基于加速度控制的风力发电软并网技术研究

2017-04-20 14:00张家瑞黄扬邹争明刘姣
科教导刊·电子版 2016年35期
关键词:晶闸管加速度

张家瑞 黄扬 邹争明 刘姣

摘 要 随着发电规模的扩大和风力发电机组单机容量的增大,并网时对电网的冲击也越来越大。软并网技术可使并网电流控制在一定范围内,大幅降低并网冲击电流,得到一个平稳的过渡过程。本次研究通过采集发电机的转速脉冲,经过运算,得出机组运行加速度,根据加速度的微分特性,达到预测控制的目的,从而实现晶闸管触发角的精确控制。

关键词 异步风力发电机 软并网 加速度 晶闸管

中图分类号:TM614 文献标识码:A

0引言

由于风能具有蕴藏量巨大、分布广泛、清洁无污染和可再生,成本低、占地面积小、建设周期短等优点,使得风力发电从诸多新能源发电技术中脱颖而出。风力发电机组是高度时变的、非线性的复杂系统,其电气控制系统的有效性和可靠性是风电机组安全运行的关键。并网技术是风力发电技术中很重要的一部分,它关系到电网接入的电能质量及风机运行稳定性。因此研究风电并网技术有着极其重要的经济意义和重大民生意义。

本文以结构简单、性价比高、成本低且广泛使用的定桨距失速型风力发电机组中异步发电机为研究对象,对其并网相关技术进行研究。

1异步风力发电机并网方式

异步风力发电机投入运行时,靠滑差来调整负荷,机组的调速精度要求不高,不需要同步设备和整步操作,只要转速接近同步速时就可并网,控制简单,且并网后不会产生振荡和失步,运行稳定,要求不高。但异步发电机直接并入电网时,其冲击电流会达到其额定电流的6~7倍,甚至10倍以上,该冲击电流会对电网、风机以及发电机本身造成严重的冲击,甚至会影响其他联网机组的正常运行。因此,应对发电机并网时的电流加以限制。

目前,异步风力发电机并网的主要方法有直接并网法、准同期并网法、降压并网法和软并网法。

直接并网法是在发电机转速接近同步转速时直接并网,这样并网对电网冲击大,有较大的瞬间冲击电流,电网电压下降严重。适用于电网容量大、风电机组容量较小的场合。

准同期并网法是在发电机转速接近同步转速时,先用电容产生励磁,使其建立额定电压,然后调节发电机的相位与电网同步后并入电网运行。其优点是并网冲击电流较小,电网电压下降幅度小;缺点是并网所需的整步同期设备增加了机组的造价,且从整步到准同步并网所需的时间长。适用于电网容量比风电机组大不了几倍的场合。

降压并网是在发电机和电网之间串电抗器,以减少合闸瞬间冲击电流的幅值与电网电压的下降幅度,待达到稳态时将电抗器切除。这种并网方式要增加大功率的电阻或电抗器组件,其投资随机组容量的增大而增大,经济性差。适用于小容量风力发电机组的并网。

软并网法则采用双向晶闸管的软切入法,得到一个平稳的过渡过程而不会出现冲击电流,可使并网电流控制在一定范围内,大幅降低并网时的冲击电流,增加风机的使用寿命和可靠性。目前,大型异步风力发电机都采用这种并网方法。

2失速型风力发电机的软并网系统的工作原理

异步风力发电机组软并网控制系统的主电路由三对反并联或双向晶闸管及其保护电路组成,在软并网过渡过程中,每一时刻,有两个晶闸管同时导通,构成一个回路。

異步电机利用双向晶闸管进行软并网的过程如下:当异步风力发电机起动或转速接近同步转速时,与电网相连的每一相双向晶闸管的控制角在180€坝?€爸渲鸾ネ酱蚩幻肯辔薮サ憧氐乃蚓д⒐艿牡纪ń且餐庇?€坝?80€爸渲鸾ネ皆龃蟆4耸弊远⑼厣形炊鳎⒌缁ü蚓д⒐芷轿鹊亟氲缤?

