚群(CD34+CD38+和CD34+CD38-)。CD34+CD38+细胞早期重新产生,而CD34+CD38-细胞的增殖在晚期代表了更原始的群体和更高的T细胞前体[49]。人类CD34+Lin-Thy-1+祖细胞的群体可以重新填充胸腺移植物。此外,人类CD34+细胞或CD34+Lin-Thy-1+CD10+群体在SCID小鼠中产生T、B、NK和DC群体。当将人CD34+细胞移植到NOD/SCID/IL2R无效小鼠中时,重构免疫细胞的重组,包括人T细胞、B细胞、单核细胞、巨噬细胞和DC[50,51]。人源化小鼠中的人DC在发育,表现和功能上类似于人类发现的DC亚群[52]。自身免疫性疾病从具有器官特异性和多系统自身免疫疾病的患者获得的人PBL在SCID小鼠中存活数月,并产生具有与供体相同特异性的IgG和自身抗体[53]。因此,这提供了一种可能的方法来研究人体自身免疫性疾病在体内模型中的发病机制和效应阶段。这些结果表明人源化小鼠可以作为抗体介导的人自身免疫性皮肤病的模型。

2.1病毒感染

人造模型被用于研究病毒与人类免疫系统之间的相互作用,并评估疫苗和治疗剂对人类病毒等的作用。艾滋病毒感染主要限于体外或临床研究,人源化小鼠已广泛用于研究HIV发病机制和体内治疗[54,55]。在接种人类PBL的SCID小鼠中,HIV感染被限制在短时间内,因为CD4+T细胞迅速耗尽,缺乏补充来源[56]。在将未经治疗的HIV感染患者的PBLs诱导转移到NOD/SCID小鼠后,观察到强烈的HIV特异性抗体反应[57]。在接种人胸腺和肝组织的人源化小鼠中,艾滋病毒感染对于一些胸腺CD3-CD4+CD8-T细胞的细胞呈现出先天性趋向[58]。在移植人类CD34+细胞后,在NOD/SCID/IL-2小鼠的脾脏、骨髓或胸腺中检测到感染CCR5和CXCR4-嗜性HIV-1分离物后的长期病毒血症。CXCR4-嗜性HIV病毒感染所有淋巴器官,而CCR5-嗜性HIV病毒感染主要限于胸外组织。两种病毒株都导致人类长期淋巴器官传播感染与HIV感染密切相似。已经开发了人源化小鼠模型,用于对HIV抗病毒化合物进行临床前评估,包括叠氮胸苷[59],双脱氧肌苷,双脱氧胞嘧啶,奈韦拉平,蛋白酶抑制剂[60]。SARS病毒导致了亚洲的致命疫情[61]。人PBLs构建的人源化小鼠被用于研究针对SARS-CoV的新型候选疫苗。SARS DNA疫苗诱导特异于SARS抗原的人细胞毒性T淋巴细胞和针对SARS-CoV的人中和抗体[62],证明血管紧张素转换酶2是SARS-CoV的功能受体[63]。对登革热病毒发病机理和免疫力的理解的一个主要限制是缺乏理想的人源化动物模型。用人脐带血造血祖细胞或胎儿肝衍生的CD34+细胞移植的照射的NOD/SCID小鼠在生理环境中实现登革热病毒感染的复制。发现这些模型易感染登革病毒感染,发现典型的发烧和血小板减少症状,并用于评估登革病毒的发病机制[64]。此外,人源化小鼠也已经用于研究EBV[65],巨细胞病毒(CMV)[66]和流感感染[67]的病理和治疗等。

