表面增强拉曼光谱检测脐橙果皮混合农药残留

2017-02-17 02:57王海阳刘燕德张宇翔
农业工程学报 2017年2期
关键词:乐果纳米线曼光谱

王海阳,刘燕德,张宇翔



表面增强拉曼光谱检测脐橙果皮混合农药残留

王海阳,刘燕德※,张宇翔

(华东交通大学机电与车辆工程学院,光机电技术及应用研究所,南昌 330013)

为了研究果皮农药残留快速检测方法。该文以脐橙为例,混合农药(亚胺硫磷和乐果)为研究对象,选用银纳米线作为增强基底,利用共焦显微拉曼光谱仪对农药残留进行检测。通过表面增强拉曼光谱(surface enhanced Raman scattering,SERS)技术,采集脐橙表皮混合农药残留的SERS光谱。对混合农药定性分析,银纳米线对2种农药都有较好的增强效果。对采集的光谱进行预处理后,建立模型,进行定量分析,研究结果表明,经过二阶微分预处理后光谱数据结合偏最小二乘法(partial least squares,PLS)得到的模型预测效果最好,预测相关系数(R)为0.954,其预测均方根误差(root-mean-square prediction error,RMSEP)为4.822 mg/L。挑选两种农药特征峰的特征波段,混合农药中亚胺硫磷的特征波段经多元散射校正(multiplicative scatter correction,MSC)处理后,建模效果较好,其中R为0.898,RMSEP为6.621 mg/L;混合农药中乐果的特征波段经基线校正处理后,建模效果较好,其中R为0.911,RMSEP为7.369 mg/L。研究结果表明SERS技术是一种快速、可靠的检测混合农药残留的方法。

农药;光谱分析;模型;表面增强拉曼光谱;偏最小二乘法

0 引 言

中国是农业大国,农业作为第一产业在国民经济中所占比例较大,所以每年需要使用大量的农药来保证农作物的产量[1]。农药好比一把双刃剑,虽然能够防治病虫害,但也会威胁生命健康。目前各国对农产品中农药残留的要求越来越严格,中国农产品存在的重要问题是农产品中农药残留超标,并且农作物上的农药残留种类十分复杂,检测需要借助大型仪器[2-5]。因农药自身存在毒性,外加不合理使用,所以,为提升食用安全,围绕农产品开展农残检测至关重要。

目前常规农药残留检测方法主要包括气相色谱(gas chromatography,GC)[6-8]、高效液相色谱(high performance liquid chromatography,HPLC)[9]、液-质联用(liquid chromatography with mass spectrometry,LC/MS)法[10-11]酶联免疫吸附法[12]、近红外光谱法[13]、荧光光谱法[14]等,这些方法虽然稳定可靠且重复性好,但这些方法都需要对样品进行一系列的前处理,样品大都是破坏性的,用于实际残留量测量时不但费时费力,而且结果也不理想。

