导数放缩问题的几大思考

2018-01-05 11:29王尊
数学学习与研究 2018年21期
关键词:不等号根式化简

王尊

放缩问题是导数学习中的难点,也是高考压轴题中的常见题型,是冲刺高分、满分所必须攻克的难关,其门目复杂,变种繁多,但仍然有章可循.

一、据题目信息放缩

例1   已知f(x)=e-x-ax(x∈ R ).

(1)当x≥0时,f(-x)-ln(x+1)≥1,求a范围.

(2)求证e2- e ≤ 3 2 .

解  (1)略.答案:a∈[-2,+∞).

(2)(分析:要证lne2- e ≤ln 3 2 ,只需证: e ≥2-ln 3 2 .)

由(1)得ex-2x+ln(x+1)≥1,

令x= 1 2 ,得 e -1+ln 3 2 ≥1,

∴ln 3 2 ≥2- e ,即e2- e ≤ 3 2 .

总结:目标不等式与原不等式有较大的相似性,可考虑利用第一问结论加以证明.

例2   已知b∈[-1,0],c∈[-2,0],函数f(x)=x3+3bx2+3cx,求极值.

解  f(x1)∈ -10,- 1 2  ,x1∈[1,2],

f′(x)=0 x21=-2bx1-c,

∴f(x1)=x31+3bx21+3cx1=- 1 2 x31+ 3c 2 x1.

又∵b∈[-1,0],c∈[-2,0],

∴f(x1)在[1,2]单调递减,

f(2)≤f(x1)≤f(1),即4b+4c≤f(x1)≤b+2c,

即-10≤f(x1)≤- 1 2 .

总结:利用极值点的特殊性,f′(x)=0.不但可在所求问题中进行代换,还能用于对数、指数互化,也用于本题中的降幂处理,之后再利用x1的范围进行求解.

二、常见放缩、不等式放缩

常見放缩多从泰勒公式出发,平时对常用的放缩形式记忆,考试中亦可根据所需形式用泰勒展开推导出想用的形式.

f(x)= f(x0) 0! + f′(x0) 1! (x-x0)+ f″(x0) 2! (x-x0)2+…+ fn(x-x0)n n! +Rn(x).

常用形式: ex≥x+1, lnx≥1- 1 x , lnx≤x-1, sinx≤x, cosx≥1- x2 2 .

注意:推导时注意舍去的项之和的正负,以判断不等号方向.

如,欲证g(x)=ex+ 1 x+1 +a≥0;a≥-2,

可以证g(x)=ex+ 1 x+1 +a≥(x+1)+ 1 x+1 +a≥2 (x+1)· 1 x+1  +a=2+a≥0;x≥-1.

便是常见放缩与不等式放缩的综合.

不等式放缩又可用于根式中,常与均值不等式结合.

如, x+1 =1× x+1 ≤ 12+( x+1 )2 2 = x+2 2 = x 2 +1.

如此化简题目中的根式,避免通过平方导致次数升高.

三、常数放缩

① 常数放缩:欲证ax2+bx≥clnx+1.792,x∈[m,n],

可证:ax2+bx≥clnx+2.

可化简运算,若欲证的不等式在处理过程中必须对复杂常数平方,开方的话,这种放缩就显得更加优越.

② 参数放缩:

例如,已知a≤1,证明x+1-a≥0,

即x2+1-a≥x2+1-1=x2≥0.

这是一个简单形式,但在具体题目中却容易被忽视,是应该格外注意的一种形式.

四、分步放缩

2x3-3x2-3lnx≥e2的证明,g(x)=2x3-4x2,h(x)=x2-3lnx.

再分别求最小值.注意,g(x),h(x)未必在相同x值处取最值,但必须保证g(x),h(x)存在最值,若无最值,则须对g(x),h(x)做进一步处理,令其出现最值.

五、常见放缩推导其他放缩

① 换元:lnx≤x-1 ln(x+1)≤x+1-1=x.

② 不等号方向的扭转.

欲证ex+ax≤lnx,x∈(m,n),若欲用lnx≤x-1,则ex+ax≤x-1不能推出ex+ax≤lnx,这是因为等号方向不满足证明要求.

调整不等号方向:lnx≤x-1,

∴ln 1 x ≤ 1 x -1,

∴-lnx≤ 1 x -1,∴lnx≥1- 1 x .

从而将“≤”换为“≥”,再利用ex+ax≤1- 1 x  ex+ax≤lnx.

六、放缩失败的处理方法

有时放缩过强会导致结果不严格,可缩小放缩的“步伐”.

例如,估计ln 3 2 的近似值, 2 3  x- 1 x  - 1 12  x2- 1 x2  ≤ lnx≤ 1 2  x- 1 x  ,

ln 3 2 ≤ 1 2   3 2 - 2 3  = 5 12 ≈0.4167,

ln 3 2 > 2 3   3 2 - 2 3  - 1 12   9 4 - 4 9  ≈0.4051.

结果不严格,于是缩小“步伐”:

ln 3 2 =ln 5 4 +ln 6 5 ≤ 1 2   5 4 - 4 5  + 1 2   5 6 - 5 6  <0.409,

ln 3 2 =ln 5 4 +ln 6 5 ≥  2 3   5 4 - 4 5  - 1 12   25 16 - 16 25   +

2 3   6 5 - 5 6  - 1 12   36 25 - 25 36   >0.406.

用 6 5 , 5 4 代入可使得偏差减小,削弱放缩的强度.

类似思想应用于数列放缩的失败中,可以保留前几项,再对后面的项放缩,这也是削弱放缩的方法.

猜你喜欢
不等号根式化简
灵活区分 正确化简
“不等式与不等式组”考点集萃
的化简及其变式
1.2 整式与二次根式
判断分式,且慢化简
“一分为二”巧化简
一元一次不等式错解剖析
数学智力题