植物花青素生物合成与调控研究进展

2018-05-14 08:59梁立军杨祎辰王二欢
安徽农业科学 2018年21期
关键词:花青素调控

梁立军 杨祎辰 王二欢

摘要 花青素是植物体内非常重要的一类次生代谢物,有很强的药理活性。花青素在医药保健、药用植物开发等方面具有重要的研究价值和应用潜力。目前研究者基本探明了花青素生物合成途径和分子调控机制,但还没有完全掌握花青素合成的整个网络体系,还需要继续加强对花青素生物合成与调控的研究。因此,对植物花青素生物合成途径、反应酶、结构基因、调控基因及转录因子进行综述,旨在为花青素类植物品种改良和开发提供理论支持。

关键词 花青素;生物合成;调控

中图分类号 Q943 文献标识码 A 文章编号 0517-6611(2018)21-0018-07

Abstract Plant anthocyanin was,a group of important second plant metabolites with potent pharmacological activity,Anthocyanin has important research value and application potential in health care and development of medicinal plants,etc.The basic anthocyanin biosynthesis pathways and molecular regulation mechanism were found out by researchers,but the system of whole anthocyanin synthesis network was not grasped fully at present .The study of anthocyanin biosynthesis and regulation should be strengthened continually.The biosynthesis and regulation of plant anthocyanin,including biosynthesis pathway,enzyme,structure genes,regulation genes,and transcript factors,was reviewed in order to provide theoretical support for the improvement and development of plant which was rich in anthocyanin.

Key words Anthocyanin;Biosynthesis;Regulation

植物的葉、花、果实、种子、茎干表皮等器官或组织呈现出来的色彩是由于植物体中存在不同的色素物质决定的,这些色素物质主要包括类黄酮、类胡萝卜素、甜菜素和叶绿素等,其中花青素是类黄酮色素中最丰富的的一类,属于水溶性色素,大量地存在于植物的液泡中,决定大部分植物的颜色。植物体内的花青素常与各种单糖结合形成糖苷,也称为花青素苷。植物中主要存在6种常见的花青素苷:天竺葵素(pelargonidin)、矢车菊素(cyanidin)、飞燕草素(delphinidin)、芍药素(peonidin)、矮牵牛素(petunidin)和锦葵素(malvidin),其中芍药素是由矢车菊素甲基化形成的,矮牵牛素和锦葵素是由飞燕草素再不同程度的甲基化形成的[1](图1)。

1 花青素的生物合成途径

植物花青素是黄酮类化合物的一个亚类,其生物合成途径的研究较为成熟。花青素是在细胞质中进行,从苯丙氨酸开始,经过一系列酶促反应合成,再经过不同的糖基、甲基、酰基等转移酶的修饰后被转运储存在液泡中[2]。花青素生物合成途径可以分为3个阶段(图2):第一阶段为苯丙氨酸(Phenylalanine)和乙酸(Acetic acid)经过一系列转化合成花青素的直接前体p-香豆酰辅酶A(p-coumaroyl-CoA)和丙二酰辅酶A(Malonyl-CoA);第二阶段为类黄酮代谢,是从p-香豆酰辅酶A和丙二酰辅酶A开始,直到形成二氢黄酮醇;第三阶段为花青素的生成,即二氢黄酮醇经过二氢黄酮醇4-还原酶(dihydroflavonol-4-reductase,DFR)催化生成无色花色素,再经过花色素合成与转化等酶的催化形成有色的花色素[3]。

在第一阶段中,苯丙氨酸经过苯丙氨酸解氨酶(phenylalanine ammonia-lyase,PAL)脱氨形成肉桂酸(transcinnamic acid),肉桂酸被肉桂酸4-羟化酶(cinnamic acid 4-hydroxylase,C4H)羟化生成p-香豆酸(p-coumaric acid,4-香豆酸),p-香豆酸在4-香豆酸辅酶A连接酶(4-coumaric acid:CoA ligase,4CL)催化下生成p-香豆酰辅酶A;乙酸在乙酰辅酶A连接酶(acetyl-CoA ligase,ACL)和乙酰辅酶A羧化酶(acetyl-CoA carboxylase,ACC)的作用下生成丙二酰辅酶A[2,4-5]。

在第二阶段中,查耳酮合成酶(chalcone synthase,CHS)为类黄酮合成途径中的第1个关键酶,以4-香豆酰辅酶A与丙二酰辅酶A为底物催化生成查耳酮(Chalcone)。查耳酮由查耳酮异构酶(chalcone isomerase,CHI)催化形成柚皮素(Naringenin),柚皮素由黄烷酮3-羟化酶(flavanone 3-hydroxylase,F3H)催化生成各类花青素苷的必要前体物质二氢山萘酚(Dihydrokaempferol,DHK)。类黄酮3-羟化酶(flavonoid 3-hydroxylase,F3H)和类黄酮3,5-羟化酶(F35H)在DHK的不同位点进行羟基化,分别形成二氢槲皮素(Dihydroquercetin,DHQ)和二氢杨梅素(Dihydromyricetin,DHM)[2,4]。

