电力行业水-能耦合关系研究综述

2018-12-28 10:03王春艳
中国环境科学 2018年12期
关键词:耗水量电力行业耦合

王春艳,田 磊,俞 敏,刘 毅*

电力行业水-能耦合关系研究综述

王春艳1,田 磊2,俞 敏3,刘 毅1*

(1.清华大学环境学院,北京 100084;2.国家发展和改革委员会能源所,北京 100038;3.国务院发展研究中心资源与环境政策研究所,北京 100010)

电力行业消耗了全球约8%的水资源,电力生产与输配过程中消耗的能源与水资源之间的相关关系被定义为电力行业水-能耦合关系.本文从电力行业水耗和节水潜力研究、电力生产与水资源空间分布匹配研究、电力行业水-能耦合关系与其他环境问题的关系研究三个角度对国际上相关文献的研究内容、研究方法和主要结论进行梳理.研究结果表明:冷却技术选择对电力行业的水-能耦合关系影响较大,电力生产的需水量与各地水资源禀赋在空间上不匹配,电力行业水-能耦合系统管理体系尚未建立且面临迫切的实际需求.

电力生产;水-能耦合关系;水耗预测;环境问题;综合管理

初级能源开采[1]、生物质能种植[2-3]、能源加工[4-6]、能源使用[7]等能源部门的生产活动需要大量的水资源投入.电力生产的需水量在能源部门中占比最高,约为25%~80%[4].火力发电的取水量可占全社会用水量的40%以上[8-10].近年来,能源部门,特别是电力部门水耗研究成为了研究热点.学者们将电力生产过程中能源与水资源的相关关系定义为“电力行业的水-能耦合关系(Water-Energy Nexus of the Electricity Sector)”.已有关于电力行业水-能耦合关系的综述总结了特定区域电力行业的水耗估算方法、不同电力生产方式的水耗差异比较等,但尚未对电力生产与水资源空间分布不匹配、电力行业水-能-环境耦合关系等方面的研究进展进行总结和分析[4,11-14].因此,有必要进一步梳理电力行业水-能耦合关系研究领域的重点和难点,为后续研究提供基础.

1 电力生产与水资源消耗关系研究

在研究电力生产过程的水耗时,学者们往往考虑以下几个方面:①发电方式(如煤电、核电、太阳能发电、风电、水电、生物质能发电等);②冷却方式(如循环冷却、直流冷却、空冷、海水冷却等);③水源(如地表水、地下水、海水等);④环境影响(如温室气体排放、大气污染物排放、生态影响等).

1.1 电力生产水耗现状分析

对电力生产水耗分析的相关文献从估算方法、数据获取方式、研究对象、水耗影响因素等几个方面分别进行归类总结.

电力行业水-能耦合关系研究中常用的方法包括全生命周期评估方法(LCA)[15-16]、物质流分析方法(MFA)[17-19]、投入产出分析方法(I-O)[5,15-16]、基于过程的分析方法(Process-based Analysis)[17-19].其中,基于过程的分析方法通常以锅炉、冷却塔、污染物处理设施等生产环节为基本单元,运用MFA对电力生产中的水资源流和能源流进行量化和匡算[17-19].此外,部分学者将上述方法加以混合使用,如IO-LCA方法[15-16].

电力行业水-能耦合关系研究的数据主要来源于两方面:LCA模型或者I-O模型中的水耗理论估计值、大量的电力企业一手调研数据[20].其中,通过调研获取的水耗参数来源(如企业上报、理论估算等)不同,可能会导致数据质量可信度较低[21].

从研究对象来看,学者主要关注不同发电方式、不同冷却方式的取水量和耗水量差异(表1).电力生产的取水量一般高于耗水量,直流冷的取水量甚至可高于耗水量100倍以上[22].以采用循环冷却的煤炭发电为例,其取水量中约有80%-90%在蒸发过程中损失,20%-15%的水量转移到了可销售的固体副产品中,剩余5%在经过废水处理后外排,即耗水量约为取水量的95%[20].此外,已有研究多关注全生命周期阶段和运行阶段的水耗.例如,中国风力发电耗水量为0.6L/kWh,其中上游关联产业的耗水量约占风力发电耗水量的50%[15].需要注意的是,水力发电的水耗研究仍有一定的争议.水力发电,特别是蓄洪式水电站,会使得水体表面蒸发量增大[23].但水电站除具有发电功能外,还有防洪、灌溉等多种功能,在计算水力发电水耗时如何将蒸发水耗分配到各个功能上尚缺乏统一认识[24-25].