拉曼光谱是研究分子振动、转动的一种光谱方法,其优点是无损、快速、不受水环境干扰,目前已广泛应用于各个学科[15]。表面增强拉曼散射(serface enhanced Raman scattering,SERS)是吸附在特定纳米级粗糙界面的分析物的拉曼散射被极大增强的一种效应[16],相对于普通拉曼光谱,SERS具有百万级的光谱增强能力。SERS 技术具有分析速度快、所需样品浓度低、样品无需预处理、不需破坏样品、灵敏度较高、水溶液体系对拉曼测试无干扰等优点,是一种快速发展,逐渐成熟、超灵敏的前沿表征技术[17],引起了科学家们广泛的研究兴趣。Liu等[18-23]利用不同基底如金胶、银胶、Klarite芯片等将表面增强拉曼光谱与化学计量学相结合检测了脐橙果皮亚胺硫磷、乐果、毒死蜱等农药残留,得到较好的效果。李俊杰等[24]采用表面增强拉曼光谱技术结合化学计量方法快速分析脐橙果皮中的三唑磷农药残留,建立脐橙果皮中三唑磷农药残留的偏最小二乘法预测模型,模型预测能力和重现性良好。王晓彬等[25]采用表面增强拉曼光谱(SERS)技术结合快速溶剂前处理方法建立脐橙果肉中三唑磷农药的快速检测方法,以脐橙果肉提取液为基质的三唑磷溶液最低检测质量浓度为0.5 mg/L。李俊杰等[26]采用表面增强拉曼光谱技术快速分析脐橙果肉中的噻菌灵农药残留,对以脐橙果肉提取液为基质的不同浓度噻菌灵溶液的SERS光谱进行分析,利用该方法快速检测脐橙果肉中噻菌灵,最低检测质量分数为5 mg/kg。刘培培等[27]以银镜为表面增强拉曼活性增强基底,检测农药敌草快,得到较好的效果,检测限可以达到10-8mol/L。黄梅英等[28]以金纳米粒子为活性基底,直接检测食品中游离香豆素,在质量浓度范围1.0~100.0 mg/L的线性相关系数为0.9987,检出限为0.91 mg/L,可以实现香豆素的快速检测。Pan等[29]将聚苯乙烯/银(PS/银)纳米颗粒作为SERS增强基底检测有机磷杀虫剂,其中有机磷氧磷的检测限是96 nmol/L,杀螟松的检测限是34 nmol/L。Fateixa等[30]以基于银纳米粒子和明胶A的表面增强拉曼散射技术检测二乙基二硫代氨基甲酸钠,检测限可达10-5mol/L,该银纳米材料具有一定SERS活性,可用于定性检测。

本文采用SERS光谱技术,银纳米线作为SERS基底,以混合农药(亚胺硫磷和乐果混合)为研究对象,萃取出脐橙表皮的农药残留溶液,采集农药残留溶液的拉曼光谱,结合化学计量学方法对采集的拉曼光谱经预处理后,建立模型,从而实现混合农药的定性和定量分析,以期为混合农药残留检测提供参考。

1 材料与方法

1.1 仪器与材料

采用德国布鲁克公司的SENTERRA型共聚焦显微拉曼光谱仪,激光波长为785 nm,积分时间为10 s,激光功率选择10 mw。

纯度99.7%的亚胺硫磷(粉末)和纯度99.5%的乐果(粉末)购于阿拉丁试剂(上海)有限公司;超纯水作为试验用水;赣南脐橙购于南昌农贸市场。

银纳米线的制备:称取0.509 4 g AgNO3加入15 mL乙二醇中,混合均匀得到0.2 mol/L的AgNO3溶液;称取0.499 5 g的聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)加入15 mL分析纯乙二醇中,混合均匀得到0.3 mol/L的PVP溶液。将AgNO3溶液与PVP溶液均匀混合后,缓慢滴加到30 mL乙二醇中,保持温度160 ℃,持续加热至混合溶液颜色变为不透明的灰色。冷却至20 ℃后,用乙醇和丙酮离心洗涤[31]。所制备的银纳米线紫外光谱图如图1a所示,银纳米线在300~400 nm间有2个吸收峰。银纳米线的扫描电镜图如图1b所示,银纳米线的直径约为70 nm。

a. 银纳米线的紫外吸收光谱图a. UV absorption spectra of Ag nanowiresb. 银纳米线的扫描电镜图b. SEM image of Ag nanowires

1.2 样品的制备

以脐橙为试验载体,分析亚胺硫磷和乐果混合农药在其表皮萃取后的溶液。首先,将脐橙表皮清洗干净后擦干,切成若干面积(2 cm×2 cm)、质量约为2 g的小块。分别用移液枪移取0.5 mL亚胺硫磷和0.5 mL乐果的农药样品标准溶液(5 000 mg/L)于脐橙表皮小块上,风干。将小块脐橙表皮切碎放入烧杯中,加入乙腈10 mL,依次搅拌(20 min)、超声(20 min)、震荡、过滤,得到农药残留溶液。以甲醇和超纯水稀释萃取液,得到亚胺硫磷和乐果质量浓度均为10~60 mg/L的26个均匀浓度梯度的混合农药残留萃取溶液。

1.3 拉曼光谱采集

以银纳米线为增强基底,用移液枪取5L银纳米线溶液滴到预先洗净的石英片上,晾干后做基底。取5L待测样品溶液,滴在已晾干的基底上,晾干后采集其SERS光谱,每个样品均采集5条有效SERS光谱。