2.2对同种异体移植物或异种移植物的免疫应答或耐受性

在接种人胸腺和肝组织或PBL的SCID小鼠中移植同种异体HLA错配的胎儿胰腺导致人单核细胞浸润胰腺和随后的排斥反应[68]。人类T细胞对SCID小鼠中同种异体供体的皮肤移植物的排斥负责[69,70]。像人类皮肤移植一样,皮肤微血管被破坏,皮肤坏死[71]。人类PBL移植的SCID小鼠被建立为延迟型超敏反应(DTH)的模型[72]。从供体受体的肾移植受者分离出的适应性CD4+CD25+Treg细胞介导人源化SCID小鼠中供体特异性DTH的抑制[73]。从供体A和来自供体B的胎儿胸腺移植人胎肝的SCID小鼠开发了混合嵌合人胸腺[74]。在该模型中,与供体A反应的人T细胞通过在胸腺中的选择被克隆缺失,而与供体B的同种异体胸腺上皮细胞相互作用的T细胞可能对供体B有潜在的响应[75]。人体小鼠模型用于研究体内异种猪移植物的免疫应答[76]。用胎儿猪胸腺和人肝组织移植的SCID小鼠中的猪胸腺移植物支持由人类胎儿肝细胞提供的造血前体的多克隆功能性人T细胞的正常发育[77]。这些人类T细胞对供体猪抗原具有特异性的耐受性,但对非供体猪异种抗原和同种异体抗原反应正常。外源IL-2没有消除耐受性,表明中枢克隆缺失而不是无反应是可能的耐受机制[77]。最近,研究结果表明,人类功能性CD4+CD25+Foxp3+Treg细胞可以在NOD/SCID小鼠的异种猪胸腺移植物中发育。嵌合体由人胸腺肝组织和猪HSC在SCID小鼠中构建[78]。在这种嵌合体中发育的人类T细胞显示出对猪供体的特异性无反应性,因为它缺乏猪血液细胞和抗供体猪反应的排斥,以及供体猪白细胞抗原(SLA)匹配皮肤的接受移植物,而混合嵌合小鼠中的人T细胞拒绝了第三方猪皮肤移植物,并测定对第三方猪和同种异体人类抗原作出反应[78]。造血嵌合体诱导供体细胞T细胞耐受性的能力主要是由成熟供体反应性胸腺细胞的胸腺内克隆缺失引起的[79]。

2.3抗肿瘤免疫反应

恶性肿瘤可以无限制地生长,逃避人类免疫监视。SCID或Rag小鼠可以成功地植入异种人类肿瘤,包括各种各样的实体人类肿瘤和血液肿瘤[80],其中人类肿瘤生物学、生长、血管发生和转移已被评估。在免疫缺陷小鼠中成功移植人类肿瘤和人类免疫细胞的能力已经促成了人源化小鼠模型的开发和使用,以评估抗肿瘤治疗。事实上,理想的模型是具有完整人类免疫系统的人源化小鼠,这将允许在完整的人免疫微环境的背景下评估肿瘤免疫生物学的机制。人源化小鼠可用于评估抑制人肿瘤生长的治疗方法,包括使用血管生成抑制剂[81]、基于细胞的疗法[82]、人源化抗体[83]、传统的免疫抑制和免疫治疗方案[84]和肿瘤生长抑制剂[85]。人源化小鼠提供了评估人细胞因子和趋化因子的机会,其增强人白细胞的先天和适应性抗肿瘤免疫应答,从而提供临床相关的模型。

3 展望

人源化小鼠模型的建立为疾病的病因学、发展过程和治疗研究提供了极大的帮助,尤其是近来分子生物学技术的提高及在人源化小鼠模型中的应用,为各种疾病有关基因研究提供了依据,为进一步研究疾病发生机制及靶向治疗提供了广阔的前景。随着研究的深入以及各种技术的进步,人们将建立更为完善的人源化小鼠模型,在疾病研究及治疗方面取得更大的突破。

[1] Kenney LL, Shultz LD, Greiner DL, et al. Humanized mouse models for transplant immunology[J]. Am J Transplant, 2016, 16(2):389-397.

[2] Safinia N, Becker PD, Vaikunthanathan T, et al. Humanized mice as preclinical models in transplantation[J]. Springer New York, 2016, 1371:177-179.

[3] 陈炜, 冯娟, 施海霞,等. 人源化小鼠人源细胞检测方法[J]. 中国比较医学杂志, 2010, 20(7):63-66.

[4] Aubard Y. Ovarian tissue xenografting[J]. Eur J Obstet Gynecol Reprod Biol,2003, 108(1): 14-18.

