肝细胞核因子4α与肝细胞癌关系的研究进展

2018-03-07 21:29纪龙珊孙学华周振华
中国医药导报 2018年2期
关键词:肝细胞癌基因工程调节

纪龙珊+孙学华+周振华

[摘要] 肝细胞核因子4α(HNF4α)是调节肝脏内特异性基因表达的转录因子,在肝细胞发育分化,肝脏脂质、胆固醇代谢及肝脏药物代谢中起重要作用,并且抑制肝脏肿瘤的发生。HNF4α主要通过抑制肿瘤细胞增殖,促进肿瘤细胞分化、凋亡,逆转肝细胞上皮-间质转化等过程,影响肝细胞癌(HCC)的发生发展。本文对HNF4α的来源分布、结构特点、生物学功能及其在HCC发生发展中的作用进行了系统综述,旨在探索HNF4α干预HCC的新思路。

[关键词] 肝细胞核因子4α;肝细胞癌;调节;基因工程

[中图分类号] R575 [文献标识码] A [文章编号] 1673-7210(2018)01(b)-0032-04

[Abstract] Hepatocyte nuclear factor 4α (HNF4α) is a transcription factor that regulates the expression of specific genes in the liver, plays an important role in hepatocyte developmental and differentiation, liver lipid and cholesterol metabolism, liver drug metabolism and inhibits the formation of liver tumor. HNF4α mainly affects the formation and development of hepatocellular carcinoma (HCC) by inhibiting the proliferation of tumor cells, promoting the differentiation and apoptosis of tumor cells, reversing the processes of hepatocyte epithelial-mesenchymal transition. In this paper, the origin, distribution, structural characteristics, biological function of HNF4α and the role of HNF4α in the formation and development of HCC were reviewed in order to explore a new approach to HNF4α intervening in HCC.

[Key words] Hepatocyte nuclear factor 4α; Hepatocellular carcinoma; Regulation; Genetic engineering

肝细胞核因子4(hepatocyte nuclear factor 4,HNF4)是1990年Sladek等[1]从大鼠肝脏中发现的,属类固醇激素受体超家族成员。其DNA结合活性与α1-抗胰蛋白酶、载脂蛋白A1和丙酮酸激酶基因转录调控有关。HNF4包括HNF4α、HNF4β、HNF4γ和变异剪切体,与肝脏疾病相关的HNF4分子主要是HNF4α。本文就HNF4α的来源分布、结构特点、生物学功能,及其与肝细胞癌(hepatocellular carcinoma,HCC)关系的研究进展进行综述。

1 HNF4α来源及分布

HNF4来源于胚泡的原始内胚层,可持续表达于卵黄囊内脏内胚层。HNF4α在胚胎肝脏发育形成的第8天即可检测到,其成体表达于肝脏、肾脏、胰腺、小肠、结肠以及睾丸中,在分化成熟的肝细胞高表达,与肝特异基因的表达密切相关[2]。

2 HNF4α的结构特点

人HNF4α编码基因位于20号染色体长臂(20q13.12)。HNF4α含“锌指结构”,其蛋白质三级结构由6个功能性结构域(A-F)组成[3]:A/B区(N端),包含激活结构域1(activation function domain1,AF1),其与启动子特殊序列密切相关;C区含高度保守的“锌指结构”,与D区(铰链区)结合,形成可与靶基因特殊DNA序列激素反应元件结合的DNA结合域;E区为多功能配体结合域,包括激活功能域AF2和配体结合域;F区(C端)是特异性配体结合区,为HNF4α所独有。

HNF4α有酰基辅酶A和游离脂肪酸两个配体结合位点,分别以不同模式调节HNF4α的转录活性。HNF4α可由多种途径调控激活,如磷酸化、乙酰化[4]或与细胞信号转导蛋白4[5]结合等,与启动子序列结合形成同源二聚体,调节染色体结构,激活靶基因的表达[6]。