表1 不同类型发电方式的取水量和耗水量比较(L/kWh)

此外,学者们还对发电水耗的影响因素进行了分析.除了能源品种、冷却方式外,外界环境(如温度、湿度等)也会影响发电水耗.例如,火力发电的夏季耗水量比年平均耗水量高15%以上,而冬季耗水量则低12%以上[20].生物质能源作物的耕种方式对其水耗也有较为重要的影响[3].

1.2 电力生产水耗预测

电力是经济发展的基础.电力生产与水资源消耗之间关系密切,越来越多的学者开始关注电力生产水耗预测问题.已有研究通常以发电水耗参数估计和电力生产结构及产量预测为基础,分析未来电力生产的水耗情况,预测的时间跨度(2030年、2050年、2095年等)和空间范围(全球、美国、中国、欧洲等)均较大.表2对其中代表性文献的研究方法、时空尺度以及主要目的和结论进行了总结.目前的研究从微观企业的水耗数据估算到宏观区域层面的能源生产、调配及水耗预测都有所涉及,并多以2030、2050年为节点.研究内容上,已有研究主要分析电力生产结构、水资源供给方式、冷却技术选择等的变化对区域(省级、流域、或电网等)电力行业水-能耦合关系的影响,以及电力生产与其他经济活动之间的权衡关系.总结发现,电力生产水耗预测方面的研究尚未建立统一的研究方法和框架.虽然研究方法不尽相同,但研究结果均表明冷却技术选择对电力系统的水耗影响较大,水耗和发电量之间存在一定的权衡关系.

表2 电力预测及水耗研究进展

根据研究地区进行分类,全球主要国家的相关研究结果如下:

(1)中国

学者们分析了电力结构[8,53]、冷却技术[8,53]等方面的变化对中国2030-2050年的电力生产水耗的影响,结果发现电力生产水耗将依然集中在北方和沿海地区,能源效率提高、电力结构调整和冷却技术均有助于节水,其中冷却技术的节水效果更显著.Li等[15]还发现2020年中国风电的推广应用可以带来23%的碳强度减排,同时节约8亿m3水资源,相当于1120万家庭用水的需求.

(2)美国

学者们分别预测了美国2050年[27]和2095年[55]的电力生产的水耗,结果发现冷却技术变化带来的部分地区(如加州)电力系统取水量和耗水量之间的折中关系尤为突出[55].

(3)英国

学者们预估了2030和2050年英国电力生产的水耗变化情况[28,31,52],结果表明到2030年,电力生产水耗将有所降低,但到2050年,若将温室气体减排作为约束条件,电力生产水耗会由于高水耗的低碳技术的推广应用而增加[31].

(4)欧洲

Behrens等[51]分析了欧洲热电生产与水资源之间的匹配关系,发现到2030年部分流域范围内的热电企业会因为水资源量的减少而降低发电量.

(5)全球及其他地区

全球来看,通过提升能源生产技术的用水效率,特别是可再生能源的用水效率,能源系统水耗到2030年可以降低37%~66%(相对于2012年)[58].

Parkinson等[59]以成本、水资源可持续性、和电力部门的CO2为约束,分析了沙特阿拉伯地区电力生产结构(如燃气发电、太阳能发电、煤电等)、水资源供给结构(地下水、海水淡化、废水循环等)、冷却方式等因素变化对水-能耦合关系的影响. Antipova等[56]对锡尔河流域的水力发电和农业灌溉用水进行优化分析,寻求该地区水电电力供应和灌溉水量之间的最佳平衡方式.

1.3 电力生产中节水潜力分析

学者们对电力生产的节水潜力进行了量化分析,包括电力结构的转变带来的节水效果[42,60]、电力系统节能措施带来的协同节水效果[61-63]、电力系统节能成本等[64].例如Taxes地区从燃煤发电到燃气发电的转化带来的节水量相当于现状煤电水耗的60%[42];Tucson地区光伏发电量增加15%,其电力系统的水耗可以减少17%,同时还可以减少13%的电力输送损耗[60].中国2007~2012能源部门节能措施的协同节水效果主要来自于电力行业,其直接的节水量约为5.6亿m3,上下游相关产业的节水效果为12.5亿m3[62].除对节水效果绝对量的考量外,学者们选取单位节水量的经济成本作为指标,分析电力行业的节水潜力[64].