2 结果与分析

2.1 基于银纳米线的混合农药残留定性分析

以银纳米线为增强基底,采集脐橙表皮亚胺硫磷和乐果混合农药残留的表面增强拉曼光谱,并与亚胺硫磷和乐果粉末的拉曼光谱对比,如图2所示。

由图2可以看出,虽然两种农药互相会产生一定干扰,但银纳米线对两种农药均有增强作用,混合农药的谱峰峰位归属分别参照两种农药的谱峰归属。在图2中,排除银纳米线基底的影响,混合农药增强的峰位有352、406、510、607、712、772、978、1 015、1 189、1 330、1 602 cm-1。501 cm-1处的振动峰同时是亚胺硫磷和乐果的特征峰,501 cm-1附近的CH3扭转振动峰红移至510 cm-1。其中359、605、712、977、1 016、1 188、1 611 cm-1处为亚胺硫磷的特征峰,359 cm-1附近的骨架变形振动峰蓝移至352 cm-1,605 cm-1附近的环变形振动峰红移至607 cm-1,712 cm-1附近的CH面外变形振动峰不变,977 cm-1附近的C-C-O伸缩振动峰红移至978 cm-1,1 016 cm-1附近的骨架伸缩振动峰蓝移至1015 cm-1,1 611 m-1附近的C=N伸缩振动峰蓝移至1 602 cm-1。407、766、1 328 cm-1处为乐果的特征峰,407 cm-1附近的P-O-C形变振动峰蓝移至406 cm-1,766 cm-1附近的P-O-C伸缩振动峰红移至772 cm-1,1 328 cm-1附近的CH变形振动峰红移至1 330 cm-1。

2.2 基于银纳米线的混合农药残留的定量分析

将配置好的26个不同浓度脐橙表皮混合农药残留样品,浓度范围为10~60 mg/L,每个样品采集5条SERS光谱,光谱范围选择300~2 000 cm-1,取其平均光谱,根据平均光谱建立数学模型。图3中分别为60、40、20 mg/L混合农药SERS光谱,从图中可以看出银纳米线对混合农药有一定增强,且随着农药浓度的逐渐增加,峰强逐渐增强。采用平滑处理(smoothing),基线校正(baseline),一阶微分(1stderivatives),二阶微分(2ndderivatives)4种方法对光谱数据进行预处理。基于(partial least squares,PLS)建立混合农药的定量模型,校正集选择19个样品,预测集选择7个样品,校正集和预测集样品的质量浓度列表如表1所示。为尽可能减弱或消除各种因素对光谱的影响,比较不同的预处理方法建模结果以优化模型,如表2所示。

表1 校正集和预测集样品的浓度

表2 不同预处理后混合农药残留SERS光谱的PLS建模结果

结果表明,混合农药原始光谱经过二阶微分预处理之后,建模效果较好,其中R为0.954,RMSEP为4.822 mg/L。

结合上述预处理方法的建模结果,利用二阶微分预处理方法,分别采用PLS、PCR算法对混合物农药建立定量分析模型,并比较所建立模型的预测效果。校正集选择19个样品,预测集选择7个样品,建模结果如表3所示。

表3 不同算法混合农药残留的建模结果

由表3知,依据PLS算法建立的模型效果较好。混合农药残留中亚胺硫磷和乐果的验证结果如图4所示。

为了保证农药样品的每个特征峰均被分析,根据特征峰出现的位置对其进行人工的筛选。由于混合农药增强的峰位有352、406、510、607、712、772、978、1 015、1 189、1 330、1 602 cm-1,为了保证所有不同浓度的农药样品的特征峰均被分析,结合各浓度的混合农药SERS光谱,根据这11个特征峰分别选择7个波段作为特征波段,其中亚胺硫磷对应的波段为:347~357,602~612,973~983,1 010~1 020,1 184~1 194 cm-1;乐果对应的波段为:401~411,767~777 cm-1。分别对应两种农药的特征波段,基于PLS算法建立定量模型,其中19个样品为校正集,7个样品为预测集。由表4可以看出,混合农药中亚胺硫磷的特征波段经基线校正处理后,建模效果较好,其中R为0.898,RMSEP为6.621 mg/L,混合农药中亚胺硫磷的预测结果如图4a所示;由表5可以看出,混合农药中乐果的特征波段经多元散射校正处理后,建模效果较好,其中R为0.911,RMSEP为7.369 mg/L,混合农药中乐果的预测结果如图4b所示。