在第三阶段中,DHK、DHQ和DHM经过二氢黄酮醇4-还原酶 (dihydroflavonol-4-reductase,DFR)还原形成无色的花色素苷元,即无色的天竺葵苷元、矢车菊苷元和飞燕草苷元。它们在花青素苷合成酶(anthocyanidin aynthase,ANS)的催化下分别生成天竺葵素苷元、矢车菊苷元和飞燕草素苷元,最后经过尿苷二磷酸-葡萄糖:类黄酮-3-O-葡糖基转移酶(UDP-glucose:flavonoid-3-O-glucosyltransferase(UF3GT或3GT))、类黄酮5-O-糖基转移酶(flavonoid-5-O-glucosyltransferase,5GT)、鼠李唐基转移酶(UPD rhamnose:anthocyanidin-3-glucoside-rhamnosyltransferase,3RT)、酰基转移酶(acyltransferase,AT)和甲基转移酶(methyltransferase,MT)等酶的转化,生成更稳定的花青素苷[2,4,6]。最后,花青素经过谷胱甘肽S-转移酶(Glutathione S-transferase,GST)转运到液泡储存[6]。

2 花青素的生物合成关键结构基因

根据花青素生物合成的途径,第一阶段是与其他次生代谢共有的反应,第二、三阶段是花青素代谢的前期和后期2个部分,对于花青素生物合成至关重要。在花青素生物合成过程中,至少需要15种结构基因的协同作用,所涉及的基因可以分为2类:一类是前期合成基因,如CHS、CHI、F3H、F3H和F35H的相关基因;另一类是后期合成基因,如DFR、ANS、UF3GT、MT和RT等相关基因[2]。

2.1 查耳酮合成酶(CHS)基因

CHS催化合成查耳酮,为花青素的生物合成提供基本骨架,该酶是一类多基因家族编码的酶[7-8]。目前,已经在葡萄[9]等植物中得到该类基因,该基因具有一定的保守性。降低CHS基因的表达水平,会导致植物花色变淡[10]。因此,调控植物体内CHS基因的表达水平会对花青素的合成产生影响。

2.2 查耳酮异构酶(CHI)基因

CHI催化查耳酮的异构化反应,生成黄烷酮,将黄色的查耳酮转变成无色的黄烷酮,它也是一种多基因家族编码的酶。CHI基因已经从多种植物中分离出来[11-14],CHI基因被分为TypeⅠ和Type Ⅱ 2类。其中,TypeⅠ的CHI只能催化6-羟基査耳酮生成5-羟基黄烷酮;Type Ⅱ的CHI除了催化6-羟基査耳酮生成5-羟基黄烷酮外,还可以催化6-脱氧査耳酮生成5-脱氧黄烷酮[15]。

2.3 黄烷酮3-羟化酶(F3H)基因

F3H催化黄烷酮C环上的羟基化反应生成二氢黄酮醇,是花青素生物合成途径中前期阶段的关键酶。F3H属于氧化戊二酸依赖型加氧酶家族,是一种非血红素铁酶,依赖于Fe2+、分子氧、抗坏血酸和2-酮戊二酸而起作用[16-21]。多数植物的F3H基因由2个外显子组成,编码350~380个氨基酸[22]。

2.4 类黄酮3-羟化酶(F3H)基因和类黄酮3,5-羟化酶(F35H)基因

F3H和F35H可以催化黄烷酮或黄烷醇B环上的羟基化反应,分别生成二氫槲皮黄酮和二氢杨梅黄酮,这2种酶都属于细胞色素P450超家族,它们在序列上具有较高的同源性[23-25]。利用F3H催化的底物DHK生成天竺葵素,最终形成粉色花[26]。而F35H的催化产物是蓝紫色的锦葵色素合成的关键前体,因此,F35H在蓝紫色花朵或果等器官的形成中起重要作用[27]。

2.5 二氢黄酮醇还原酶(DFR)基因

DFR催化DHK、DHQ、DHM生成的无色花青素,属于花青素生物合成途径后期反应的直接前体,DFR属于还原性辅酶Ⅱ(NADPH)依赖性的还原酶家族[9,28-29]。DFR的催化作用在不同植物中对底物具有一定的特异性,如大花蕙兰的DFR不能有效地还原DHK而生成天竺葵素[30],矮牵牛的DFR上存在一段26个氨基酸残基,该序列决定了DFR对底物的特异性[31]。DFR基因特异性在花中表达,与花的着色过程密切相关[32]。

2.6 花青素合成酶(ANS)基因

ANS是一种2-酮戊二酸依赖性酶,属于戊二酸依赖型加氧酶家族[33],是植物花青素生物合成途径中的一个关键酶。ANS基因的结构相对比较保守,一般含有2个外显子和1个内含子[9,33-34]。ANS基因的表达直接影响植物花青素的积累,降低ANS的表达水平,会导致花青素合成水平明显下降,产生白色花朵[35]。而过表达ANS可以增加花青素的积累[36]。