3 HNF4α的生物学功能

Odom等[7]通过定位分析肝细胞中的HNFs基因组发现:HNF4α与人基因启动子区域的基因结合的比例高达12%,其中,RNA聚合酶Ⅱ结合基因中有41%与HNF4α结合,说明HNF4α调控着大部分肝细胞基因的转录,与肝脏关系密切。

3.1 肝脏发育分化、表型维持及肝细胞极化

Parviz等[8]研究发现,HNF4α表达缺失的小鼠肝细胞缩小,胞浆含量少、染色深,细胞核畸形并充满异染色质,与细胞连接有关的蛋白分子表达缺失,细胞失去连接结构,细胞间出现异常空隙,无法形成肝窦状隙等结构,表明HNF4α对肝上皮的发育和肝脏形态的发生是必不可少的。应用转基因技术将HNF4α转入人骨髓间充质干细胞[9],或将表达HNF4α和HNF?4α shRNA的重組腺病毒转染大鼠肝星状细胞[10],均可诱导特定细胞为成熟的肝细胞样细胞(hepatocyte-like cell,iHep cell),这些分化的iHep cell具有典型的上皮细胞形态,表达肝细胞功能。在HNF4α表达缺失的小鼠中,组蛋白的甲基化和乙酰化修饰更加明显,这些修饰间接地影响肝脏表型相关因子的表达,导致肝细胞表型的改变,表明HNF4α可能是肝脏表观遗传修饰的主要协调者[11]。在肝细胞极化方面,Chiba等[12]发现HNF4α可参与肝细胞顶端极的形成,加速肝细胞胆小管微绒毛的形成。以上表明,HNF4α是肝细胞发育和分化,肝细胞表型维持以及肝细胞极化结构形成的重要转录因子。endprint

3.2 肝臟脂质和胆固醇代谢

Yin等[13]发现,HNF4α缺失致使脂质代谢的多个基因失调,HNF4α基因敲除的小鼠脂质代谢严重障碍,表明HNF4α是维持正常的脂质代谢必不可少的转录因子。HNF4α可能通过上调磷脂酶A2 GXIIB[14]或下调胆固醇酰基转移酶2[15]和三磷酸腺苷-结合转运子A1[16]等的表达调节肝脏脂质和胆固醇的正常代谢。

3.3 肝脏药物代谢

CYP3A4是细胞色素P450的重要亚族,参与50%以上临床用药的Ⅰ相代谢,是肝脏中最多的药物代谢酶。孕烷X受体(Progesterone X Receptor,PXR)与结构性雄烷受体共同调节CYP3A4的表达。Kamiya等[17]研究证实,HNF4α与PXR启动子结合可激活胚胎肝细胞中PXR。Tirona等[18]发现HNF4α通过与CYP3A4基因增强子上的顺式作用元件结合,调节CYP3A4的活化。此外,HNF4α也可激活药物代谢酶CYP2A8、CYP2B6、CYP2D6、CYP3A5、CYP8B1以及药物代谢酶胆盐磺基转移酶2A1[19]。有研究发现,在HNF4α表达缺失的大鼠肝内,药物代谢和解毒相关基因如多药耐药基因B1、ABC?B11、三磷酸腺苷-结合转运子C2等的表达下降。由此可见HNF4α对肝脏药物代谢的重要性。

4 HNF4α与HCC的关系

Lazarevich等[20]发现,快速生长的去分化变体HCC细胞(fast-growing dedifferentiated variant,fgHCC)中HNF4α表达增强后,fgHCC侵袭性降低,增殖速度减慢,成熟肝细胞的结构和功能恢复;该细胞移植在同源小鼠中不形成肿瘤,表明HNF4α发挥强有力的抗肿瘤作用。研究认为HNF4α主要通过抑制肿瘤细胞增殖,促进肿瘤细胞分化、凋亡,逆转肝细胞上皮-间质转化(epithelial- to-mesenchymal transition,EMT)等过程,影响HCC的发生发展。现将HNF4α调控HCC发生发展的机制研究总结如下。

