地表滴灌水氮耦合对毛白杨幼林生长及土壤水氮分布的影响

2018-10-19 01:13贺曰林张宏锦席本野戴腾飞李豆豆扈明媛贾黎明
农业工程学报 2018年20期
关键词:三倍体水氮林木

贺曰林,王 烨,张宏锦,席本野,戴腾飞,李豆豆,扈明媛,贾黎明



地表滴灌水氮耦合对毛白杨幼林生长及土壤水氮分布的影响

贺曰林1,王 烨2,张宏锦1,席本野1,戴腾飞1,李豆豆1,扈明媛1,贾黎明1※

(1. 北京林业大学省部共建森林培育与保护教育部重点实验室,北京 100083;2. 中国林业科学研究院林业研究所,北京 10009 1;国家林业局林木培育重点实验室,北京 100091)

为探究地表滴灌水氮耦合对毛白杨生长及土壤水氮分布的影响,以2年生三倍体毛白杨人工林为研究对象,研究2种灌水处理(W20、W45)和3种施氮水平(80、150、220 kg/(hm2·a))下滴头正下方0~80 cm土层土壤含水率(soil water content,SWC)和无机氮(min)的动态变化规律,结合林木生长情况,明确2年生三倍体毛白杨最佳水氮耦合策略。结果表明:W20处理能显著促进4-7月林木胸径生长(<0.05),水氮因子尚未表现出交互作用(>0.05)。灌溉能显著影响SWC,旱季(4月底至6月中旬)W20处理平均SWC达到11.3%,较空白对照(CK)提高37.5%;雨季(6月下旬至8月初)SWC受降雨影响整体提升,处理间差异不显著(>0.05)。旱季min在0~80 cm土层逐渐积累,集中分布在0~20 cm表土层,且随施氮量增加而增加;雨季min向深土层移动,W20处理min出现深层淋溶,W45处理各土层min分布均匀,其中W45N150处理0~80 cm土层min平均质量分数达到44.27 mg/kg,显著高于其他处理(<0.05)。生长季末各处理min均增加,在土层中产生积累。综上,N150处理能保证整个生长季内0~80 cm土层充足的氮素含量,结合林木生长情况判断,4-7月W20处理能显著促进毛白杨幼林生长(<0.05),8月份开始W45处理即可满足林木生长对水分的需求。

土壤;水;氮;生长;三倍体毛白杨幼林;地表滴灌

0 引 言

水分和养分是影响林木生长的关键因子,适宜的水肥管理策略是促进林木生长和提高林地生产力的重要途径[1-6]。水肥耦合是将灌水和施肥措施结合起来,实现水肥一体化,达到“以水促肥、以肥调水”的目的,以提高水肥利用效率,其中以水氮耦合最为普遍。水肥因子具有协同作用,水分亏缺能抑制林木的养分吸收[7-8],而过量灌水又易造成养分的淋失[9-13];过量施肥虽能在一定条件下提高林木水氮利用效率[14-15],但土壤中残留的大量N素势必对环境造成污染且降低经济效益[16-18]。因此,在实际生产中提高水氮利用效率的同时,避免环境污染等负面作用是制定适宜的水氮耦合策略的关键。

滴灌是一种能有效实现水肥耦合的灌溉施肥技术。目前已有许多学者通过室内土柱试验模拟滴灌条件下土壤水分和N素的运移规律[19-22];大田条件下土壤水氮运移规律的研究多集中于农业、园艺领域,且重点监测硝态氮淋失及N素平衡[23-31],如柑橘、西红柿及冬小麦-夏玉米耕作制度下的植物-土壤N素平衡研究。在林业领域,由于大田条件的复杂性及评价指标的单一化,研究多集中于不同水肥耦合策略对林木生长及生理指标的影响[32-34],关于水肥施入土体后土壤“黑箱”内水氮分布的研究几乎为空白[35]。

杨树作为林业栽培上最具备潜力的速生丰产树种之一[36-37],是中国木材战略储备林建设的先锋军。目前通过滴灌系统进行水肥管理已在中国杨树人工林上有一定应用和发展[2-3,38],但关于滴灌条件下林木根区水氮动态变化规律研究不足[35]。农业领域的相关研究表明,滴灌条件下,养分溶于水中易随水流动,灌溉施肥策略选择不当,不仅会造成水资源及N素的浪费,而且还会对环境产生负面影响[39-40]。因此,明确滴灌水肥耦合条件下水氮运移与再分布规律,是制定人工林合理灌溉施肥策略、防止地下水污染的重要理论依据。

因此,本文以中国乡土杨树品种三倍体毛白杨幼林为研究对象,开展滴灌条件下林木生长和林地土壤水氮分布规律的研究,研究目标为:1)明确大田滴灌条件下毛白杨人工林不同水氮耦合处理土壤含水率(SWC)、无机氮(min)的年度变化规律;2)明确水氮耦合对毛白杨幼林林木生长的作用规律;3)结合气象因子,为毛白杨幼林筛选最佳水氮耦合处理。研究将为三倍体毛白杨速生丰产林综合水氮耦合策略的制定提供数据支撑与理论依据。

1 材料与方法

1.1 试验地概况

试验地位于山东省聊城市高唐县国有旧城林场(36°48′47″N,116°5′25″E)。该地气候为暖温带半干旱季风区域大陆性气候,四季分明,光照充足,热量丰富。全年日照总时数达2 651.9 h,无霜期204 d。年均气温12.0~14.1 ℃,极端最高气温达41.2 ℃,极端最低气温−20.8 ℃。年均降水量544.7mm,降水主要集中在7-8月;年均蒸发量1 880 mm。地下水位6 m左右。海拔30 m。试验地土壤为砂壤土,0~80 cm土层平均饱和含水率为0.44 cm3/cm3,田间持水量为0.33 cm3/cm3。试验地土壤基本理化性质见表1。

表1 试验地土壤理化性质

注:a美国农部制。

Note:aUnited States Department of Agriculture Classification.