2 电力生产与水资源的空间匹配性研究

学者们注意到了区域水资源禀赋与电力生产水耗之间的紧密关系.研究的空间尺度包括:行政区域[26,65]、流域层面[66]、电网层面[39].例如APEC经济体中,约55%(437条)的因能源生产带来的高水资源风险的流域与热电有关,主要分布于美国东部、中国东北部、澳大利亚、俄罗斯西部等地区[66].学者对典型国家的电力生产与水资源压力的空间匹配进行了更详细的分析.例如中国煤电耗水量占全国总工业耗水量的11%,且约75%来自于极度缺水和长期缺水的地区[26].美国东部40%以上的电厂冷却水耗都取自于缺水地区[67],到2035年美国10%~19%的新增热电企业有可能会建在地表/地下水资源缺乏的地区[65,67].这种水-能矛盾还具有两个主要特征:①季节性差异,一方面是由于季节性降水差异引起,另一方面是由于冬季结冰导致可用水量降低,水资源压力增大[8];②可传输性,电力生产和水资源压力之间的匹配关系会随着电力输送而产生一定的空间变化,例如中国水资源较匮乏的东北电网、北方电网、西北电网和中部电网由于电力输出引起的虚拟水输出加剧了当地的水资源压力[39,68].总体来看,全球各个国家和地区均存在一定程度的水资源和电力生产空间不匹配的问题,从水-能耦合关系的角度出发,综合考虑和评估未来电力生产布局和水资源禀赋之间的关系显得尤为重要.

3 水-能耦合关系与其他环境问题

电力行业是主要的温室气体(GHG)排放者,相关研究主要包括:核算不同能源类型下发电带来的GHG排放[15,69-71]、碳捕获与封存技术的使用与发电水耗之间的折中关系[42]、GHG减排压力下发电结构的调整路径[59,72]等.除GHG外,电力行业水-能耦合系统引起的环境问题还包括冷却废水外排时还会带来热污染问题[1],水力发电引起的生态环境问题[73-74],发电过程产生的SO2、NO等大气污染物[19,75].

此外,生物质能源的种植占用了大量的土地资源,对粮食的生产、农业灌溉等均有一定程度的影响[2,76-80].据估算,全球生物质种植消耗了2%~3%的农业用水和用地,相当于30%的营养不良人口(Malnourished Population)的资源消耗量[2].

除电力生产引起环境问题外,外界环境也会对水-能耦合关系有影响.例如干旱不仅会造成水力发电的减少,还会引起地下水使用的增加,从而需要更多的能源(如电力等)提取地下水[81].

现有研究表明,电力行业水-能耦合系统与环境问题具有密切的相互作用关系,但如何量化评估该作用关系,进一步增加对耦合系统的认识仍面临一定的挑战.

4 电力行业水资源和能源的综合管理

水、能以及其他环境要素之间的紧密关联关系使得单要素的环境管理措施可能出现偏差.如若维持现有的冷却技术不变,中国东部电网的电力行业水耗将会超过“三条红线”规定的水耗要求[8].此外,节能措施的应用也可能带来一定的节水效果[64].因而多个要素的综合管理和核算十分必要[55,82].

学术界在水、能综合管理的方法和框架方面已经有初步进展.例如以水、能安全为主要目标的欧盟COST(European Cooperation in Science and Technology)框架可协助综合管理水-能耦合关系,并制定相应的政策制度[83].在模型方面,部分研究试图将水资源管理和能源管理的相关模型进行结合,如以电厂水耗数据为基础的ReEDS模型结合水资源管理模型WEAP,从流域层面评估发电对当地水资源的影响[84].考虑到水-能耦合关系具有较高的区域性特点,因此有必要实施空间差异化管控[85].

5 结语

对电力行业水-能耦合关系的国际研究进展进行了综述.目前电力行业水耗分析的研究方法多样,传统发电方式以及可再生能源发电方式均有关注.学者们在不同的时空尺度下,分别模拟和预测了电力生产及其水资源消耗情况,并指出了水资源与发电量之间的权衡关系,量化了电力行业的节水潜力.现状和未来的电力生产和水资源压力均存在一定的空间不匹配问题,远距离输电更加剧了这种水-能矛盾.此外,电力行业水-能耦合关系与温室气体排放、大气污染物排放、生态系统等有着密切的联系.因此,迫切需要综合评估水-能耦合关系与环境问题,提出空间差异化的水-能耦合系统管控方案.