4.1 抑制肿瘤细胞增殖,促进肿瘤细胞分化和凋亡

研究发现YAP1-TEAD4可诱导HCC细胞增殖和分化,在HCC细胞中YAP1通过泛素-蛋白酶体途径抑制HNF4α表达,而HNF4α通过与YAP1竞争性结合TEAD4,抑制YAP1-TEAD4的转录激活及其靶基因的表达,YAP1-TEAD4与HNF4α通过双向负反馈机制调控HCC细胞的增殖和分化[21]。细胞凋亡信号调节激酶1(apoptosis signal regulated kinase,ASK1)是参与细胞凋亡的死亡受体,是HCC的抑制基因,但在HCC中表达下降,HNF4α与ASK1启动子直接结合,激活并促进ASK1表达,抑制HCC发生发展并抑制HCC恶化[22]。邓龙飞等[23]通过构建质粒pET28a-P-HNF4α,利用细胞穿膜肽PEP-1成功介导融合蛋白P-HNF4α进入Huh7细胞并定位于细胞核;P-HNF4α蛋白可促进Huh7细胞肝功能基因表达,诱导HCC细胞向成熟肝细胞分化,并显著抑制HCC细胞增殖、迁移和侵袭,降低HCC细胞的恶性程度。mir-548p是HBx相关的HCC抑癌基因,mir-548p通过与HBXIP mRNA3′端-非翻译区结合,抑制HBXIP蛋白表达;而HNF4α促进mir-548p表达的同时被HBx抑制,由此形成HBx/HNF4α/mir-548p/HBXIP通路抑制HCC细胞增殖,促进HCC细胞凋亡[24]。

4.2 逆转肝细胞EMT过程

有研究发现,HNF4α是肝脏microRNAs(如miR-192、miR-193a、miR-194和mir-802)表达必不可少的因子[25]。Mir-122是肝脏特异性的microRNA,受HN?F1α、HNF3α、HNF3β、HNF4α、HNF6、C/EBPα等转录因子调控,抑制HCC细胞侵袭、转移,但在HCC中表达下调;HNF4α可通过保守的DR-I元件结合至mir-122启动子区,正向调控其表达[26-28]。HNF4α通过上调靶基因miR-122[29],或与β-catenin竞争性结合T淋巴细胞因子[30],募集转录抑制因子与Wnt靶基因启动子结合,抑制Wnt-β-catenin信号通路激活,从而逆转EMT过程。同时,HNF4α可将β-catenin从细胞核内移至细胞膜上,参与上皮细胞间的黏附连接,增强细胞的上皮表型,逆转EMT过程,促进肝细胞间质-上皮转变[31-32]。

5 小结

综上所述,HNF4α是抑制肝脏肿瘤的重要转录因子,利用基因工程手段或转染技术诱导相关细胞分化为iHep cell,有望成为治疗HCC的有效手段。进一步深入研究HNF4α的功能及其调控HCC的分子机制,全面揭示HNF4α与HCC的关系,是未来攻克HCC的新方向。

[参考文献]

[1] Sladek FM,Zhong WM,Lai E,et al. Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily [J]. Genes Dev,1990,4(12):2353-2365.

[2] Hellerbrand C,Amann T,Schlegel J,et al. The novel gene MIA2 acts as a tumour suppressor in hepatocellular carcinoma [J]. Gut,2008,57(2):243-251.

[3] Petrescu AD,Hertz R,Bar-Tana J,et al. Role of regulatory F-domain in hepatocyte nuclear factor-4alpha ligand specificity [J]. J Biol Chem,2005,280(17):16 714-16 727.endprint

[4] Tsai TY,Wang WT,Li HK,et al. RNA helicase DDX3 maintains lipid homeostasis through upregulation of the microsomal triglyceride transfer protein by interacting with HNF4 and SHP [J]. Sci Rep,2017,7:41 452.