[5] Maltaris T, Koelbl H, Fischl F, et al. Xenotransplantation of human ovarian tissue pieces in gonadotropin-stimulated SCID mice: the effect of ovariectomy[J]. Anticancer Res,2006, 26(6B): 4171-4176.

[6] Matsuura-Sawada R, Murakami T, Ozawa Y, et al. Reproduction of menstrual changes in transplanted human endometrial tissue in immunodeficient mice[J]. Hum Reprod,2005, 20(6): 1477-1484.

[7] Masuda H, Maruyama T, Hiratsu E, et al. Noninvasive and real-time assessment of reconstructed functional human endometrium in NOD/SCID/gamma c(null) immunodeficient mice[J]. Proc Natl Acad Sci U S A,2007, 104(6): 1925-1930.

[8] McCune JM, Namikawa R, Kaneshima H,et al. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function[J]. Science,1988, 241(4873): 1632-1639.

[9] Mosier DE, Stell KL, Gulizia RJ, et al. Homozygous SCID/SCID; beige/beige mice have low levels of spontaneous or neonatal T cell-induced B cell generation[J]. J Exp Med,1993, 177(1): 191-194.

[10] Ito M, Hiramatsu H, Kobayashi K, et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells[J]. Blood,2002, 100(9): 3175-3182.

[11] Chen J, Shinkai Y, Young F, et al. Probing immune functions in RAG-deficient mice[J]. Curr Opin Immunol,1994, 6(2): 313-319.

[12] Shultz LD, Banuelos S, Lyons B, et al. NOD/LtSz-Rag1nullPfpnullmice: a new model system with increased levels of human peripheral leukocyte and hematopoietic stem-cell engraftment[J]. Transplantation,2003, 76(7): 1036-1042.

[13] Ito R, Takahashi T, Katano I, et al. Current advances in humanized mouse models.[J]. Immunol, 2012, 9(3):208-214.

[14] Lan P, Tonomura N, Shimizu A, et al. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+cell transplantation[J]. Blood,2006, 108(2): 487-492

[15] Kirchgessner CU, Patil CK, Evans JW, et al. DNA-dependent kinase (p350) as a candidate gene for the murine SCID defect[J]. Science,1995, 267(5201): 1178-1183.

[16] Mosier DE, Gulizia RJ, Baird SM, et al. Transfer of a functional human immune system to mice with severe combined immunodeficiency[J]. Nature,1988, 335(6187): 256-259.

[17] Chen J, Shinkai Y, Young F, et al. Probing immune functions in RAG-deficient mice[J]. Curr Opin Immunol,1994, 6(2): 313-319.

[18] Shultz LD, Banuelos S, Lyons B, et al. NOD/LtSz-Rag1nullPfpnullmice: a new model system with increased levels of human peripheral leukocyte and hematopoietic stem-cell engraftment[J]. Transplantation,2003, 76(7): 1036-1042.

[19] Koyanagi Y, Tanaka Y, Tanaka R, et al. High levels of viremia in hu-PBL-NOD-scid mice with HIV-1 infection[J]. Leukemia,1997, 3: 109-112.

[20] Greiner DL, Shultz LD, Yates J, et al. Improved engraftment of human spleen cells in NOD/LtSz-SCID/SCID mice as compared with C.B-17-SCID/SCID mice[J]. Am J Pathol,1995, 146(4): 888-902.

[21] Wang H, Madariaga ML, Wang S, et al. Lack of CD47 on nonhematopoietic cells induces split macrophage tolerance to CD47nullcells[J]. Proc Natl Acad Sci U S A,2007, 104(34): 13744-13749.

[22] Kerre TC, De Smet G, De Smedt M, et al. Adapted NOD/SCID model supports development of phenotypically and functionally mature T cells from human umbilical cord blood CD34+cells[J]. Blood,2002, 99(5): 1620-1626.

[23] Yoshino H, Ueda T, Kawahata M, et al. Natural killer cell depletion by anti-asialo GM1 antiserum treatment enhances human hematopoietic stem cell engraftment in NOD/Shi-scidmice[J]. Bone Marrow Transplant,2000, 26(11): 1211-1216.