2.7 其他结构基因

经过ANS催化生成不稳定的花青素,还需要迅速经历一些修饰反应,主要包括糖基化、甲基化和酰基化反应。这些反应主要包括葡萄糖基转移酶(glucosyltransferase,GT)、鼠李糖基转移酶(rhamnosyltransferase,RT)、 O-甲基转移酶(0-methyltransferase,OMT)、酰基转移酶(acyltransferase,AT)等结构类基因,与其他花青素合成基因协同在植物发育期调控花青素的代谢。

UPD-葡萄糖:类黄酮-3-O-葡糖基转移酶(3GT),是将UDP-葡萄糖上的葡萄糖基转移到花青素分子的C3羟基上[37-41],形成花青色素3-葡糖苷,促进植物花或果实着色。在花青色素3-葡糖苷形成后,还需要经过鼠李唐基转移酶(3RT)进一步修饰而生成花青色素3-芸香苷[42]。花青素甲基转移酶(MT)参与修饰花青素的结构,比如促使花青素C环第3位置上或第3、5位置的甲基化,可以增加植物色彩的多样性[43]。花青素酰基转移酶(AT)能够把特异的有机酸转移到花青素骨架上,从而提高花青素的水溶性和稳定性[44-45]。

3 花青素生物合成的相关转录调控

在花青素生物合成过程中,调控基因编码的转录因子通过特异蛋白(包括DNA蛋白、相互作用的蛋白-蛋白等)激活或者抑制结构基因的时空表达而影响花青素生物合成的强度和模式。目前研究表明,参与花青素调节的转录因子类型包括MYB、MYC、bHLH、bZIP、WD40、WRKY、MADS-box等[46]。大多数植物是通过MYB、bHLH、WD40调控花青素的生物合成,不同转录因子调控花青素合成的基因也不尽相同(表1)。

3.1 花青素生物合成的相关转录因子

3.1.1 MYB转录因子。

MYB(myeloblastosis)转录因子是植物中重要的一类转录因子,属于DNA结合蛋白,具有高度保守的DNA结合域——MYB结合域,每个MYB结合域一般含有3个高度保守的色氨酸残基,这些保守的色氨酸残基和间隔序列维持了MYB蛋白结构域“螺旋-转角-螺旋”的构型。参与调控花青素生物合成相关的MYB转录因子包括R2R3-MYB和R3-MYB2类[47]。

花青素生物合成中的MYB蛋白相关基因最早在玉米中发现,并克隆出第1个调节花青素合成的编码MYB蛋白的C1基因,该基因调控着糊粉层花青素的生物合成;另外一个编码MYB蛋白的基因Pl在玉米其他组织中调节花青素合成。C1与Pl高度同源,因此Pl被看作是C1的拷贝基因[72]。在矮牵牛中发现了编码MYB蛋白的基因包括:AN2、PH4和AN4。AN2只在花瓣边翼表达[54],PH4在花瓣表皮中表达,AN4编码花粉囊中的MYB蛋白[73]。

拟南芥中与花青素合成相关的编码R2R3-MYB蛋白基因包括PAP1和PAP2,编码R3-MYB蛋白基因为MYBL2。PAP1和PAP2与玉米的C1序列的相似性, PAP1和PAP2可能与C1为相同家族成员[74]。MYBL2被认为是花青素合成途径上的一个抑制子,其抑制机制可能是由于它和这一途径上的bHLH转录因子竞争而与TTG1、PAP1/PAP2形成络合物,这个络合物与DFR启动子结合而抑制DFR基因的转录,所以造成花青素合成受阻[75]。苹果中转录因子属于R2R3-MYB型,编码转录蛋白的基因有MdmMYB1和MdmMYBA。MdmMYB1在拟南芥和葡萄培养细胞中异源表达可以诱导花青素的超表达[76],MdmMYBA从苹果果皮中分离得到,其表达具有组织和品种特异性,MdmMYBA蛋白特异结合于花青素合酶的启动子[69]。

3.1.2 bHLH转录因子。bHLH(basic helix-loop-helix,碱性螺旋-环-螺旋)转录因子是植物中第二大转录因子超家族,仅次于MYB转录因子。在bHLH转录因子的蛋白结构中,含有保守的bHLH基序,每个bHLH基序约由60个氨基酸残基组成,含有2个亚功能区,即位于N末端的碱性氨基酸DNA结合区和C末端的HLH区。植物bHLH转录因子参与调控多种生理途径,其中调控花青素合成是其重要功能之一。