1.2 研究对象

供试材料为三倍体毛白杨无性系S86((×) ×(×)),2016年春季采用2年根2年干苗木植苗造林,林木采用均匀配置模式,株距2 m,行距3 m,林木平均胸径2.68 cm,平均树高3.30 m。2016年10月完成试验地滴灌系统的安装及铺设,并于2017年4月全面投入使用。滴灌系统采用以色列耐特菲姆公司生产的滴灌管,滴头流量1.6 L/h,滴头间距50 cm,置于地表,沿树行方向一行二带式(滴灌管分别位于树体两侧距树30 cm处)铺设。

1.3 试验设计

试验采用双因素完全随机区组试验设计,5次重复,设置4个施N量(N0、N80、N150、N220)和3个灌溉水平(W20、W33、W45)组合成12个水氮耦合处理,另外设置一个空白对照CK,试验期间无任何灌溉施肥措施。施N量分别为0、80、150、220 kg/(hm2·a),根据三倍体毛白杨先快后慢的生长节律[5],前3次施N量占施N总量的3/5,后3次占施N总量的2/5。根据毛白杨生长与土壤水分有效性(r)间的定量关系[41]和试验地土壤特征,设定当滴头正下方20 cm处的土壤水势分别达到−20 kPa(即田间持水量(θ)的79%,土壤水分有效性(θ)的73%)、−33 kPa(67%θ,57% r)和−45 kPa(60%θ,48% r)时开始滴灌,当土壤湿润体(以滴头为椭球心,长半轴为40 cm,短半轴为25 cm的半椭球体)内平均含水率(SWC)达到θ时停止灌溉。滴灌施肥采用以色列泰芬公司(TEEN)研发的美瑞(MixRite)比例施肥器将一定浓度的尿素溶液(N素质量浓度为233.35 g/L)以4%的混合比水力驱动混入滴灌系统,从滴头匀速流出。滴灌施肥系统的运行方式为“水-肥-水”,灌溉施肥前后均通过20 min灌水冲洗管路,各处理每次施肥均在同一天完成。春季展叶前,所有处理(包括CK)均按照当地灌溉制度进行灌溉1次,林木展叶后正式开展试验,试验期间,定期对林地进行除草。

2017年试验期间,由于生长季内降雨(图1)对林地土壤水分的补充,W33和W45灌溉处理未拉开土壤水分梯度,因此本文只针对3个施N量(N80、N150、N220)和2个灌溉水平(W20、W45)下林木生长及土壤水氮分布规律开展研究,具体施肥时间和单次施N量见表2。

图1 2017年生长季日均降雨量

表2 不同水氮耦合处理单次施N量

1.4 测定项目与方法

1)胸径测定:在5个区组内各试验处理的每个试验小区选取除保护行外的16株林木作为样树,生长季内每月对其测定1次胸径。

2)土样采集与分析:土样采集时间分别为滴灌施肥后第1天,各试验小区随机选取3个距离树体最近的滴头为取样点,使用内径4 cm、长20 cm的土钻采集滴头正下方0~20、>20~40、>40~60和>60~80 cm的土样,CK随机选择行间3个距离树体30 cm的位置为取样点(与滴灌带布设位置相同),采集相同土层土样。将采集土样分为2份,1份装于铝盒中,烘干法测定各土层SWC;1份放入自封袋于−4 ℃冰箱冷冻保存,采用1 mol/L氯化钾溶液浸提(土水比1:5),用连续流动分析仪AA3测定土样中min含量。

1.5 数据处理与分析

采用Excel 2013软件处理数据及绘制图表,Origin 9.0软件作图,用SPSS 18.0软件(v. 18.0,SPSS Inc.,Chicago IL,USA)的ANOVA和Duncan(=0.05)法对数据进行方差分析和多重比较。

2 结果与分析

2.1 胸径生长

在生长季内,5-8月为毛白杨生长速生期,各处理平均胸径月增量达到0.63 cm,其中W20处理4-7月平均胸径月增量极显著高于W45处理(<0.01),分别高出25.9%、39.4%、16.7%和19.7%(表3)。水氮双因素交互作用不显著(>0.05),不同施N处理差异不显著(>0.05)。数据分析结果表明,水分是影响2 a生三倍体毛白杨林木生长的关键因子,施肥作用则不明显。

表3 胸径月增量对比

Table 3 ΔDBH (increment of diameters at breast height) of different treatments

注:同组数据的不同字母表示差异显著(<0.05),根据Duncan检验;NS, 差异不显著,下同。

Note: Different letters in the same treatment indicate significant difference (<0.05), according to the Duncan test. NS, no significant difference, the same as below.