[24] Legrand N, Weijer K, Spits H. Experimental models to study development and function of the human immune system in vivo[J]. J Immunol,2006, 176(4): 2053-2058.

[25] Santini SM, Rizza P, Logozzi MA, et al. The SCID mouse reaction to human peripheral blood mononuclear leukocyte engraftment. Neutrophil recruitment induced expression of a wide spectrum of murine cytokines and mouse leukopoiesis, including thymic differentiation[J]. Transplantation,1995, 60(11): 1306-1314.

[26] Santini SM, Spada M, Parlato S, et al. Treatment of severe combined immunodeficiency mice with anti-murine granulocyte monoclonal antibody improves human leukocyte xenotransplantation[J]. Transplantation,1998, 65(3): 416-420.

[27] Zuniga-Pflucker JC, Di J, Lenardo MJ. Requirement for TNF-α and IL-1 alpha in fetal thymocyte commitment and differentiation[J]. Science,1995, 268(5219): 1906-1909.

[28] El Kassar N, Lucas PJ, Klug DB, et al. A dose effect of IL-7 on thymocyte development[J]. Blood,2004, 104(5): 1419-1427.

[29] Shultz LD, Lyons BL, Burzenski LM, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scidIL2Rγnullmice engrafted with mobilized human hemopoietic stem cells[J]. J Immunol,2005, 174(10): 6477-6489.

[30] Bykovskaia SN, Buffo M, Zhang H, et al. The generation of human dendritic and NK cells from hemopoietic progenitors induced by interleukin-15[J]. J Leukoc Biol,1999, 66(4): 659-666.

[31] Lodolce JP, Boone DL, Chai S, et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation[J]. Immunity,1998, 9(5): 669-676.

[32] Sun A, Wei H, Sun R, et al. Human interleukin-15 improves engraftment of human T cells in NOD-SCID mice[J]. Clin Vaccine Immunol,2006, 13(2): 227-234.

[33] Senpuku H, Asano T, Matin K, et al. Effects of human interleukin-18 and inter-leukin-12 treatment on human lymphocyte engraftment in NOD-scid mouse[J]. Immunology,2002, 107(2): 232-242.

[34] Sun R, Zhang J, Zhang C, et al. Human prolactin improves engraftment and reconstitution of human peripheral blood lymphocytes in SCID mice[J]. Cell Mol Immunol,2004, 1(2): 129-136.

[35] Robert-Richard E, Ged C, Ortet J, et al. Human cell engraftment after busulfan or irradiation conditioning of NOD/SCID mice[J]. Haematologica,2006, 91(10): 1384.

[36] Nervi B, Rettig MP, Ritchey JK, et al. Factors affecting human T cell engraftment, trafficking, and associated xenogeneic graft-vs-host disease in NOD/SCID beta2mnullmice[J]. Exp Hematol,2007, 35(12): 1823-1838.

[37] Tournoy KG, Depraetere S, Pauwels RA, et al. Mouse strain and conditioning regimen determine survival and function of human leucocytes in immunodeficient mice[J]. Clin Exp Immunol,2000, 119(1): 231-239.

[38] Steinsvik TE, Gaarder PI, Aaberge IS, et al. Engraftment and humoral immunity in SCID and RAG-2-deficient mice transplanted with human peripheral blood lymphocytes[J]. Scand J Immunol,1995, 42(6): 607-616.

[39] Friedman T, Shimizu A, Smith RN, et al. Human CD4+T cells mediate rejection of porcine xenografts[J]. J Immunol,1999, 162(9): 5256-5262.

[40] Kaneshima H, Shih CC, Namikawa R, et al. Human immunodeficiency virus infection of human lymph nodes in the SCID-hu mouse[J]. Proc Natl Acad Sci U S A,1991, 88(10): 4523-4527.

[41] Sandhu J, Shpitz B, Gallinger S, et al. Human primary immune response in SCID mice engrafted with human peripheral blood lymphocytes[J]. J Immunol,1994, 152(8): 3806-3813.