表4 PLS算法用于混合农药残留SERS光谱中亚胺硫磷特征波段的建模结果

表5 PLS算法用于混合农药残留SERS光谱中乐果特征波段的建模结果

3 结 论

本文通过运用共焦显微拉曼光谱仪对脐橙表皮混合农药萃取液进行光谱采集。对原始光谱数据运用不同预处理方法进行处理,并通过偏最小二乘法(partial least squares,PLS)建立模型,结果表明,经过二阶微分预处理后的光谱数据结合PLS算法得到的模型预测效果最好,预测相关系数(R)为0.954,其预测均方根误差(Root mean square error of prediction, RMSEP)为4.822 mg/L。挑选两种农药特征峰的特征波段,其中亚胺硫磷对应的波段为:602~612,707~717,1 009 ~1 019,1 262~1 272 cm-1;乐果对应的波段为:400~410,765~775,1 151~1 161 cm-1。混合农药中亚胺硫磷的特征波段经基线校正处理后,建模效果较好,其中R为0.898,RMSEP为6.621 mg/L;混合农药中乐果的特征波段经多元散射校正处理后,建模效果较好,其中R为0.911,RMSEP为7.369 mg/L。通过对脐橙表皮农药残留的SERS检测,结合化学计量学方法对采集的拉曼光谱经预处理后,建立模型,从而实现混合农药进行定性和定量分析。

[1] 孙沫. 加强农药残留监测确保食品质量安全[J]. 吉林农业,2016(3):70.

Sun Mo. Strengthen the detection of pesticide residues to ensure the quality and safety of food[J]. Jilin Agriculture, 2016(3): 70. (in Chinese with English abstract)

[2] Lisec J, Schauer N, Kopka J, et al. Gas chromatography mass spectrometry-based metabolite profiling in plants[J]. Nature Protocol, 2006, 1(1): 387-396.

[3] Tan G, Yang T, Miao H, et al. Characterization of compounds in psoralea corylifolia using high-performance liquid chromatography diode array detection, time-of-flight mass spectrometry and quadrupole ion trap mass spectrometry[J]. Journal of Chromatographic Science, 2015, 53(9): 1455-1462.

[4] 罗彦波,郑浩博,姜兴益,等. 在线凝胶渗透色谱-气相色谱-串联质谱联用检测烟叶中的农药残留[J]. 分析化学,2015,43(10):1538-1544.

Luo Yanbo, Zheng Haobo, Jiang Xingyi, et al. Determination of pesticide residues in tobacco using modified QuEChERS procedure coupled to on-line gel permeation chromatography-gas chromatography/tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2015, 43(10): 1538-1544. (in Chinese with English abstract)

[5] 李颖畅,李作伟,吕艳芳,等. 驴血清胆碱酯酶抑制法快速检测蔬菜中农药残留[J]. 食品工业科技,2013,34(3):293-295.

Li Yingchang, Li Zuowei, Lv Yanfang, et al. Rapid determination of pesticide residues in vegetables by enzyme inhibition method with cholinesterase from donkey serum[J]. Science and Technology of Food Industry, 2013, 34(3): 293-295. (in Chinese with English abstract)

[6] 季锦美. 气相色谱法测定蔬菜中几种农药残留[J]. 现代农业科技,2016(21):90-98.

Ji Jinmei, Determation of several pesticide residue in vegetables by gas chromatography[J]. Modern Agricultural Science and Technology, 2016(21): 90-98. (in Chinese with English abstract)

[7] 王丽娜,冯敏铃,李盛安,等. 固相萃取—气相色谱法测定农田沟渠水中6种有机磷农药[J]. 现代农业科技,2016,20:96-97.