对未来关于电力行业水-能耦合系统的研究提出以下几方面建议:①结合一手数据,研究水-能耦合关系的区域特征;②构建可推广的水-能耦合关系量化分析方法,提供决策支撑;③将水-能耦合关系研究内容延伸到更广泛的环境问题上,如水资源匮乏、大气污染物排放等.

[1] Siddiqi A, Anadon L. The water–energy nexus in middle east and north Africa [J]. Energy Policy, 2011,39(8):4529-4540.

[2] Rulli M, Bellomi D, Cazzoli A, et al. The water-land-food nexus of first-generation biofuels [J]. Scientific Reports, 2016,6:22521.

[3] Pacetti T, Lombardi L, Federici G. Water–energy nexus: A case of biogas production from energy crops evaluated by water footprint and life cycle assessment (LCA) methods [J]. Journal of Cleaner Production, 2015,101:278-291.

[4] Spang E, Moomaw W, Gallagher K, et al. The water consumption of energy production: An international comparison [J]. Environmental Research Letters, 2014,9(10):105002.

[5] Okadera T, Geng Y, Fujita T, et al. Evaluating the water footprint of the energy supply of liaoning province, Cchina: A regional input– output analysis approach [J]. Energy Policy, 2015,78:148-157.

[6] Ramaswami A, Boyer D, Nagpure A, et al. An urban systems framework to assess the trans-boundary food-energy-water nexus: Implementation in Delhi, India [J]. Environmental Research Letters, 2017,12(2):025008.

[7] Hussien W, Memon F, Savic D. An integrated model to evaluate water-energy-food nexus at a household scale [J]. Environmental Modelling & Software, 2017,93:366-380.

[8] Liao X, Hall J, Eyre N. Water use in China’s thermoelectric power sector [J]. Global Environmental Change, 2016,41:142-152.

[9] Macknick J. Water impacts of the electricity sector. American solar energy society. World Renewable Energy Forum, 2012.

[10] Statistics Canada. Section 3: The demand for water in Canada.

[11] Meldrum J, Nettles-Anderson S, Heath G, et al. Life cycle water use for electricity generation: A review and harmonization of literature estimates [J]. Environmental Research Letters, 2013,8(1):015031.

[12] Dodder S. A review of water use in the U.S. Electric power sector: Insights from systems-level perspectives [J]. Current Opinion in Chemical Engineering, 2014,5:7-14.

[13] Sanders K. Uncharted waters? The future of the electricity-water nexus [J]. Environmental Science & Technology, 2015,49(1):51-66.

[14] Fthenakis V, Kim H. Life-cycle uses of water in U.S. Electricity generation [J]. Renewable & Sustainable Energy Reviews, 2010, 14(7):2039-2048.

[15] Li X, Feng K, Siu Y, et al. Energy-water nexus of wind power in China: The balancing act between CO2emissions and water consumption [J]. Energy Policy, 2012,45:440-448.

[16] Feng K, Hubacek K, Siu Y, et al. The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis [J]. Renewable and Sustainable Energy Reviews, 2014,39:342-355.

[17] Lubega W, Farid A. Quantitative engineering systems modeling and analysis of the energy-water nexus [J]. Applied Energy, 2014,135: 142-157.

[18] Lubega W, Farid A. A meta-system architecture for the energy-water nexus [C]. 8th International Conference on System of Systems Engineering, 2013:76-81.

[19] Wang C, Li Y, Liu Y. Investigation of water-energy-emission nexus of air pollution control of the coal-fired power industry: A case study of Beijing-Tianjin-Hebei region, China [J]. Energy Policy, 2018, 115(291-301).

[20] Jiang D, Ramaswami A. The ‘thirsty’ water-electricity nexus: Field data on the scale and seasonality of thermoelectric power generation’s water intensity in China [J]. Environmental Research Letters, 2015, 10(2):024015.

[21] Averyt K, Macknick J, Rogers J, et al. Water use for electricity in the United States: An analysis of reported and calculated water use information for 2008 [J]. Environmental Research Letters, 2013, 8(1):015001.

[22] Sesma D, Rubiovaras M. Freshwater for cooling needs: A long-run approach to the nuclear water footprint in Spain [J]. Ecological Economics, 2017,140:146-156.