[42] Bankert RB, Umemoto T, Sugiyama Y, et al. Human lung tumors, patients’ peripheral blood lymphocytes and tumor infiltrating lymphocytes propagated in SCID mice[J]. Curr Top Microbiol Immunol,1989, 152: 201-210.

[43] Schoeberlein A, Schatt S, Troeger C, et al. Engraftment kinetics of human cord blood and murine fetal liver stem cells following in utero transplantation into immunodeficient mice[J]. Stem Cells Dev,2004, 13(6): 677-684.

[44] Namikawa R, Weilbaecher KN, Kaneshima H, et al. Long- term human hematopoiesis in the SCID-hu mouse[J]. J Exp Med,1990, 172(4): 1055-1063.

[45] Morrison SJ, Uchida N, Weissman IL. The biology of hematopoietic stem cells[J]. Annu Rev Cell Dev Biol,1995, 11: 35-71.

[46] Colucci F, Soudais C, Rosmaraki E, et al. Dissecting NK cell development using a novel a lymphoid mouse model: investigating the role of the c-abl proto-oncogene in murine NK cell differentiation[J]. J Immunol,1999, 162(5): 2761-2765.

[47] Noort WA, Wilpshaar J, Hertogh CD, et al. Similar myeloid recovery despite superior overall engraftment in NOD/SCID mice after transplantation of human CD34+cells from umbilical cord blood as compared to adult sources[J]. Bone Marrow Transplant,2001, 28(2): 163-171.

[48] Hogan CJ, Shpall EJ, Keller G. Differential long-term and multilineage engraftment potential from subfractions of human CD34+cord blood cells transplanted into NOD/SCID mice[J]. Proc Natl Acad Sci U S A,2002, 99(1): 413-418.

[49] Melkus MW, Estes JD, Padgett-Thomas A, et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1[J]. Nat Med,2006, 12(11): 1316-1322.

[50] Ishikawa F, Yasukawa M, Lyons B, et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chainnullmice[J]. Blood,2005, 106(5): 1565-1573.

[51] Cravens PD, Melkus MW, Padgett-Thomas A, et al. Development and activation of human dendritic cells in vivo in a xenograft model of human hematopoiesis[J]. Stem Cells,2005, 23(2): 264-278.

[52] Elkon KB, Ashany D. Autoimmunity versus allo- and xeno-reactivity in SCID mice[J]. Int Rev Immunol,1994, 11(4): 283-293.

[53] Kollmann TR, Pettoello-Mantovani M, Katopodis NF, et al. Inhibition of acute in vivo human immunodeficiency virus infection by human interleukin 10 treatment of SCID mice implanted with human fetal thymus and liver[J]. Proc Natl Acad Sci USA,1996, 93(7): 3126-3131.

[54] Withers-Ward ES, Amado RG, Koka PS, et al. Transient renewal of thymopoiesis in HIV-infected human thymic implants following antiviral therapy[J]. Nat Med,1997, 3(10): 1102-1109.

[55] Mosier DE, Gulizia RJ, MacIsaac PD, et al. Rapid loss of CD4+T cells in human-PBL-SCID mice by noncytopathic HIV isolates[J]. Science,1993, 260(5108): 689-692.

[56] Steyaert S, Verhoye L, Beirnaert E, et al. The intraspleen huPBL NOD/SCID model to study the human HIV-specific antibody response selected in the course of natural infection[J]. J Immunol Methods,2007, 320(1-2): 49-57.

[57] Su L, Kaneshima H, Bonyhadi M, et al. HIV-1-induced thymocyte depletion is associated with indirect cytopathogenicity and infection of progenitor cells in vivo[J]. Immunity,1995, 2(1): 25-36.

[58] McCune JM, Namikawa R, Shih CC, et al. Suppression of HIV infection in AZT-treated SCID-hu mice[J]. Science,1990, 247(4942): 564-566.

[59] Rabin L, Hincenbergs M, Moreno MB, et al. Use of standardized SCID-hu Thy/Liv mouse model for preclinical efficacy testing of anti-human immunodeficiency virus type 1 compounds[J]. Antimicrob Agents Chemother,1996, 40(3): 755-762.