[5] Shi W,Wang H,Zheng X,et al. HNF-4alpha negatively regulates hepcidin expression through BMPR1A in HepG2 cells [J]. Biol Trace Elem Res,2017,176(2):294-304.

[6] Schrem H,Klempnauer J,Borlak J. Liver-enriched transcription factors in liver function and development. PartⅡ:the C/EBPs and D site-binding protein in cell cycle control,carcinogenesis,circadian gene regulation,liver regeneration,apoptosis,and liver-specific gene regulation [J]. Pharmacol Rev,2004,56(2):291-330.

[7] Odom DT,Zizlsperger N,Gordon DB,et al. Control of pancreas and liver gene expression by HNF transcription factors [J]. Science,2004,303(5662):1378-1381.

[8] Parviz F,Matullo C,Garrison WD,et al. Hepatocyte nuclear factor 4alpha controls the development of a hepatic epithelium and liver morphogenesis [J]. Nat Genet,2003,34(3):292-296.

[9] Hu X,Xie P,Li W,et al. Direct induction of hepatocyte-like cells from immortalized human bone marrow mesenchymal stem cells by overexpression of HNF4alpha [J]. Biochem Biophys Res Commun,2016,478(2):791-797.

[10] Liu K,Guo MG,Lou XL,et al. Hepatocyte nuclear factor 4alpha induces a tendency of differentiation and activation of rat hepatic stellate cells [J]. World J Gastroenterol,2015,21(19):5856-5866.

[11] Zhang Q,Lei X,Lu H. Alterations of epigenetic signatures in hepatocyte nuclear factor 4alpha deficient mouse liver determined by improved ChIP-qPCR and(h)MeDIP-qPCR assays [J]. PLoS One,2014,9(1):e84 925.

[12] Chiba H,Sakai N,Murata M,et al. The nuclear receptor hepatocyte nuclear factor 4alpha acts as a morphogen to induce the formation of microvilli [J]. J Cell Biol,2006, 175(6):971-980.

[13] Yin L,Ma H,Ge X,et al. Hepatic hepatocyte nuclear factor 4alpha is essential for maintaining triglyceride and cholesterol homeostasis [J]. Arterioscler Thromb Vasc Biol,2011,31(2):328-336.

[14] Guan M,Qu L,Tan W,et al. Hepatocyte nuclear factor-4 alpha regulates liver triglyceride metabolism in part thr?ough secreted phospholipase A(2)GXIIB [J]. Hepatology,2011,53(2):458-466.

[15] Pramfalk C,Karlsson E,Groop L,et al. Control of ACA?T2 liver expression by HNF4α:lesson from MODY1 patients [J]. Arterioscler Thromb Vasc Biol,2009,29(8):1235-1241.

[16] Ohoka N,Okuhira K,Cui H,et al. HNF4alpha increases liver-specific human ATP-binding cassette transporter A1 expression and cholesterol efflux to apolipoprotein A-I in response to cholesterol depletion [J]. Arterioscler Thromb Vasc Biol,2012,32(4):1005-1014.endprint

[17] Kamiya A,Inoue Y,Gonzalez FJ. Role of the hepatocyte nuclear factor 4alpha in control of the pregnane X receptor during fetal liver development [J]. Hepatology,2003, 37(6):1375-1384.

[18] Tirona RG,Lee W,Leake BF,et al. The orphan nuclear receptor HNF4alpha determines PXR- and CAR-mediated xenobiotic induction of CYP3A4 [J]. Nat Med,2003, 9(2):220-224.

[19] Kamiyama Y,Matsubara T,Yoshinari K,et al. Role of human hepatocyte nuclear factor 4alpha in the expression of drug-metabolizing enzymes and transporters in human hepatocytes assessed by use of small interfering RNA [J]. Drug Metab Pharmacokinet,2007,22(4):287-298.

[20] Lazarevich NL,Cheremnova OA,Varga EV,et al. Progression of HCC in mice is associated with a downregulation in the expression of hepatocyte nuclear factors [J]. Hepatology,2004,39(4):1038-1047.