[23] Mekonnen M, Hoekstra A. The blue water footprint of electricity from hydropower [J]. Hydrology and Earth System Science, 2012,16(1): 179-187.

[24] Grubert E. Water consumption from hydroelectricity in the United States [J]. Advance in Water Resource, 2016,96:88-94.

[25] Bakken T, Modahl I, Raadal H, et al. Allocation of water consumption in multipurpose reservoirs [J]. Water Policy, 2016,18(4):932-947.

[26] Zhang X, Liu J, Tang Y, et al. China’s coal-fired power plants impose pressure on water resources [J]. Journal of Cleaner Production, 2017, 161:1171-1179.

[27] Macknick J, Newmark R, Heath G, et al. Operational water consumption and withdrawal factors for electricity generating technologies: A review of existing literature [J]. Environmental Research Letters, 2012,7(4):045802.

[28] Murrant D, Quinn A, Chapman L, et al. Water use of the UK thermal electricity generation fleet by 2050: Part 1identifying the problem [J]. Energy Policy, 2017,108:844-858.

[29] Brierley M. Re : UK power stations water consumption data. 2014. Type to MURRANT, D.

[30] Woldeyesus T. Electric portfolio modeling with stochastic water - climate interactions: Implications for co-management of water and electric utilities [D]. 2012, Denvor: University of Colorado.

[31] Byers E, Hall J, Amezaga J. Electricity generation and cooling water use: UK pathways to 2050 [J]. Global Environmental Change, 2014,25: 16-30.

[32] Mekonnen M, Gerbens-Leenes P, Hoekstra A. The consumptive water footprint of electricity and heat: A global assessment [J]. Environmental Science-Water Research & Technology, 2015,1(3): 285-297.

[33] Pfister S, Saner D, Koehler A. The environmental relevance of freshwater consumption in global power production [J]. International Journal of Life Cycle Assessment, 2011,16(6):580-591.

[34] Carrillo A, Frei C. Water: A key resource in energy production [J]. Energy Policy, 2009,37(11):4303-4312.

[35] Koulouri A, Moccia J. Saving water with wind energy [R]. Belgium: The European Wind Energy Association, 2014.

[36] Torcellini P, Long N, Judkoff R. Consumptive water use for U.S. Power production [R]. 2010.

[37] DOE. Concentrating solar power commercial application study. [EB/OL]. https://www.osti.gov/biblio/1218186.

[38] Smart A, Aspinall A. Water and the electricity generation industry [R]. Colorado: NREL2009.

[39] Zhu X, Guo R, Chen B, et al. Embodiment of virtual water of power generation in the electric power system in China [J]. Applied Energy, 2015,151:345-354.

[40] Innovation for Energy. Water for electricity [EB/OL]. www. ifpenergiesnouvelles. com/Publications/Availablestudies/Panorama- technical-reports/Panorama-2011.

[41] Marsh D. The water-energy nexus: A comprehensive analysis in the context of New South Wales. 2008. Sydney: University of Technology.

[42] Grubert E, Beach F, Webber M. Can switching fuels save water? A life cycle quantification of freshwater consumption for texas coal- and natural gas-fired electricity [J]. Environmental Research Letters, 2012, 7(4):045801.

[43] Ali B, Kumar A. Development of water demand coefficients for power generation from renewable energy technologies [J]. Energy Conversion and Management, 2017,143:470-481.

[44] DOE. Energy demands on water resources: Report to congress on the interdependency of energy and water [R]. Washington: 2006.

[45] Whitaker M, Heath G, Burkhardt J, et al. Life cycle assessment of a power tower concentrating solar plant and the impacts of key design alternatives [J]. Environmental science & technology, 2013,47(11): 5896-5903.

[46] DOE. Renewable energy technology characterizations [R]. Washington: 1997.

[47] NREL. Fuel from the sky: Solar power's potential for western energy supply [R]. Colorado: 2002.

[48] NREL. Assessment of parabolic trough and power tower solar technology cost and performance forecasts [R] Colorado: 2003.

[49] Wu X, Chen G. Energy and water nexus in power generation: The surprisingly high amount of industrial water use induced by solar power infrastructure in China [J]. Applied Energy, 2017,195:125-136.