玉米基因组中编码bHLH的基因主要包括R1、B1、LC和IN1等,R1蛋白可能通过形成二聚体(bHLH结构域和ACT结构域)发挥调控花青素合成的功能。B1基因调节多个组织中花青素的合成,但很少影响糊粉层和幼苗的颜色;LC基因调节叶中脉、叶舌、叶缘和果皮等组织的着色[49]。IN1基因能够编码与R1高度同源的bHLH转录因子, IN1基因转录产物可与R1/B1结合,阻止二聚体形成以及R1/B1与DNA结合,还能与C1/PL1的R2R3-MYB结构域结合,阻止它们发挥功能,从而抑制花青素合成[77]。拟南芥中参与调控花青素合成的bHLH蛋白都聚集于bHLH家族第三亚组(subgroup III),有TT8、GL3、EGL3和MYC1 [78-79]。主要通过参与形成MBW(MYB-bHLH-WD40)复合物调节花青素合成[57]。矮牵牛中调节花青素合成的bHLH蛋白有2个:AN1和JAF13。AN1基因与结构基因DFR同源,可直接调节DFR的表达。花药中AN1的表达依赖于AN4 (R2R3-MYB),在AN4功能缺失的叶片和花药中AN2 (R2R3-MYB)能够重新激活AN1的表达,表明AN2和AN4均是AN1表达的激活因子[53,80]。JAF13基因与AN2一起在叶片中瞬时表达能够激活DFR启动子,却不影响CHS和F3H等早期基因的表达[81]。龙胆是一种观花植物,花色碧蓝鲜艳,它的bHLH转录因子GtBHLH1与矮牵牛AN1蛋白高度同源,GtBHLH1基因表达模式与花青素合成结构基因表达模式一致[71]。金鱼草的编码bHLH基因DELILA[63-64],具有较强的组织特异性,主要在花冠、萼片、子叶和茎中起作用[16]。

3.1.3 WD40转录因子。

WD40蛋白是一类大的蛋白家族,这类蛋白结构高度保守,一般含有4~16个串联重复的WD基元。WD基元存在于真核生物的1%~2%蛋白质中[82],是一个高度保守的核心区域,每个WD基元含有大约由40个氨基酸残基组成的保守序列,该序列以N末端11~24个残基处GH二肽(Gly-His,GH)开始, C末端以WD 结尾(Trp-Asp,WD)[83]。

在矮牵牛中,WD40转录因子AN11会对结构基因DFR的表达量产生影响,从而调控花的色素积累[84]。在模式植物拟南芥中,TTG1蛋白是WD40转录因子,与矮牵牛AN11具有高度的同源性[85],TTG1影响DFR的功能,诱导DFR的表达[86]。在玉米中,pac1编码WD40蛋白,在pac1缺失突變体中,pac1的缺失导致a1、bz1 和c2 等花色素苷结构基因的表达下调,在种子的糊粉层没有花青素的积累[48,87-88]。在紫苏叶子中也发现花青素合成相关的WD40型PFWD蛋白,它含4个WD重复序列,氨基酸序列与AN11和TTG1较为相似,也相当保守,推测PFWD可能通过与MYC家族蛋白共同作用,可从细胞质中转移到细胞核上,在花青素合成等信号转导途径中起着信号传递的作用[66]。

3.2 轉录因子与结构基因的作用形式

3.2.1 转录因子单独或协同调控结构基因。

转录因子单独调节花青素的生物合成,例如番茄中的转录因子ANT1调节果实中花青素的积累,金龟草AmMYB305的调控不依赖于bHLH类转录因子就可激活合成途径结构基因的表达[67,89]。转录因子可以通过协作方式调控花青素的生物合成,例如拟南芥锌指蛋白TT1与同源域蛋白ANL2共同调控花青素的积累[90]。拟南芥TT2基因编码的MYB蛋白依赖bHLH型转录因子TT8的作用,共同控制DFR基因的表达[55]。

3.2.2 转录因子在不同位点上调控结构基因。

在不同种类的植物中,转录因子调节花青素生物合成的作用位点不同。如转录因子在金鱼草中调控F3H与下游DFR、ANS、3GT等基因的表达,却在矮牵牛中是调控下游DFR、ANS、3GT、GST等基因的表达,而在玉米中又是调控CHS与下游DFR、3GT等基因的表达[2]。在过表达PAP1或PAP2基因的拟南芥植株中,PAL、CHS和DFR的表达水平均有所提高,但DFR基因的表达提高程度强于PAL和CHS基因的提高程度。转录因子EGL3和GL3主要调控花青素合成途径晚期基因DFR、LDOX和UF3GT的表达[91]。TTG1调控DFR、LDOX基因的表达,但不影响CHS、CHI和F3H基因的表达[34,91]。一些不依赖于WD40蛋白的MYB类转录因子则调控花青素合成途径早期基因PAL、CHS、CHI、F3H和F3H的表达[58]。

4 展望

尽管前人已经通过研究明确了花青素生物合成途径,但是花青素的合成代谢过程非常复杂,还没有完全掌握。近年来,通过突变体和转基因等技术,对花青素代谢及分子调控进行更加深入的探索,陆续分离、鉴定和克隆了花青素相关结构基因和调控基因,然而还并没有完全掌握花青素合成的整个网络体系。因此,还需要借助现代转基因技术、测序技术、RNA干扰技术、生物信息分析技术和组学(基因组学、转录组学、蛋白组学等)技术等,进一步对花青素生物合成与调控机制进行研究,着力解决植物花青素合成中调控机制和体系、花青素代谢与其他代谢的关系与影响机制、生物环境和非生物环境对花青素合成的影响、花青素的修饰与转运等问题,为花青素类植物品种改良和开发提供理论支持。

参考文献

[1]GROTEWOLD E.The genetics and biochemistry of floral pigments[J].Annual review of plant biology,2006,57:761-780.