[21] Cai WY,Lin LY,Hao H,et al. Yes-associated protein/TEA domain family member and hepatocyte nuclear factor 4-alpha(HNF4alpha)repress reciprocally to regulate hepatocarcinogenesis in rats and mice [J]. Hepatology,2017,65(4):1206-1221.

[22] Jiang CF,Wen LZ,Yin C,et al. Apoptosis signal-regulating kinase 1 mediates the inhibitory effect of hepatocyte nuclear factor-4alpha on hepatocellular carcinoma [J]. Oncotarget,2016,7(19):27 408-27 421.

[23] 鄧龙飞,丁晨虹,谢渭芬,等. PEP-1介导的重组肝细胞核因子4α蛋白转导对肝癌细胞的抑制作用[J].第二军医大学学报,2015,36(9):929-935.

[24] Hu XM,Yan XH,Hu YW,et al. miRNA-548p suppresses hepatitis B virus X protein associated hepatocellular carcinoma by downregulating oncoprotein hepatitis B x-interacting protein [J]. Hepatol Res,2016,46(8):804-815.

[25] Lu H,Lei X,Liu J,et al. Regulation of hepatic microRNA expression by hepatocyte nuclear factor 4 alpha [J]. World J Hepatol,2017,9(4):191-208.

[26] Zhu H,Mi Y,Jiang X,et al. Hepatocyte nuclear factor 6 inhibits the growth and metastasis of cholangiocarcinoma cells by regulating miR-122 [J]. J Cancer Res Clin Oncol,2016,142(5):969-980.

[27] Zeng C,Wang R,Li D,et al. A novel GSK-3 beta-C/EBP alpha-miR-122-insulin-like growth factor 1 receptor regulatory circuitry in human hepatocellular carcinoma [J]. Hepatology,2010,52(5):1702-1712.

[28] Wu Q,Liu HO,Liu YD,et al. Decreased expression of hepatocyte nuclear factor 4alpha(Hnf4alpha)/microRNA-122 (miR-122) axis in hepatitis B virus-associated hepatocellular carcinoma enhances potential oncogenic GALNT10 protein activity [J]. J Biol Chem,2015,290(2):1170-1185.

[29] Wang SC,Lin XL,Li J,et al. MicroRNA-122 triggers mesenchymal-epithelial transition and suppresses hepatocellular carcinoma cell motility and invasion by targeting RhoA [J]. PLoS One,2014,9(7):e101 330.

[30] Yang M,Li SN,Anjum KM,et al. A double-negative feedback loop between Wnt-beta-catenin signaling and HNF4alpha regulates epithelial-mesenchymal transition in hepatocellular carcinoma [J]. J Cell Sci,2013,126(24):5692-5703.

[31] Wu N,Zhang YL,Wang HT,et al. Overexpression of hepatocyte nuclear factor 4alpha in human mesenchymal stem cells suppresses hepatocellular carcinoma development through Wnt/beta-catenin signaling pathway downregulation [J]. Cancer Biol Ther,2016,17(5):558-565.

[32] Yao D,Peng S,Dai C. The role of hepatocyte nuclear factor 4alpha in metastatic tumor formation of hepatocellular carcinoma and its close relationship with the mesenchymal-epithelial transition markers [J]. BMC Cancer,2013,13(1):432.

(收稿日期:2017-09-14 本文编辑:李岳泽)endprint

猜你喜欢
肝细胞癌基因工程调节
方便调节的课桌
水稻育性发育与基因工程实验室
“自然科学—人文探讨”在基因工程课程思政中的应用
2016年奔驰E260L主驾驶座椅不能调节
基因工程菌有什么本领?
口蹄疫基因工程疫苗研究进展
对比分析肝内型胆管细胞癌与肝细胞癌采用CT的鉴别诊断
Rab27A和Rab27B在4种不同人肝癌细胞株中的表达
汽油机质调节