2.2 0~80 cm土层SWC变化规律

如图2a、b、c、d所示,灌溉能引起SWC的明显变化。旱季(4月底至6月中旬)W20处理0~80 cm各土层SWC明显高于W45处理和CK,与CK相比,W20处理4-6月平均SWC分别较CK增加10.7%、107.1%和15.7%,W45与CK差异不明显。灌溉能显著影响SWC,旱季(4月底至6月中旬)W20处理平均SWC达到11.3%,较空白对照(CK)提高37.5%;随着雨季(6月下旬至8月初)来临,各处理SWC整体提高,W20、W45和CK平均SWC分别达到12.8%、11.7%和11.7%,其中6月下旬取样前强降雨导致0~80 cm土层SWC整体增加,但受地表蒸发的影响,0~20 cm表土层SWC增加不明显,20~80 cm明显提高;7月18日取样当天降雨(12.3 mm)能快速提高各处理0~80 cm土层SWC。如图2e、f、g、h所示,整个生长季除7月18日取样当天降雨导致N150和N220处理SWC明显高于其他处理外,其他时期不同施N水平下SWC差异不明显。数据分析表明旱季SWC受灌溉影响明显,而雨季SWC主要受气象因子影响,且在不同土层均有影响。整个生长季不同施N处理SWC差异不明显。生长季结束后,水氮耦合处理0~80 cm土层的SWC略高于生长季初,其中40~80 cm土层SWC与CK对比增加明显。

图2 不同灌水处理和不同施N处理0~80 cm土层土壤含水率(SWC)变化

2.3 0~80 cm土层Nmin变化规律

与CK相比,水氮耦合能显著提高土壤min质量分数,整个生长季水氮处理0~80 cm土层min质量分数总体呈现先增后降的变化趋势(图3)。数据分析表明,旱季施肥后各处理0~80 cm Nmin逐渐升高,且在相同灌水条件下min均随施N量增加而增大,并在第3次施肥后达到峰值,其中W20N220和W45N220min质量分数分别达到144.12和164.48 mg/kg;6月下旬受强降雨影响,SWC明显增加(图2),0~80 cm土层min明显降低。雨季W20N220处理的min仍较高且相对稳定,分别比W20N80和W20N150高50.0%和58.4%;W45N80和W45N150处理的min呈先增后降的趋势且W45N150处理min最高,而W45N220相对稳定,W45N150处理0~80 cm土层min平均质量分数达44.27 mg/kg,W45N150处理0~80 cm土层min质量分数分别较W45N220和W45N80增加19.7%和55.2%。8月施肥结束后,各处理0~80 cm土层min大幅下降,至10月时,各水氮处理0~80 cm土层min仍比4月初试验开始前要高164.1%~732.9%,表明各处理0~80 cm土层min均发生积累。生长季内CK处理min变化不明显,只在6月表现为受降雨影响。

对生长季内各试验处理0~80 cm土层min含量进行双因素方差分析(表4),整个生长季内,不同施N水平能引起土壤min的明显变化。除第1次施肥后低肥处理min含量较高外,其他时期中高肥处理均高于(>0.05)或显著高于低肥处理(<0.05),5月中旬至8月初,中、高肥处理平均min含量分别较低肥处理高22.9%、40.9%、38.1%、26.9%和55.2%。

图3 生长季内不同水氮耦合处理0~80 cm土层Nmin动态变化

除N因素外,水分因素也能引起土壤min含量的明显变化。旱季不同水分处理虽差异不显著(>0.05),但总体而言W45处理的min较高,其在4月底至6月中旬分别较W20处理增加39.0%、24.6%和26.7%;雨季W45处理的min显著高于W20处理(<0.05),6月下旬至8月初分别较其高出46.8%、82.3%和65.1%。整个生长季内水氮对土壤min含量的交互作用不显著(>0.05)。

表4 生长季内0~80 cm土层Nmin含量双因素方差分析表

2.4 不同土层Nmin变化规律

如图4所示,各处理Nmin在不同土层变化规律不同。除试验因素外,水肥处理土壤min呈现明显的季节变化,旱季(4月-6月中旬)各土层min均呈增加趋势且集中分布于0~20 cm表土层,不同土层min质量分数差异明显,W20和W45处理0~20 cm土层各施N水平平均min质量分数分别为>20~80 cm土层的5.42倍和4.33倍。虽然旱季不同水分梯度在各土层差异不显著(>0.05),但均表现出W45处理min较高的规律,其中0~20 cm土层W20和W45min平均含量分别为50.49和56.96 mg/kg,>20~80 cm土层达到9.31和13.14 mg/kg,W45处理表土层(0~20 cm)和深土层(>20~80 cm)min分别比W20处理高12.8%和41.1%(表5)。随着雨季的来临(6月下旬-8月初),第4次(6月25日)施肥前强降雨导致不同土层min分布发生变化,其中W20N150和W20N220处理0~20 cm土层min明显降低,60~80 cm土层明显升高,W45水平下各处理0~40 cm土层min明显降低,>40~80 cm土层明显升高。雨季SWC升高(图1),min由0~20 cm土层向>20~80 cm土层移动,其中W45灌溉条件下各施N处理>20~80 cm土层min较高且分布均匀,平均min含量较W20处理显著增加216.7%(<0.05,表5),W20灌溉条件下各施N处理>20~80 cm土层min较低,且与CK对比无明显差异(>0.05,表5)。

图4 生长季内不同处理0~80 cm各土层Nmin质量分数变化

表5 不同水分处理各土层Nmin质量分数对比

根据生长季内不同土层min分布情况(图3),将变化规律一致的土层数据进行合并,对比不同施N梯度下min变化规律(表6)。在生长季内,各土层min受施N量影响明显。数据分析表明,旱季W20N150和W20N220处理0~20 cm土层min含量显著高于W20N80(<0.05),分别提高31.3%和50.0%;雨季W20N220处理0~20 cm土层min显著高于W20N80和W20N150(<0.05),较中低肥处理平均min含量增加89.2%。旱季W45灌溉条件下各施N处理min差异不明显(>0.05),但W45N150min含量最高;雨季W45N150处理0~20 cm土层min含量显著高于W45N80和W45N220(<0.05),分别增加53.7%和51.1%。通过对比W20和W45处理>20~80 cm土层min含量可知,W20整个生长季内min保持在较低水平;雨季W45处理>20~80 cm土层min明显积累。