[2] HOLTON T A,CORNISH E C.Genetics and biochemistry of anthocyanin biosynthesis[J].Plant cell,1995,7(7):1071-1083.

[3] 周惠,文锦芬,邓明华,等.植物花青素生物合成相关基因研究进展[J].辣椒杂志,2011(4):1-7.

[4] TANAKA Y,SASAKI N,OHMIYA A.Biosynthesis of plant pigments:Anthocyanins,betalains and carotenoids[J].Plant J,2008,54(4):733-749.

[5] SAITO K,YONEKURASAKAKIBARA K,NAKABAYASHI R,et al.The flavonoid biosynthetic pathway in Arabidopsis:Structural and genetic diversity[J].Plant physiology and biochemistry,2013,72:21-34.

[6] AL SANE K O,HESHAM A E L.Biochemical and genetic evidences of anthocyanin biosynthesis and accumulation in a selected tomato mutant[J].Rendiconti lincei,2015,26(3):293-306.

[7] DURBIN M L,MCCAIG B,CLEGG M T.Molecular evolution of the chalcone synthase multigene family in the morning glory genome[J].Plant Mol Biol,2000,42(1):79-92.

[8] KOES R E,SPELT C E,VAN DEN ELZEN P J M,et al.Cloning and molecular characterization of the chalcone synthase multigene family of Petunia hybrida[J].Gene,1989,81(2):245-257.

[9] SPARVOLI F,MARTIN C,SCIENZA A,et al.Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.)[J].Plant Mol Biol,1994,24(5):743-755.

[10] VAN DER KROL A R,MUR L A,DE LANGE P,et al.Inhibition of flower pigmentation by antisense CHS genes:Promoter and minimal sequence requirements for the antisense effect[J].Plant Mol Biol,1990,14(4):457-466.

[11] MEHDY M C,LAMB C J.Chalcone isomerase cDNA cloning and mRNA induction by fungal elicitor,wounding and infection[J].The EMBO Journal,1987,6(6):1527-1533.

[12] VAN TUNEN A J,KOES R E,SPELT C E,et al.Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida:Coordinate,light-regulated and differential expression of flavonoid genes[J].The EMBO Journal,1988,7(5):1257-1263.

[13] ICHINOSE Y,KAWAMATA S,YAMADA T,et al.MOLE molecularcloning of chalcone synthase cDNAs from Pisum sativum[J].Plant Mol Biol,1992,18(5):1009-1012.

[14] MCKHANN H I,HIRSCH A M.Isolation of chalcone synthase and chalcone isomerase cDNAs from alfalfa (Medicago sativa L.):Highest transcript levels occur in young roots and root tips[J].Plant Mol Biol,1994,24(5):767-777.

[15] SHIMADA N,AOKI T,SATO S,et al.A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legumespecific 5deoxy(iso)flavonoids in Lotus japonicus[J].Plant Physiol,2003,131(3):941-951.

[16] MARTIN C,PRESCOTT A,MACKAY S,et al.Control of anthocyanin biosynthesis in flowers of Antirrhinum majus[J].The plant journal,1991,1(1):37-49.

[17] BRITSCH L,RUHNAUBRICH B,FORKMANN G.Molecular cloning,sequence analysis,and in vitro expression of flavanone 3 betahydroxylase from Petunia hybrida[J].Journal of biological chemistry,1992,267(8):5380-5387.

[18] PELLETIER M K,SHIRLEY B W.Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings:Coordinate regulation with chalcone synthase and chalcone isomerase[J].Plant Physiol,1996,111(1):339-345.

[19] GONG Z,YAMAZAKI1 M,SUGIYAMA M,et al.Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a formaspecific manner in Perilla fnitescens[J].Plant Mol Biol,1997,35:915-927.

[20] CHARRIER B,CORONADO C,KONDOROSI A,et al.Molecular characterization and expression of alfalfa (Medicago sativa L.) flavanone3hydroxylase and dihydroflavonol4reductase encoding genes[J].Plant Mol Biol,1995,29(4):773-786.

[21] JIANG F,WANG J Y,JIA H F,et al.RNAimediated silencing of the flavanone 3hydroxylase gene and its effect on flavonoid biosynthesis in strawberry fruit[J].Journal of plant growth regulation,2013,32(1):182-190.

[22] ZUKER A,TZFIRA T,BENMEIR H,et al.Modification of flower color and fragrance by antisense suppression of the flavanone 3hydroxylase gene[J].Molecular breeding,2002,9(1):33-41.