Wang Lina, Feng Minling, Li Shengan, et al. Determination of 6 organophosphorous pesticides in farmland ditch water by solid phase extraction-gas chromatography[J]. Modern Agricultural Science and Technology, 2016, 20: 96-97. (in Chinese with English abstract)

[8] 彭晓俊,梁伟华,彭梅,等. 固相萃取/气相色谱法测定新会陈皮及其制品中8种有机磷农药[J]. 分析测试学报,2016,35(10):1267-1272.

Peng Xiaojun, Liang Weihua, Pengmei, et al. Determination of 8 organophosphorous pesticides in Xinhui dried orange peel and its products by gas chromatography with solid phase extraction[J]. Journal of Instrumental Analysis, 2016, 35(10): 1267-1272. (in Chinese with English abstract)

[9] Ye Jianzhi, Lin Ling, Zha Yubing, et al. Simultaneous determination of four pesticide residues in fruit juice by HPLC[J]. Agricultural Science & Technology, 2016, 17(10): 2399-2402.

[10] 王利强,葛含光,王永芳,等. QuEChERS-高效液相色谱-串联质谱法测定苹果中丁醚脲及其代谢物残留量[J]. 食品安全质量检测学报,2015(2):436-441.

Wang Liqiang, Ge Hanguang, Wang Yongfang, et al. Determination of diafenthiuron and its metabolites residue in apple by QuEChERS-high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Food Safety & Quality, 2015(2): 436-441. (in Chinese with English abstract)

[11] Hildmann Fanny, Gottert Christina, Frenzel Thomas, et al. Pesticide residues in chicken eggs-A sample preparation methodology for analysis by gas and liquid chromatography/tandem mass spectrometry[J]. Journal of Chromatography A, 2015, 14(3): 1-20.

[12] 冯敏,李亚楠,高丽霞,等. 酶联免疫吸附法在食品安全性指标检测中的研究进展[J].食品安全质量检测学报,2016(10):3973-3979.

Feng Min, Li Yanan, Gao Lixia,et al.Advances in food safety indicators determination of enzyme-linked immunosorbent assay[J]. Journal of Food Safety & Quality, 2016(10): 3973-3979. (in Chinese with English abstract)

[13] 黎静,薛龙,刘木华,等. 基于可见-近红外光谱识别氧乐果污染的脐橙[J]. 农业工程学报,2010,26(2):366-369.

Li Jing, Xue Long, Liu Muhua, et al. Recognition of navel orange contaminated by omethoate based on Vis-NIR spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(2): 366-369. (in Chinese with English abstract)

[14] 薛龙,黎静,刘木华,等. 荧光光谱检测脐橙表面敌敌畏残留试验研究[J]. 江西农业大学学报,2011,33(2):394-398.

Xue Long, Li Jing, Liu Muhua, et al. A study on detection of dichlorvos residue on navel orange surface by means of fluorescence spectrum[J]. Journal of Jiangxi Agricultural University, 2011, 33(2): 394-398. (in Chinese with English abstract)

[15] 李琼. 微型拉曼光谱仪的拉曼光谱数据处理方法研究[D]. 重庆:重庆大学,2008.

Li Qiong. Study on Data Processing of Raman Spectrum Based on Mini-Spectroscopy[D]. Chongqing: Chongqing University, 2008. (in Chinese with English abstract)

[16] Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced raman scattering[J]. Science, 1997, 275(5303): 1102-1106.

[17] Li J F, Huang Y F, Ding Y, et al.Shell-isolated nanoparticle- enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287): 392-395.

[18] Liu Yande ,He Bingbing, Zhang Yuxiang, et al. Detection of phosmet residues on navel orange skin by surface-enhanced Raman spectroscopy[J] Intelligent Automation and Soft Computing. 2015, 21(3): 423-432.

[19] Liu Yande, Ye Bing, Wan Changlan, et al. Quantitative detection of pesticides by confocal microscopy Raman spectroscopy[J]. Sensor Letters, 2013, 11(6/7): 1383-1388.

[20] Liu Yande, Ye Bing, Wan Changlan, et al. Rapid quantitative analysis of dimethoate pesticide using surface-enhanced Raman spectroscopy[J]. Transactions of the ASABE, 2013, 56(3): 1043-1049.