[60] Drosten C, Gunther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome[J]. N Engl J Med,2003, 348(20): 1967-1976.

[61] Okada M, Okuno Y, Hashimoto S, et al. Development of vaccines and passive immunotherapy against SARS corona virus using SCID-PBL/hu mouse models[J]. Vaccine,2007, 25(16): 3038-3040.

[62] Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus[J]. Nature,2003, 426(6965): 450-454.

[63] Bente DA, Melkus MW, Garcia JV, et al. Dengue fever in humanized NOD/SCID mice[J]. J Virol,2005, 79(21): 13797-13799.

[64] Lim WH, Kireta S, Russ GR, et al. Human plasmacytoid dendritic cells regulate immune responses to Epstein-Barr virus (EBV) infection and delay EBV-related mortality in humanized NOD-SCID mice[J]. Blood,2007, 109(3): 1043-1050.

[65] Moffat JF, Stein MD, Kaneshima H, et al. Tropism of varicella-zoster virus for human CD4+and CD8+T lymphocytes and epidermal cells in SCID-hu mice[J]. J Virol,1995, 69(69): 5236-5242.

[66] Palucka AK, Gatlin J, Blanck JP, et al. Human dendritic cell subsets in NOD/SCID mice engrafted with CD34+hematopoietic progenitors[J]. Blood,2003, 102(9): 3302-3310.

[67] Banuelos SJ, Shultz LD, Greiner DL, et al. Rejection of human islets and human HLA-A2.1 transgenic mouse islets by alloreactive human lymphocytes in immunodeficient NOD-scidand NOD-Rag1nullPrf1nullmice[J]. Clin Immunol,2004, 112(3): 273-283.

[68] Pober JS, Bothwell AL, Lorber MI, et al. Immunopathology of human T cell responses to skin, artery and endothelial cell grafts in the human peripheral blood lymphocyte/severe combined immunodeficient mouse[J]. Springer Semin Immunopathol,2003, 25(2): 167-180.

[69] Rayner D, Nelson R, Murray AG. Noncytolytic human lymphocytes injure dermal microvessels in the huPBL-SCID skin graft model[J]. Hum Immunol,2001, 62(6): 598-606.

[70] Murray AG, Petzelbauer P, Hughes CC, et al. Human T-cell-mediated destruction of allogeneic dermal microvessels in a severe combined immunodeficient mouse[J]. Proc Natl Acad Sci U S A,1994, 91(19): 9146-9150.

[71] Petzelbauer P, Groger M, Kunstfeld R, et al. Human delayed-type hypersensitivity reaction in a SCID mouse engrafted with human T cells and autologous skin[J]. J Invest Dermatol,1996, 107(4): 576-581.

[72] Xu Q, Lee J, Jankowska-Gan E, Schultz J, et al. Human CD4+CD25lowadaptive T regulatory cells suppress delayed-type hypersensitivity during transplant tolerance[J]. J Immunol,2007, 178(6): 3983-3995.

[73] Vandekerckhove BA, Namikawa R, Bacchetta R, et al. Human hematopoietic cells and thymic epithelial cells induce tolerance via different mechanisms in the SCID-hu mouse thymus[J]. J Exp Med,1992, 175(4): 1033-1043.

[74] Schols D, Vandekerckhove B, Jones D, et al. IL-2 reverses human T cell unresponsiveness induced by thymic epithelium in SCID-hu mice[J]. J Immunol,1994, 152(5): 2198-2206.

[75] Tereb DA, Kirkiles-Smith NC, Kim RW, et al. Human T cells infiltrate and injure pig coronary artery grafts with activated but not quiescent endothelium in immunodeficient mouse hosts[J]. Transplantation,2001, 71(11): 1622-1630.

[76] Nikolic B, Gardner JP, Scadden DT, et al. Normal development in porcine thymus grafts and specific tolerance of human T cells to porcine donor MHC[J]. J Immunol,1999, 162(6): 3402-3407.

[77] Lan P, Wang L, Diouf B, et al. Induction of human T-cell tolerance to porcine xenoantigens through mixed hematopoietic chimerism[J]. Blood,2004, 103(10): 3964-3969.