表6 不同水分处理不同施N水平下各土层Nmin含量对比

3 讨 论

3.1 林木生长及土壤水分变化规律

研究结果显示,灌溉和降雨均是影响林地SWC的关键因子,整个生长季内SWC均呈现先增后减的年度变化规律,灌溉使得林地SWC的变化更为明显(图2)。郭迎新等[41]研究表明降雨前后SWC的变化主要受到土壤特性、土壤初期含水率和降水的影响,其中降水的主效应达到85%,且0~10 cm土层是含水率速变层。在本研究中,降雨对土壤水分有明显的补充作用,但是灌溉处理对毛白杨胸径生长仍产生显著影响,尤其是充分灌溉(W20)处理,说明水分是限制毛白杨幼林生长的主要因素之一。

结合2年生三倍体毛白杨林木胸径月增量年度变化规律(表3)分析,4-7月是运用灌溉措施调控林木生长的关键时期。Xi等[42]研究结果表明,不同土层水分有效性(r)对三倍体毛白杨林木生长的作用程度不同,其中0~10 cm表土层r对林木生长变化的解释程度达到70.8%,但在10~90 cm土层降低至58.4%~61.1%,90 cm以下土层中该解释程度降低至48.7%,且当0~30 cm土层r高于0.7时,毛白杨生长最快。不同研究中水分对林木生长贡献的差异主要与根系分布及根系吸水能力有关,Xi等[42]研究表明0~20 cm浅土层细根是1 m土层范围内根系吸水的主力军。结合本研究生长季内SWC变化规律可知,旱季(4-6月)灌溉施肥能显著增加0~80 cm土层SWC(图2),为毛白杨林木生长及时补充水分;雨季来临后,各处理0~80 cm土层SWC整体增加,水分在80 cm以下土层可能发生深层渗漏。雨季林地SWC虽整体提升,但7月份林木蒸腾仍消耗大量水分[8],结合本研究7月份林木生长速率分析,仅依靠降雨对处于生长高峰期的毛白杨进行水分补充风险较大,因此仍需要依靠灌溉补充林木生长耗水。

在目前水氮耦合策略下,虽然增加灌溉量能增大水氮深层淋溶的风险[10,43],但提高林木根区SWC仍是促进毛白杨林木生长的关键,尤其在旱季加强灌溉显得尤为重要。因此,应加强4-7月份林地灌溉,促进毛白杨生长。

3.2 土壤Nmin变化规律

旱季随着施N量增加及温度升高,土壤矿化速率升高[44-45],0~80 cm土层min逐渐积累;雨季来临降雨量增加,过量水分补充必然会导致min深层淋溶[10,43]。大量室内研究已证明点源滴灌施肥条件下土壤NO3--N的运移规律,NO3--N具有易随水移动的特性,导致其在湿润体边缘聚集[20-21],滴灌施肥后尿素首先在0~20 cm土壤表层聚集水解为NH4+-N,进一步发生硝化反应生成NO3--N,灌水等因素不易造成NH4+-N在土壤中二次分布[46-47],由此推断本试验条件下雨季min深层移动主要由NO3--N 移动造成。

生长季内各处理施肥后min集中分布在0~20 cm表土层,表层min占0~80 cm土层min总量的70%。雨季W45处理min明显向40~80 cm土层移动,而在整个生长季内W20处理20~80 cm土层min均较低,与CK对比无显著差异(表5)。通过对比雨季W20与W45处理不同土层min质量分数变化,结合W20处理SWC变化(图2),初步推断随着降雨的增多,W20处理min有淋溶至80 cm以下土层的风险,但80 cm以下土层min变化规律有待进一步研究确定。戴腾飞等[35]对不同施肥方式及施N量下土壤N素垂向运移规律研究发现,N素在深土层的积累量随施N量增加而增加,滴灌施肥下土壤中尿素的水解、硝化速率和运移速率均较高;叶优良[48]等研究发现灌水能明显影响0~200 cm土壤硝态氮积累量,土壤硝态氮积累量随灌水次数增加而降低。商放泽[49]等通过对深层包气带土壤N素淋溶积累研究发现,砂质壤土下施N对min的影响深度主要为0~145 cm土层,且N素易随水分淋溶至下层。此外,有研究表明5a生三倍体毛白杨宽窄行栽植模式下细根主要分布在0~20 cm和70~110 cm土层[50],细根是林木养分吸收的主要器官,同时基于W20处理林木胸径月增量显著高于W45处理的研究结果,推断W20处理下林木根系对0~80 cm土层min的吸收与利用也可能是导致旱季min质量分数较低的原因之一。

通过分析雨季施肥后各处理min变化规律可知,W20N220处理min变化趋势稳定且含量较高(图3),初步推断在充分灌溉(W20)条件下,提高施肥量水平对雨季N素淋溶起一定的补偿作用,但过高的施N量也必然加剧min淋失[49,51];亏缺灌溉(W45)条件下中肥处理(N150)min质量分数维持在较高水平,高肥处理(N220)min反而有所下降,推断提高施肥量加剧W45处理N素淋失。通过0~80 cm土层min含量变化规律分析,在目前水氮耦合策略下,W45N150处理能为0~80 cm土层提供较高的min。