[21] Liu Yande, He Bingbing. Quantitative of pesticide residue on the surface of navel orange by confocal microscopy Raman spectrometer[J] Journal of Innovative Optical Health Sciences, 2015, 8(2): 1550001.

[22] 刘燕德,何冰冰. 基于便携式拉曼光谱仪的氧乐果含量定量分析[J]. 西北农林科技大学学报:自然科学版,2014,42(2):136-141.

Liu Yande, He Bingbing. Quantitative analysis of omethoate content based on portable Raman spectrometer[J]. Journal of Northwest A&F University: Natural Science Edition, 2014, 42(2): 136-141. (in Chinese with English abstract)

[23] 刘燕德,叶冰. 基于拉曼光谱技术的氧乐果含量定量分析[J]. 中国农机化学报,2014,35(1):88-92.

Liu Yande, Ye Bing. Quantitative analysis of omethoate solution content based on raman spectrometer[J]. Journal of Chinese Agricultural Mechanization, 2014, 35(1): 88-92. (in Chinese with English abstract)

[24] 李俊杰,曾海龙,刘木华,等. 脐橙果皮中三唑磷农药残留的表面增强拉曼光谱快速检测研究[J]. 现代食品科技,2015,31(8):334-339.

Li Junjie, Zeng Hailong, Liu Muhua1,et al. Rapid detection of triazophos residues in navel orange peel based on surface-enhanced Raman spectroscopy[J]. Modern Food Science and Technology, 2015, 31(8): 334-339. (in Chinese with English abstract)

[25] 王晓彬,曾海龙,吴瑞梅,等. 基于SERS技术的脐橙果肉中三唑磷农药残留快速检测研究[J]. 食品工业科技,2015,36(10):83-85.

Wang Xiaobin, Zeng Hailong, Wu Ruimei, et al.Study on rapid detection of triazophos residues in flesh of navel orange by SERS[J]. Science and Technology of Food Industry, 2015, 36(10): 83-85. (in Chinese with English abstract)

[26] 李俊杰,严霖元,刘木华,等. 脐橙果肉中噻菌灵农药的SERS快速检测研究[J]. 江西农业大学学报,2014(6):1229-1233.

Li Junjie, Yan Linyuan, Liu Muhua, et al. Rapid detection of thiabendazole residues in navel orange flesh by SERS[J]. Journal of Jiangxi Agricultural University, 2014(6): 1229-1233. (in Chinese with English abstract)

[27] 刘培培,韩晓霞,赵冰,等. 基于表面增强拉曼散射的敌草快检测方法[J]. 高等学校化学学报,2015,36(8):1517-1520.

Liu Peipei, Han Xiaoxia, Zhao Bing, et al. Surface- enhanced Raman scattering- based diquat detection[J]. Chemical Journal of Chinese Universities, 2015, 36(8): 1517-1520. (in Chinese with English abstract)

[28] 黄梅英,李攻科,胡玉玲. 表面增强拉曼光谱法定量检测食品中香豆素[J]. 分析化学,2015,43(8):1218-1223.

Huang Meiying, Li Gongke, Hu Yuling, Quantitative determination of coumarin in food by surface-enhanced Raman spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2015, 43(8): 1218-1223. (in Chinese with English abstract)

[29] Pan L, Dong R, Wu Y, et al. Polystyrene/Ag nanoparticles as dynamic surface-enhanced Raman spectroscopy substrates for sensitive detection of organophosphorus pesticides[J]. Talanta, 2014, 12(7): 269-275.

[30] Fateixa S, Soares S F, Daniel-Da-Silva A L, et al. Silver-Gelatine bionanocomposites for qualitative detection of a pesticide by SERS[J]. Analyst, 2015, 140(5): 1693-1701.

[31] Shi H Y, Hu B, Yu X C, et al. Ordering of disordered nanowires: Spontaneous formation of highly aligned, ultralong Ag nanowire films at oil-water-air interface[J]. Advanced Functional Materials, 2010, 20(6): 958-964.