[23] BRUGLIERA F,BARRIREWELL G,HOLTON T A,et al.Isolation and characterization of a flavonoid 3hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida[J].Plant journal,1999,19(4):441-451.

[24] SCHOENBOHM C,MARTENS S,EDER C,et al.Identification of the Arabidopsis thaliana flavonoid 3 -hydroxylase gene and functional expression of the encoded P450 enzyme[J].Biological chemistry,2000,381(8):749-753.

[25] KITADA C,GONG Z,TANAKA Y,et al.Differential expression of two cytochrome P450s involved in the biosynthesis of flavones and anthocyanins in chemo-varietal forms of Perilla frutescens[J].Plant Cell Physiol,2001,42(12):1338-1344.

[26] 李義龙,肇涛澜,陈立超,等.花色素苷生物合成及花色的调控[J].生命科学,2008,20(1):147-152.

[27] DE VETTEN N,TER HORST J,VAN SCHAIK H P,et al.A cytochrome b5 is required for full activity of flavonoid 3,5hydroxylase,a cytochrome P450 involved in the formation of blue flower colors[J].Plant biology,1999,96(2):778-783.

[28] OREILLY C,SHEPHERD N S,PEREIRA A,et al.Molecular cloning of the a1 locus of Zea mays using the transposable elements En and Mu1[J].The EMBO Journal,1985,4(4):877-882.

[29] BELD M,MARTIN C,HUITS H,et al.Flavonoid synthesis in Petunia hybrida:Partial characterization of dihydroflavonol4reductase genes[J].Plant Mol Biol,1989,13(5):491-502.

[30] JOHNSON E T,YI H K,SHIN B C,et al.Cymbidium hybrida dihydroflavonol 4reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidintype anthocyanins[J].Plant journal,1999,19(1):81-85.

[31] JOHNSON E T,RYU S,YI H K,et al.Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4reductase[J].Plant journal,2001,25(3):325-333.

[32] NAKATSUKA A,IZUMI Y,YAMAGISHI M.Spatial and temporal expression of chalcone synthase and dihydroflavonol 4-reductase genes in the Asiatic hybrid lily[J].Plant Science,2003,165(4):759-767.

[33] SAITO K,KOBAYASHI M,GONG Z,et al.Direct evidence for anthocyanidin synthase as a 2oxoglutarate dependent oxygenase:Molecular cloning and functional expression of cDNA from a red forma of Perilla frutescens[J].The plant journal,1999,17(2):181-189.

[34] PELLETIER M K,MURRELL J R,SHIRLEY B W.Characterization of flavonol synthase and leucoanthocyanidin dioxygenase genes in Arabidopsis.Further evidence for differential regulation of “early” and “late” genes[J].Plant Physiol,1997,113(4):1437-1445.

[35] NAKAMURA N,FUKUCHIMIZUTANI M,MIYAZAKI K,et al.RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression[J].Plant biotechnology,2006,23:13-17.

[36] REDDY A M,REDDY V S,SCHEFFLER B E,et al.Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential[J].Metabolic engineering,2007,9(1):95-111.

[37] DOONER H K,WECK E,ADAMS S,et al.A molecular genetic analysis of insertions in the bronze locus in maize[J].Mol Gen Genet,1985,200:240-246.

[38] MARTIN C,PRESCOTT A,MACKAY S,et al.Control of anthocyanin biosynthesis in flowers of Antirrhinum[J].The Plan journal,1991,1(1):37-49.

[39] FORD C M,BOSS P K,HOJ P B.Cloning and characterization of Vitis vinifera UDPglucose:Flavonoid 3Oglucosyltransferase,a homologue of the enzyme encoded by the maize Bronze1 locus that may primarily serve to glucosylate anthocyanidins in vivo[J].Journal of biological chemistry,1998,273(15):9224-9233.

[40] HU C Y,GONG Y F,JIN S,et al.Molecular analysis of a UDPglucose:Flavonoid 3Oglucosyltransferase (UFGT) gene from purple potato (Solanum tuberosum)[J].Molecular biology reports,2011,38(1):561-567.

[41] WEN X C,HAN J,LENG X P,et al.Cloning and expression of UDPglucose:Flavonoid 3Oglucosyltransferase gene in peach flowers[J].Genetics and molecular research,2014,13(4):10067-10075.

[42] BRUGLIERA F,HOLTON T A,STEVENSON T W,et al.Isolation and characterization of a cDNA clone corresponding to the Rt locus of Petunia hybrida[J].Plant journal,1994,5(1):81-92.

[43] JONSSON L M V,DE VLAMING P,WIERING H,et al.Genetic control of anthocyaninOmethyltransferase activity in flowers of Petunia hybrida[J].Theor Appl Genet,1983,66(3/4):349-355.

[44] FUJIWARA H,TANAKA Y,YONEKURASAKAKIBARA K,et al.cDNA cloning,gene expression and subcellular localization of anthocyanin 5aromatic acyltransferase from Gentiana triflora[J].Plant journal,1998,16(4):421-431.