3.3 2a生三倍体毛白杨人工林水氮耦合策略选择

从杨树人工林栽培角度考虑,提高林木生长速率和林地生产力是杨树人工林培育的重要目标[52-53],结合各试验处理林木胸径生长情况,W20处理是提高林木生长速率的重要手段(表3),且席本野等[8,42,54]研究表明在华北平原三倍体毛白杨栽培技术上灌溉因子是调节林木生长的关键因子,因此应在保证旱季水分供应充足的条件下,减少N素淋失。7月份雨季来临,W20处理林木胸径增长量仍显著高于W45处理,通过对比W45和W20灌溉条件下20~80 cm土层的min含量,可推断雨季W20处理min淋溶至80 cm以下土层。如何调节水氮供应的矛盾是下一步研究的重点。从土壤养分角度考虑,N150处理是整个生长季最佳施N水平,结合林木需水状况分析,4-7月应采取W20灌溉措施保证林木生长,8-10月正常降雨即能满足林木生长对水分的需求。此外,考虑生长季末min在0~80 cm土层积累的现象,在下一步水氮耦合策略的制定上,应加强80 cm以下根区min动态监测,结合根系分布及水养吸收特性,提高N肥利用效率,防止地下水污染。

4 结 论

在毛白杨幼林期,水分是影响林木生长的关键因素,−20 kPa灌水处理能显著提高4―7月林木胸径月增量,较−45 kPa灌水处理提高25.4%。水氮耦合措施对林木生长及林地水氮分布的影响无明显交互作用,外部降雨及不同灌溉策略是影响土壤水氮运移的重要因子,其中,SWC受降雨等气象因子影响明显,4-6月份适时灌溉能及时补充旱季林木快速生长对水分的需求;土壤无机氮min质量分数呈现旱季积累、雨季向深土层移动的规律,150 kg/(hm2·a)的施氮量水平能维持整个生长季内0~80 cm土层较高无机氮含量。综上,应加强4―7月林地水分调控,高水中肥处理(W20N150)能保证充足的水氮供应,8月份开始低水中肥处理(W45N150)能维持较高无机氮含量。

[1] Stanturf J A, Oosten C V,et al. Poplar Culture in North America[M]. NRC Research Press, 2002.

[2] Coyle D R, Coleman M D. Forest production responses to irrigation and fertilization are not explained by shifts in allocation[J]. Forest Ecology & Management, 2005, 208(1): 137-152.

[3] Driessche R V D, Thomas B R, Kamelchuk D P. Effects of N, NP, and NPKS fertilizers applied to four-year old hybrid poplar plantations[J]. New Forests, 2008, 35(3): 221-233.

[4] Martínez-Alcántara Belén, Quiñones Ana, Forner-Giner M Ángeles, et al. Impact of fertilizer-water management on nitrogen use efficiency and potential nitrate leaching in citrus trees[J]. Soil Science & Plant Nutrition, 2012, 58(5): 659-669.

[5] 王烨. 毛白杨速生纸浆林地下滴灌施肥效应研究[D]. 北京:北京林业大学,2015.

Wang Ye. Research on Effects of Nitrogen Fertigation on Tree-growth and its Mechanisms of Action inplantation[D]Beijing:Beijing Forestry University, 2015. (in Chinese with English abstract)

[6] 席本野,王烨,贾黎明. 滴灌施肥下施氮量和施氮频率对毛白杨生物量及氮吸收的影响[J]. 林业科学,2017,53(5):63-73.

Xi Benye, Wang Ye, Jia Liming. Effects of nitrogen application rate and frequency on biomass accumulation and nitrogen uptake ofunder drip fertigation[J]. Scientia Silvae Sinicae, 2017, 53(5): 63-73. (in Chinese with English abstract)

[7] Dickmann D I, Isebrands J G. Poplar Culture in North America[M]. NRC Research Press, 2001.

[8] 席本野,王烨,邸楠,等. 地下滴灌下土壤水势对毛白杨纸浆林生长及生理特性的影响[J]. 生态学报,2012,32(17):5318-5329.

Xi Benye, Wang Ye, Di Nan, et al. Effects of soil water potential on the growth and physiological characteristics ofpulpwood plantation under subsurface drip irrigation[J]. Acta Ecologica Sinica, 2012, 32(17): 5318-5329. (in Chinese with English abstract)

[9] Chen X Y, Mulder J. Indicators for nitrogen status and leaching in subtropical forest ecosystems, South China[J]. Biogeochemistry, 2007, 82(2): 165-180.

[10] 张玉铭,张佳宝,胡春胜,等. 水肥耦合对华北高产农区小麦-玉米产量和土壤硝态氮淋失风险的影响[J]. 中国生态农业学报,2011,19(3):532-539.

Zhang Yuming, Zhang Jiabao, Hu Chunsheng, et al. Effect of fertilization and irrigation on wheat-maize yield and soil nitratenitrogen leaching in high agricultural yield region in North China Plain[J]. Chinese Journal of Eco-Agriculture, 2011, 19(3): 532-539. (in Chinese with English abstract)

[11] Miao Y, Stewart B A, Zhang F. Long-term experiments for sustainable nutrient management in China. A review[J]. Agronomy for Sustainable Development, 2011, 31(2): 397-414.

[12] Liu X, Duan L, Mo J, et al. Nitrogen deposition and its ecological impact in China: An overview[J]. Environmental Pollution, 2011, 159(10): 2251.

[13] Sylvesterbradley R, Kindred D R, Wynn S C,et al. Efficiencies of nitrogen fertilizers for winter cereal production, with implications for greenhouse gas intensities of grain[J]. Journal of Agricultural Science, 2014, 152(1): 3-22.

[14] 祁有玲,张富仓,李开峰. 水分亏缺和施氮对冬小麦生长及氮素吸收的影响[J]. 应用生态学报,2009,20(10):2399-2405.

Qi Youling, Zhang Fucang, Li Kaifeng. Effects of water deficit and nitrogen fertilization on winter wheat growth and nitrogen uptake[J]. Chinese Journal of Applied Ecology, 2009, 20(10): 2399-2405. (in Chinese with English abstract)

[15] Wang L, Palta J A, Chen W, et al. Nitrogen fertilization improved water-use efficiency of winter wheat through increasing water use during vegetative rather than grain filling[J]. Agricultural Water Management, 2018, 197: 41-53.