当异步发电机转速小于同步转速时,异步发电机作为电动机运行,随着转速的升高,其转差率逐渐趋于零。当转差率为零时,双向晶闸管已全部导通,这时自动并网开关动作,常开触点闭合,短接已全部开通的双向晶闸管。发电机输出功率后,双向晶闸管的触发脉冲自动关闭,发电机输出电流不再经双向晶闸管而是通过已闭合的自动开关触点流向电网。通过控制晶闸管的导通角,来限制异步发电机并网以及大小电机切换时的瞬间冲击电流,得到一个比较平滑的并网过程。

3仿真与实验分析

本次对本文所提出的软并网系统在额定功率为1.1MW风力发电机上做了软并网实验,实验对象为GCN1000型定桨风力发电机。风力发电机组的切入风速为4.8 m/s,切出风速20m/s,额定风速15 m/s;风机叶片数为2,风场空气密度 1.059Kg/m3。

发电机等效电路如图1所示。其具体参数为:机端额定电压VN 为0.69kV,额定容量SN 为1100MVA,额定功率PN 为1000MW,定子电阻R1为6.757 m ,定子电抗X1为80.926 m ,转子电阻R2为51.531 m ,转子电抗X2为147.95 m ,励磁并联支路电阻Rm为208.80 ,励磁并联支路电抗Xm为5.041 ,发电机转子转动惯量为45.8kgm2,发电机转子惯性时间常数为1.2s,发电机转子额定转速为1560rpm。

软并网过程是一个强非线性过渡过程,只有采用基于状态量反馈来实施闭环控制。传统软闭环软并网即限流式软并网,主要以电机的定子电流作为晶闸管触发角变化的根本依据,通过采样电机定子电流,并与电流限定值进行比较,得出相应的电流偏差值,经过数字PI调节算法,计算出所需要的晶闸管触发角的调整量。它存在潜在的缺点是:由于导通角最少需要10ms的时间才能改变一次,如果导通角已给出,则在接下来的10ms中电流是不可控的,所以当参数调校不好的时候,可能出现电流忽大忽小的状态,引起震荡不稳定。

本次研究改为采集发电机的转速脉冲,通过快速检测及运算,得出机组运行加速度,根据加速度的微分特性,达到预测控制的目的,从而实现晶闸管触发角的精确控制。将导通角从72度阶跃变化到180度并持续20ms,断开并网接触器,间隔1秒后合上并网接触器,投入导通角并保持3秒后实验结束。记录数据如表1所示。

通过实验数据可以看出,通过采集发电机的转速脉冲,然后检测、运算得出机组运行加速度来控制晶闸管触发角的这种方法可以很好地达到控制目的,改善了电流忽大忽小,震荡不稳定的状态。

当发电机的转速达到l320 r/min时由PLC(上位机)发出并网指令。整个并网过程中定子电流波形如图2所示,从实验波形可以看出,采用基于加速度控制的晶闸管软并网系统基本可以抑制过大的冲击电流,而且在整个并网过程中,没有出现电流电流忽大忽小,震荡不稳定的状态。

4结语

本文对定桨失速型风力发电机组软并网相关技术进行了研究,本次研究通过采集发电机的转速脉冲,经过运算,得出机组运行加速度,根据加速度的微分特性,达到预测控制的目的,从而实现晶闸管触发角的精确控制。仿真和实验结果表明,这种方法可以实现失速型异步风力发电机组的平稳并网,其启动电流也完全可以满足异步风力发电机组的并网要求。

(指导老师:吴红霞)

基金项目:此成果为省级大学生创新创业项目(项目编号:201511798001)。

参考文献

[1] 李文朝.并网型风电机组软并网控制系统研究[D].河海大学硕士学位论文,2006.

[2] 王承凯,许洪华,赵斌.基于SIMULINK的失速型风电机组软并网控制系统的仿真分析[J].太阳能学报,2004,Vol.25,NO.5:599-605.

[3] 张雷,谷海涛,鄂春良,李海冬.失速型风力发电机组软并网技术研究[J].电力自动化设备,2009,Vol.29,NO.5:35-37.

[4] 尹健.并网型风力发电机组的软并网控制系统研究[D].华北电力大学硕士学位论文,2010.

[5] 龚立秋.异步风力发电机组软并网控制系统的研究[D].湘潭大学硕士学位论文,2009.

[6] 武鑫,赵斌.750kW失速型风力发电机组控制系统关键技术设计[J].电气应用,2006,25(10):60-62.

猜你喜欢
晶闸管加速度
一种晶闸管状态和极性的检测方法及其应用
“鳖”不住了!从26元/斤飙至38元/斤,2022年甲鱼能否再跑出“加速度”?
天际加速度
创新,动能转换的“加速度”
到古墓去感受心跳加速度
改进式晶闸管电容无功补偿方法的研究
基于无功补偿晶闸管投切电容器的研究
英飞凌推出新款大功率光触发晶闸管 首次集成保护功能
晶闸管触发的可靠性及其在磁控电抗器中应用研究
35kV SVC装置TSC型晶闸管阀高压试验局放问题的分析与处理