[45] NAKATSUKA T,NISHIHARA M,MISHIBA K,et al.Temporal expression of flavonoid biosynthesisrelated genes regulates flower pigmentation in gentian plants[J].Plant science,2005,168(5):1309-1318.

[46] 寧张,胡宗利,陈绪清,等.植物花青素代谢途径分析及调控模型建立[J].中国生物工程杂志,2008,28(1):97-105.

[47] LINWANG K,BOLITHO K,GRAFTON K,et al.An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae[J].Plant biology,2010,10:50.

[48] CAREY C C,STRAHLE J T,SELINGER D A,et al.Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana[J].Plant cell,2004,16(2):450-464.

[49] LUDWIG S R,HABERA L F,DELLAPORTA S L,et al.Lc,a member of the maize R gene family responsible for tissuespecific anthocyanin production,encodes a protein similar to transcriptional activators[J].Proc Natl Acad Sci USA,1989,86(18):7092-7096.

[50] HERNANDEZ J M,HEINE G F,IRANI N G,et al.Different mechanisms participate in the Rdependent activity of the R2R3 MYB transcription factor C1[J].Journal of biological chemistry,2004,279(46):48205-48213.

[51] SINGER T,GIERL A,PETERSON P A.Three new dominant C1 suppressor alleles in Zea mays[J].Genetical research,1998,71(2):127-132.

[52] FRANKEN P,SCHRELL S,PETERSON P A,et al.Molecular analysis of protein domain function encoded by the mybhomologous maize genes C1,Zm 1 and Zm 38[J].Plant journal,1994,6(1):21-30.

[53] SPELT C,QUATTROCCHIO F,MOL J N M,et al.anthocyanin1 of petunia encodes a basic helixloophelix protein that directly activates transcription of structural anthocyanin genes[J].The plant cell,2000,12:1619-1631.

[54] QUATTROCCHIO F,WING J,VAN DER WOUDE K,et al.Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color[J].Plant cell,1999,11(8):1433-1444.

[55] NESI N,DEBEAUJON I,JOND C,et al.The TT8 gene encodes a basic helixloophelix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques[J].Plant cell,2000,12(10):1863-1878.

[56] BAUDRY A,HEIM M A,DUBREUCQ B,et al.TT2,TT8,and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana[J].Plant journal,2004,39(3):366-380.

[57] ZIMMERMANN I M,HEIM M A,WEISSHAAR B,et al.Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/Blike BHLH proteins[J].Plant journal,2004,40(1):22-34.

[58] STRACKE R,ISHIHARA H,BARSCH G H A,et al.Differential regulation of closely related R2R3MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling[J].Plant journal,2007,50(4):660-677.

[59] JIN H L,COMINELLI E,BAILEY P,et al.Transcriptional repression by AtMYB4 controls production of UVprotecting sunscreens in Arabidopsis[J].EMBO Journal,2000,19(22):6150-6161.

[60] BOGS J,JAFFE F W,TAKOS A M,et al.The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development[J].Plant Physiol,2007,143(3):1347-1361.

[61] WALKER A R,LEE E,BOGS J,et al.White grapes arose through the mutation of two similar and adjacent regulatory genes[J].Plant J,2007,49(5):772-785.

[62] HICHRI I,HEPPEL S C,PILLET J,et al.The basic helixloophelix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine[J].Mol Plant,2010,3(3):509-523.

[63] DAVIES K M,SCHWINN K E.Transcriptional regulation of secondary metabolism[J].Functional plant biology,2003,30(9):913-925.

[64] MARTIN C,PRESCOTT A,MACKAY S,et al.Control of anthocyanin biosynthesis in flowers of Antirrhinum majus[J].The planl journal,1991,1(1):37-49.

[65] SCHWINN K,VENAIL J,SHANG Y,et al.A small family of MYBregulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum[J].Plant cell,2006,18(4):831-851.

[66] YAMAZAKI M,MAKITA Y,SPRINGOB K,et al.Regulatory mechanisms for anthocyanin biosynthesis in chemotypes of Perilla frutescens var.crispa[J].Biochemical engineering journal,2003,14(3):191-197.

[67] MATHEWS H,CLENDENNEN S K,CALDWELL C G,et al.Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis,modification,and transport[J].Plant Cell,2003,15(8):1689-1703.

[68] ESPLEY R V,HELLENS R P,PUTTERILL J,et al.Red colouration in apple fruit is due to the activity of the MYB transcription factor,MdMYB10[J].Plant journal,2007,49(3):414-427.

[69] BAN Y,HONDA C,HATSUYAMA Y,et al.Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin[J].Plant and cell physiology,2007,48(7):958-970.

[70] PARK K I,MORITA Y,ISHIKAWA N,et al.A bHLH regulatory gene controls pigmentation of both flower and seed,and seed trichome formation in the common morning glory[J].Plant and cell physiology,2007,48:66.

[71] NAKATSUKA T,HARUTA K S,PITAKSUTHEEPONG C,et al.Identification and characterization of R2R3MYB and bHLH transcription factors regulating anthocyanin biosynthesis in gentian flowers[J].Plant Cell Physiol,2008,49(12):1818-1829.