[16] Dinnes D L, Karlen D L, Jaynes D B,et alNitrogen management strategies to reduce nitrate leaching in tile-drained midwestern soils[J]. Agronomy Journal, 2002, 94(1): 153-171.

[17] Guo S L, Wu J S, Dang T H, et al. Impacts of fertilizer practices on environmental risk of nitrate in semiarid farmlands in the Loess Plateau of China[J]. Plant & Soil, 2010, 330(1/2): 1-13.

[18] Zhang T Q, Liu K, Tan C S, et al. Processing tomato nitrogen utilization and soil residual nitrogen as influenced by nitrogen and phosphorus additions with drip-fertigation nutrient management & soil & plant analysis[J]. Soil Science Society of America Journal, 2011, 75(2): 738-745.

[19] 李久生,张建君,任理. 滴灌点源施肥灌溉对土壤氮素分布影响的试验研究[J]. 农业工程学报,2002,18(5):61-66.

Li Jiusheng, Zhang Jianjun, Ren Li. Nitrogen distributions in soil underfertigation from a point source[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2002, 18(5): 61-66. (in Chinese with English abstract)

[20] 李久生,张建君,饶敏杰. 滴灌施肥灌溉的水氮运移数学模拟及试验验证[J]. 水利学报,2005,36(8):932-938.

Li Jiusheng, Zhang Jianjun, Rao Minjie. Model verification of water and nitrate transport from a surface point source[J]. Journal of Hydraulic Engineering, 2005, 36(8): 932-938. (in Chinese with English abstract)

[21] 张建君,李久生,任理. 滴灌施肥灌溉条件下土壤水氮运移的研究进展[J]. 灌溉排水学报,2002,21(2):75-78.

Zhang Jianjun, Li Jiusheng, Ren Li. A review on water and nitrogen transport in soil under fertigationthrough drip irrigation system[J]. Irrigation and Drainage, 2002, 21(2): 75-78. (in Chinese with English abstract)

[22] Li J, Liu Y. Water and nitrate distributions as affected by layered-textural soil and buried dripline depth under subsurface drip fertigation[J]. Irrigation Science, 2011, 29(6): 469-478.

[23] Westerman R L, Boman R K, Raun W R, et al. Ammonium and nitrate nitrogen in soil profiles of long-term winter wheat fertilization experiments[J]. Agronomy Journal, 1994, 86(1): 94-99.

[24] 刘学军,赵紫娟,巨晓棠,等. 基施氮肥对冬小麦产量、氮肥利用率及氮平衡的影响[J]. 生态学报,2002,22(7):1122-1128.

Liu Xuejun, Zhao Zijuan, Ju Xiaotang, et al. Effect of N application as basal fertilizer on grain yield of winter wheat, fertilizer N recovery and N balance[J]. Acta Ecologica Sinica, 2002, 22(7): 1122-1128. (in Chinese with English abstract)

[25] Liu X, Ju X, Zhang F,et al. Nitrogen dynamics and budgets in a winter wheat-maize cropping system in the North China Plain[J]. Field Crops Research, 2003, 83(2): 111-124.

[26] 石玉,于振文. 施氮量及底追比例对小麦产量、土壤硝态氮含量和氮平衡的影响[J]. 生态学报,2006,26(11):3661-3669.

Shi Yu, Yu Zhenwen.Effects of nitrogen fertilizer rate and ratio of base and topdressing on yield of wheat,content of soil nitrate and nitrogen balance[J]. Acta Ecologica Sinica, 2006, 26(11): 3661-3669. (in Chinese with English abstract)

[27] 范亚宁,李世清,李生秀. 半湿润地区农田夏玉米氮肥利用率及土壤硝态氮动态变化[J]. 应用生态学报,2008,19(4):799-806.

Fan Yaning, Li Shiqing, Li Shengxiu. Utilization rate of fertilizer N and dynamic changes of soil NO3--N in summer maize field in semi-humid area of Nothwest China[J]. Chinese Journal of Applied Ecology, 2008, 19(4): 799-806. (in Chinese with English abstract)

[28] Wang H Y, Ju X T, Wei Y P, et al. Simulation of bromide and nitrate leaching under heavy rainfall and high-intensity irrigation rates in North China Plain[J]. Agricultural Water Management, 2010, 97(10): 1646-1654.

[29] 杨启良,周兵,刘小刚,等. 亏缺灌溉和施氮对小桐子根区硝态氮分布及水分利用的影响[J]. 农业工程学报,2013,29(4):142-150.

Yang Qiliang, Zhou Bing, Liu Xiaogang,et alEffect of deficit irrigation and nitrogen fertilizer application on soilnitrate-nitrogen distribution in root-zone and water use ofL.[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2013, 29(4): 142-150. (in Chinese with English abstract)

[30] Filipović V, Romić D, Romić M, et al. Plastic mulch and nitrogen fertigation in growing vegetables modify soil temperature, water and nitrate dynamics: Experimental results and a modeling study[J]. Agricultural Water Management, 2016, 176: 100-110.

[31] Morgan K T, Wheaton T A, Castle W S,et al. Response of young and maturing citrus trees grown on a sandy soil to irrigation scheduling, nitrogen fertilizer rate, and nitrogen application method[J]. Hortscience, 2009, 44(1): 145-150.

[32] McLaughlin R A, Hansen E A, Pope P E. Biomass and nitrogen dynamics in an irrigatedhybrid poplar plantation[J]. Forest Ecology and Management, 1987, 18: 169-188.