[78] Lechler RI, Garden OA, Turka LA. The complementary roles of deletion and regulation in transplantation tolerance[J]. Nat Rev Immunol,2003, 3(2): 147-158.

[79] Hudson WA, Li Q, Le C, et al. Xenotransplantation of human lymphoid malignancies is optimized in mice with multiple immunologic defects[J]. Leukemia,1998, 12(12): 2029-2033.

[80] O’Reilly MS, Holmgren L, Chen C, et al. Angiostatin induces and sustains dormancy of human primary tumors in mice[J]. Nat Med,1996, 2(6): 689-692.

[81] Siegler U, Kalberer CP, Nowbakht P, et al. Activated natural killer cells from patients with acute myeloid leukemia are cytotoxic against autologous leukemic blasts in NOD/SCID mice[J]. Leukemia,2005, 19(12): 2215-2222.

[82] Flavell DJ, Warnes SL, Bryson CJ, et al. The anti-CD20 antibody rituximab augments the immunospecific therapeutic effectiveness of an anti-CD19 immunotoxin directed against human B-cell lymphoma[J]. Br J Haematol,2006, 134(2): 157-170.

[83] Trieu Y, Wen XY, Skinnider BF, et al. Soluble interleukin-13 Rα2 decoy receptor inhibits Hodgkin’s lymphoma growth in vitro and in vivo[J]. Cancer Res,2004, 64(9): 3271-3275.

[84] Watanabe M, Dewan MZ, Okamura T, et al. A novel NF-κB inhibitor DHMEQ selectively targets constitutive NF-κB activity and induces apoptosis of multiple myeloma cells in vitro and in vivo[J]. Int J Cancer,2005, 114(1): 32-38.

Researchprogressofhumanizedmousemodelsinimmunesystem

LIAN Jing-yao1,3, DING Miao-hui2, QIN Guo-hui1, ZHANG yi1, WANG Chun-yao1,3*

(1.The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China; 2.Department of Clinical Medicine, Zhengzhou University, Zhengzhou 450052; 3.College of Life Science, Zhengzhou University, Zhengzhou 450052))

Animal model is an animal material with human mimic performance established in biomedical scientific research. It can be used as experimental basis for studies of experimental hypothesis and clinical hypothesis. It can shorten the research time and observe the whole process of disease occurrence, development or prevention and treatment.Human biomedical research is largely limited by the biological complexity. In order to overcome this limitation, based on the immunosuppressive characteristics of a severely immunodeficient (SCID) or recombinant activated gene (Ragnull) in mice, humanized mouse models of human diseases can be established and have been widely used to study the underlying principles of human immunobiology and complex pathological mechanisms of human diseases. This approach has become one of the important ways to promote the development of medical sciences, with practicality and foresight. In this paper, the application and research progress of humanized mouse models are reviewed.

Humanized mouse models; Human diseases

R-33

A

1671-7856(2017) 10-0113-07

10.3969.j.issn.1671-7856. 2017.10.022

2017-04-16

连晶瑶(1990-)女,硕士生,研究方向:肿瘤免疫。E-mail: jingyao725@163.com

王纯耀(1962-)男,研究方向:实验动物相关研究。E-mail: chunyao@zzu.edu.cn

猜你喜欢
人源异种移植物
人源性药物代谢及其介导的药源性毒性研究——上海中医药大学系统药物代谢动力学研究中心发展历程简介
异种(牛)脱细胞真皮基质原联合自体骨粉植入在开放式乳突根治术中的临床应用
本刊常用的不需要标注中文的缩略语(二)
膝关节前交叉韧带重建术移植物污染预防及处理
青蛙干细胞打造的首个异种机器人
膝关节韧带损伤术后系统性康复治疗效果与膝关节MRI影像学结果的关系*
钛铝异种合金选区激光熔化(SLM)成形组织分析
III型重组人源胶原蛋白在生物医药工程中的应用研究
富血小板血浆对前交叉韧带重建术后移植物成熟度影响的临床研究
重组人源胶原蛋白制备关键技术研究