[72] CONE K C,BURR F A,BURR B.Molecular analysis of the maize anthocyanin regulatory locus Cl[J].Proc Natl Acad Sci USA,1986,83(24):9631-9635.

[73] WALKER A R,DAVISON P A,BOLOGNESIWINFIELD A C,et al.The TRANSPARENT TESTA GLABRA1 locus,which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis,encodes a WD40 repeat protein[J].The plant cell,1999,11:1337-1349.

[74] BOREVITZ J O,XIA Y,BLOUNT J,et al.Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis[J].The plant cell,2000,12:2383-2393.

[75] MATSUI K,UMEMURA Y,OHMETAKAGI M.AtMYBL2,a protein with a single MYB domain,acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis[J].Plant journal,2008,55(6):954-967.

[76] TAKOS A M,JAFFE F W,JACOB S R,et al.Lightinduced expression of a MYB gene regulates anthocyanin biosynthesis in red apples[J].Plant Physiol,2006,142(3):1216-1232.

[77] BURR F A,BURR B,BLEWITT B E S M,et al.The maize repressorlike gene intensifier1 shares homology with the r1/b1 multigene family of transcription factors and exhibits missplicing[J].The plant cell,1996,8(8):1249-1259.

[78] BAILEY P C,MARTIN C,TOLEDOORTIZ G,et al.Update on the basic helixloophelix transcription factor gene family in Arabidopsis thaliana[J].The plant cell,2003,15(11):2497-2501.

[79] HEIM M A,JAKOBY M,WERBER M,et al.The basic helixloophelix transcription factor family in plants:A genomewide study of protein structure and functional diversity[J].Mol Biol Evol,2003,20(5):735-747.

[80] GERATS A G M,HUITS H,VRIJLANDT E,et al.Molecular characterization of a nonautonomous transposable element (dTph1) of petunia[J].The plant cell,1990,2:1121-1128.

[81] ALBERT N W,LEWIS D H,ZHANG H,et al.Members of an R2R3MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning[J].Plant J,2011,65(5):771-784.

[82] MADRONA A Y,WILSON D K.The structure of Ski8p,a protein regulating mRNA degradation:Implications for WD protein structure[J].Protein Sci,2004,13(6):1557-1565.

[83] NEER E J,SCHMIDT C J,NAMBUDRIPAD R,et al.The ancient regulatoryprotein family of WDrepeat proteins[J].Nature,1994,371(6495):297-300.

[84] DE VETTEN N,QUATTROCCHIO F,MOL J et al.The an11 locus controlling flower pigmentation in petunia encodes a novel WDrepeat protein conserved in yeast,plants,and animals[J].Genes & development,1997,11:1422-1434.

[85] SPRINGOB K,NAKAJIMA J I,YAMAZAKI M,et al.Recent advances in the biosynthesis and accumulation of anthocyanins[J].Natural product reports,2003,20(3):288-303.

[86] HELLER W,FORKMANN G,BRITSCH L,et al.Enzymatic reduction of (+)dihydroflavonols to flavan3,4cisdiols with flower extracts from Matthiola incana and its role in anthocyanin biosynthesis[J].Planta,1985,165:284-287.

[87] LUDWIG S R,HABERA L F,DELLAPORTA S L,et al.Lc,a member of the maize R gene family responsible for tissuespecific anthocyanin production,encodes a protein similar to transcriptional activators[J].Proc Natl Acad Sci USA,1989,86(18):7092-7096.

[88] SELINGER D A,CHANDLER V L.A mutation in the pale aleurone color1 gene identifies a novel regulator of the maize anthocyanin pathway[J].The plant cell,1999,11:5-14.

[89] MOYANO E,MARTNEZGARCIA J F,MARTIN C.Apparent redundancy in myb gene function provides gearing for the control of flavonoid biosynthesis in antirrhinum flowers[J].The plant cell,1996,8:1519-1532.

[90] KUBO H,PEETERS A J M,AARTS M G M,et al.ANTHOCYANINLESS2,a homeobox gene affecting anthocyanin distribution and root development in arabidopsis[J].The plant cell,1999,11:1217-1226.

[91] ZHANG F,GONZALEZ A,ZHAO M Z,et al.A network of redundant bHLH proteins functions in all TTG1dependent pathways of Arabidopsis[J].Development,2003,130(20):4859-4869.

猜你喜欢
花青素调控
如何调控困意
经济稳中有进 调控托而不举
原花青素B2通过Akt/FoxO4通路拮抗内皮细胞衰老的实验研究
花青素对非小细胞肺癌组织细胞GST-π表达的影响
顺势而导 灵活调控
山楸梅浆果中花青素提取方法的优化和测定
原花青素对脑缺血再灌注损伤后肠道功能的保护作用
SUMO修饰在细胞凋亡中的调控作用
低水力停留时间氧化沟的改造与调控
负压空化法提取银杏叶中原花青素及其分离纯化