[33] Rennenberg H, Wildhagen H, Ehlting B. Nitrogen nutrition of poplar trees[J]. Plant Biology, 2010, 12(2): 275-291.

[34] 闫娟. 氮素对欧美杨苗木光合及养分利用的影响[D]. 北京:北京林业大学,2013.

Yan Juan. Effects of Nitrogen on Photosynthetic and Nutrient Utilization of[D]Beijing:Beijing Forestry University, 2013. (in Chinese with English abstract)

[35] 戴腾飞,席本野,闫小莉,等. 施肥方式和施氮量对欧美108杨人工林土壤氮素垂向运移的影响[J]. 应用生态学报,2015,26(6):1641-1648.

Dai Tengfei, Xi Benye, Yan Xiaoli, et al. Effects of fertilization method and nitrogen application rate on soil nitrogen vertical migration in×cv.‘Guariento’ plantation[J]. Chinese Journal of Applied Ecology, 2015, 26(6): 1641-1648. (in Chinese with English abstract)

[36] Perry C H, Miller R C, Brooks K N. Impacts of short-rotation hybrid poplar plantations on regional water yield[J]. Forest Ecology & Management, 2001, 143(1/2/3): 143-151.

[37] Dickmann D I. Silviculture and biology of short-rotation woody crops in temperate regions: Then and now[J]. Biomass & Bioenergy, 2006, 30(8/9): 696-705.

[38] O’Neill M K, Allen S C, Heyduck R F, et al. Hybrid poplar () adaptation to a semi-arid region: Results from Northwest New Mexico (2002-2011)[J]. Agroforestry Systems, 2014, 88(3): 387-396.

[39] Gruber N, Galloway J N. An Earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7176): 293.

[40] Castellanos M T, Tarquis A M, Ribas F, et al. Nitrogen fertigation: An integrated agronomic and environmental study[J]. Agricultural Water Management, 2013, 120(1): 46-55.

[41] 郭迎新,秦大庸,刘家宏,等. 黑龙港地区降雨与土壤含水率的动态变化[J]. 灌溉排水学报,2011,30(1):80-83.

Guo Yingxin, Qin Dayong, Liu Jiahong, et al. Characteristics of soil moisture dynamic changes underrainfall infiltration in Heilonggang region[J]. Journal of Irrigation and Drainage, 2011, 30(1): 80-83. (in Chinese with English abstract)

[42] Xi Benye, Bloomberg M, Watt M S,et al. Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid, plantation located on the North China Plain[J]. Agricultural Water Management, 2016, 176: 243-254.

[43] Fang Q, Yu Q, Wang E, et al. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat–maize double cropping system in the North China Plain[J]. Plant & Soil, 2006, 284(1/2): 335-350.

[44] 囤兴建,曲宏辉,田野,等. 间伐对长江滩地杨树人工林土壤有效氮素的影响[J]. 南京林业大学学报:自然科学版,2013,37(4):45-50.

Tun Xingjian, Qu Honghui, Tian Ye, et al. Effect of thinning treatments on soil available nitrogen of the poplar plantations in flooding land of Yangtze River[J]. Journal of Nanjing Forestry University: Natural Science Edition, 2013, 37(4): 45-50. (in Chinese with English abstract)

[45] 燕亚飞,田野,方升佐,等. 不同密度杨树人工林的外源无机氮输入及土壤无机氮库研究[J]. 南京林业大学学报:自然科学版,2015(4):69-74.

Yan Yafei, Tian Ye, Fang Shengzuo, et al. External nitrogen input and soil inorganic nitrogen pool in differentstands of poplar plantations[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2015(4): 69-74. (in Chinese with English abstract)

[46] Rajput T B S, Patel N. Water and nitrate movement in drip-irrigated onion under fertigation and irrigation treatments[J]. Agricultural Water Management, 2006, 79(3): 293-311.

[47] 黄耀华,王侃,杨剑虹. 滴灌施肥条件下土壤水分和速效氮迁移分布规律[J]. 水土保持学报,2014,28(5):87-94.

Huang Yaohua, Wang Kan, Yang Jianhong. Distribution of soil water and available nitrogen in purple soil under drip fertilization[J]. Journal of Soil and Water Conservation, 2014, 28(5): 87-94. (in Chinese with English abstract)

[48] 叶优良,李隆,张福锁,等. 灌溉对大麦/玉米带田土壤硝态氮累积和淋失的影响[J]. 农业工程学报,2004,20(5):105-109.

Ye Youliang, Li Long, Zhang Fusuo,et al.Effect of irrigation on soil NO3--N accumulation and leaching in maize /barley intercropping field[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2012, 28(7): 105-109. (in Chinese with English abstract)

[49] 商放泽,杨培岭,李云开,等. 不同施氮水平对深层包气带土壤氮素淋溶累积的影响[J]. 农业工程学报,2012,28(7):103-110.

Shang Fangze, Yang Peiling, Li Yunkai,et al.Effects of different chemical nitrogenous fertilizer application rates on soil nitrogen leaching and accumulation in deep vadose zone[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2012, 28(7): 103-110. (in Chinese with English abstract)

[50] 邸楠,席本野,Pinto R,等. 宽窄行栽植下三倍体毛白杨根系生物量分布及其对土壤养分因子的响应[J]. 植物生态学报,2013,37(10):961-971.

Di Nan, Xi Benye, Pinto R, et al. Root biomass distribution of triploidunder wide- and narrow-row spacingplanting schemes and its responses to soil nutrients[J]. Chinese Journal of Plant Ecology, 2013, 37(10): 961-971.(in Chinese with English abstract)

[51] Jia X, Shao L, Liu P, et al. Effect of different nitrogen and irrigation treatments on yield and nitrate leaching of summer maize (L.) under lysimeter conditions[J]. Agricultural Water Management, 2014, 137(1385): 92-103.