Surface enhanced Raman scattering detection of mixing pesticide residual on orange peel

Wang Haiyang, Liu Yande※, Zhang Yuxiang

(,330013)

In recent years, pesticide has been mass-producing and widely used. The problem of pesticide residues has attracted more and more attention. As the problem of food safety is becoming the focus of society, the pesticide residue detection has become a research hotspot. Among numerous methods of pesticide detection,surface-enhanced Raman spectroscopy (SERS) has become an area of intense research owing to a highly sensitive probe for the trace level detection of pesticide. The spectroscopic merits of SERS are the representation in the aspects of super sensitivity, high selection and water resistance, which make it one of the most popular detection techniques currently. In this paper, the organophosphorus pesticide phosmet and dimethoate were selected as the research objects. The blended pesticide residues of phosmet and dimethoate on navel orange were detected by the SERS combined with chemometrics algorithm. The silver nanowires were used as SERS substrate to detecte pesticide residue on navel orange. Firstly, the navel orange samples were fabricated with pesticide residues. Secondly, the silver nanowires SERS substrate was fabricated. Then the sample solution to be measured was dripped onto the dried SERS substrate. When the sample was dried, spectral data were collected. The spectral data were used to analyze pesticide residue qualitatively and quantitatively. It had a better enhancement effect on the qualitative analysis of mixing pesticides for silver nanowires substrate. Pesticide original spectral data were processed by the partial least square (PLS) modeling algorithm and the different pretreatment methods. The PLS regression combined with different data preprocessing methods was used to develop quantitative models of mixing pesticide residue. And the advantages and disadvantages of the models were compared. The results showed that the model built by the PLS combined with the second derivatives data preprocessing was ideal for mixing pesticides, whose correlation coefficient (R) for the prediction was 0.954, and root mean square error of prediction (RMSEP) was 4.822 mg/L. The model combined with the baseline was ideal for phosmet, whoseRwas 0.898 and RMSEP was 6.621 mg/L. The model combined with the multiplicative scattering correction (MSC) was ideal for dimethoate, whoseRwas 0.911 and RMSEP was 7.369 mg/L. Therefore, the study combines the SERS and chemometrics algorithm to detect pesticide residues qualitatively and quantitatively, which is feasible. Raman spectroscopy can be used as a fast and simple tool to detecte mixing pesticide residues. It provides a basis for the more insightful study on pesticide residues detection.

pesticides;spectrum analysis; models; surface enhanced Raman spectroscopy (SERS); partial least squares

10.11975/j.issn.1002-6819.2017.02.040

O433.4

A

1002-6819(2017)-02-0291-06

2016-07-29

2016-11-23

南方山地果园智能化管理技术与装备协同创新中心(赣教高字[2014]60号),华东交通大学校立科研基金项目(14JD01)资助,江西省载运工具与装备重点实验室资助

王海阳,女,助理实验师,主要从事光谱检测技术。南昌 华东交通大学机电与车辆工程学院,光机电技术及应用研究所,330013。Email:wanghaiyangjl1988@163.com .

刘燕德,女,博士,教授,主要从事光机检测技术及应用。南昌 华东交通大学机电与车辆工程学院,光机电技术及应用研究所,330013。Email:jxliuyd@163.com.

王海阳,刘燕德,张宇翔. 表面增强拉曼光谱检测脐橙果皮混合农药残留[J]. 农业工程学报,2017,33(2):291-296. doi:10.11975/j.issn.1002-6819.2017.02.040 http://www.tcsae.org

Wang Haiyang, Liu Yande, Zhang Yuxiang. Surface enhanced Raman scattering detection of mixing pesticide residual on orange peel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 291-296. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.02.040 http://www.tcsae.org

猜你喜欢
乐果纳米线曼光谱
透明导电银纳米线薄膜的制备及热稳定性研究
乙二醇热还原法制备超高长径比银纳米线的工艺条件研究
Preoperative maximal voluntary ventilation, hemoglobin, albumin, lymphocytes and platelets predict postoperative survival in esophageal squamous cell carcinoma
可乐果,尼日尔的快乐果
可乐果,尼日尔的快乐果
可乐果,尼日尔的快乐果
硒化镉纳米线在应力作用下的第一性原理研究
水热法制备纳米线研究进展
基于拉曼光谱的面团冻结过程中水分分布的在线监测
秘密