[52] 沈国舫. 对发展我国速生丰产林有关问题的思考[J]. 世界林业研究,1992,5 (4):67-74.

Shen Guofang. Considerations on the development of fast-growing and high-yield plantations in China[J].World Forestry Research, 1992, 5(4): 67-74. (in Chinese with English abstract)

[53] 齐力旺,陈章水. 中国杨树栽培科技概论[M]. 北京:科学出版社,2011.

[54] Xi Benye, Di Nan, Wang Ye, et al. Modeling stand water use response to soil water availability and groundwater level for a mature, plantation located on the North China Plain[J]. Forest Ecology & Management, 2017, 391: 63-74.

Coupling effects of water and nitrogen on tree growth and soil water-nitrogen distribution in youngplantations under surface drip irrigation

He Yuelin1, Wang Ye2, Zhang Hongjin1, Xi Benye1, Dai Tengfei1, Li Doudou1, Hu Mingyuan1, Jia Liming1※

(1.100083,; 2.100091,;,100091,)

Soil water and nitrogen nutrients are key factors affecting forest growth, especially for young triploid.Water and fertilizer factors have synergistic effects, water deficit can inhibit the absorption of nutrients in forests, and excessive irrigation can easily cause nutrient leaching. Although excessive fertilization can improve the water and nitrogen use efficiency under certain conditions, the large amount of nitrogen remaining in the soil is bound to pollute the environment. At present, many scholars have simulated the soil moisture and nitrogen transport under drip irrigation through indoor soil column simulation test. The research on soil water and nitrogen transport in the field is mainly concentrated in the agricultural and horticultural field, and the key is to monitor nitrogen leaching and nitrogen balance. In the field of forestry, due to the complexity of field conditions and the simplification of evaluation indicators, most studies focus on the effects of different water-nitrogen coupling strategies on tree growth and physiological indicators, few researches were on the distribution of water and nitrogen in root zone. In order to explore the effects of water and nitrogen coupling treatments on growth ofand water-nitrogen distribution in soil, a field experiment was conducted about 2-year-old triploidto investigate the effects of two irrigation levels (W20, W45) and three fertilizer levels (N80, N150, N220) coupling treatments on increment of diameter at breast height (DBH), dynamic distribution of soil water content (SWC) and mineral nitrogen content (min) in 0-80 cm soil depth under drip emitter in growing season. Results showed that W20treatment promoted the growth of DBH during April to July significantly (<0.05), the interaction of irrigation and fertilizer factors was not significant (>0.05). SWC was influenced greatly by irrigation treatment, which showed that the SWC of W20treatmenthad reached 11.3% in dry season (from the end of April till the middle of June), 37.5% higher than blank control. There was no significant difference in different treatment (>0.05)in rainy season (from the late June to early August), because SWC was influenced greatly by precipitation.minwas accumulated in 0 - 80 cm soil layer during dry season, especially in 0-20 cm soil layer, which showed positive correlation with fertilization.minmoved from topsoil towards deep soil in rainy season, which leached below 80 cm soil layer in W20treatment and increased uniformly in 20-80 cm soil layers in W45. The averageminin 0-80 cm soil layer reached to 44.27 mg/kg in W45N150treatment in rainy season, which was significant higher than other treatments (<0.05).minaccumulated in 0-80 cm soil layer at the end of growing season. To sum up, N150treatment can provide adequate nitrogen content in 0-80 cm soil layer in growing season. Combined with the growth of young trees, W20treatment can promote the growth significantly during April to July (<0.05), and W45treatment can meet the water demand for growth of the tree after July.

soils; water; nitrogen; growth; young triploid; surface drip irrigation

10.11975/j.issn.1002-6819.2018.20.012

S792.117

A

1002-6819(2018)-20-0090-09

2018-03-01

2018-09-01

国家自然科学基金资助项目:水肥耦合对黄泛平原砂地毛白杨水氮吸收与利用的调控机制(31670625);“十二五”国家科技支撑计划资助(2015BAD09B02):三倍体毛白杨速生纸浆林精准根区水养调控及修枝技术研究。

贺曰林,博士生,主要研究方向为三倍体毛白杨林木及林地土壤水氮吸收与利用的调控机制。Email:HYLhelen@163.com

贾黎明,博士,教授,博士生导师,主要从事杨树水肥管理等方面的研究。Email:jlm@bjfu.edu.cn

贺曰林,王 烨,张宏锦,席本野,戴腾飞,李豆豆,扈明媛,贾黎明. 地表滴灌水氮耦合对毛白杨幼林生长及土壤水氮分布的影响[J]. 农业工程学报,2018,34(20):90-98. doi:10.11975/j.issn.1002-6819.2018.20.012 http://www.tcsae.org

He Yuelin, Wang Ye, Zhang Hongjin, Xi Benye, Dai Tengfei, Li Doudou, Hu Mingyuan, Jia Liming. Coupling effects of water and nitrogen on tree growth and soil water-nitrogen distribution in youngplantations under surface drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 90-98. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.20.012 http://www.tcsae.org

猜你喜欢
三倍体水氮林木
水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响
土壤水氮调控对盐碱地棉花生长发育及水氮利用效率的影响
不同水氮条件下冬小麦穗器官临界氮稀释模型研究
我国三倍体牡蛎育苗、养殖现状及发展对策
国家林草局发布2020年度林木良种名录
云南山地橡胶树三倍体育种回顾
不同水氮处理对棉花土壤水分迁移的影响
中幼林抚育在森林培育中的重要性
细数你吃的那些“不孕不育”食物
林木移植的注意事项