[50] Li X, Feng K, Siu Y, et al. Energy-water nexus of wind power in China: The balancing act between CO2emissions and water consumption [J]. Energy Policy, 2012,45:440-448.

[51] Behrens P, Vliet M, Nanninga T, et al. Climate change and the vulnerability of electricity generation to water stress in the European Union [J]. Nature Energy, 2017,2(8):17114.

[52] Murrant D, Quinn A, Chapman L, et al. Water use of the UK thermal electricity generation fleet by 2050: Part 2 quantifying the problem [J]. Energy Policy, 2017,108:859-874.

[53] Li M, Dai H, Xie Y, et al. Water conservation from power generation in China: A provincial level scenario towards 2030 [J]. Applied Energy, 2017,208:580-591.

[54] Macknick J, Sattler S, Averyt K, et al. The water implications of generating electricity: Water use across the United States based on different electricity pathways through 2050 [J]. Environmental Research Letters, 2012,7(4):045803.

[55] Liu L, Hejazi M, Patel P, et al. Water demands for electricity generation in the U.S.: Modeling different scenarios for the water– energy nexus [J]. Technological Forecasting and Social Change, 2015, 94:318-334.

[56] Antipova E, Zyryanov A, McKinney D, et al. Optimization of Syr Darya water and energy uses [J]. Water International, 2002,27(4): 504-516.

[57] Dhaubanjar S, Davidsen C, Bauer-Gottwein P. Multi-objective optimization for analysis of changing trade-offs in the Nepalese water–energy–food nexus with hydropower development [J]. Water, 2017,9(12):162.

[58] Hadian S, Madani K. The water demand of energy: Implications for sustainable energy policy development [J]. Sustainability, 2013, 5(12):4674-4687.

[59] Parkinson S, Makowski M, Krey V, et al. A multi-criteria model analysis framework for assessing integrated water-energy system transformation pathways [J]. Applied Energy, 2018,210:477-486.

[60] Perrone D, Murphy J, Hornberger G. Gaining perspective on the water-energy nexus at the community scale [J]. Environmental Science & Technology, 2011,45(10):4228-4234.

[61] Gu A, Teng F, Wang Y. China energy-water nexus: Assessing the water-saving synergy effects of energy-saving policies during the eleventh five-year plan [J]. Energy Conversion Management, 2014,85: 630-637.

[62] Jin Y, Tang X, Feng C, et al. Energy and water conservation synergy in China: 2007~2012 [J]. Resources, Conservation and Recycling, 2017, 127:206-215.

[63] Bartos M, Chester M. The conservation nexus: Valuing interdependent water and energy savings in Arizona [J]. Environmental Science & Technology, 2014,48(4):2139-2149.

[64] Ali B. The cost of conserved water for power generation from renewable energy technologies in Alberta, Canada [J]. Energy Conversion and Management, 2017,150:201-213.

[65] Tidwell V, Kobos P, Malczynski L, et al. Exploring the water- thermoelectric power nexus [J]. Journal of Water Resources Planning & Management, 2012,138(5):491-501.

[66] Tidwell V, Moreland B. Mapping water consumption for energy production around the Pacific Rim [J]. Environmental Research Letters, 2016,11(9):094008.

[67] Wang R, Zimmerman J, Wang C, et al. Freshwater vulnerability beyond local water stress: Heterogeneous effects of water-electricity nexus across the continental United States [J]. Environmental Science & Technology, 2017,51(17):9899-9910.

[68] Zhang C, Zhong L, Liang S, et al. Virtual scarce water embodied in inter-provincial electricity transmission in China [J]. Applied Energy, 2017,187:438-448.

[69] Dale A, Bilec M. The regional energy & water supply scenarios (REWSS) model, part II: Case studies in Pennsylvania and Arizona [J]. Sustainable Energy Technologies & Assessments, 2014,7:237-246.

[70] Fargione J, Hill J, Tilman D, et al. Land clearing and the biofuel carbon debt [J]. Science, 2008,319(5867):1235-1238.

[71] Feng K, Hubacek K, Siu Y, et al. The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis [J]. Renewable & Sustainable Energy Reviews, 2014,39:342-355.

[72] Nanduri V, Saavedra-Antolinez I. A competitive markov decision process model for the energy-water-climate change nexus [J]. Applied Energy, 2013,111:186-198.

[73] Akpinar A, Kaygusuz K. Regional sustainable water and energy development projects: A case of southeastern Anatolia project (GAP) in Turkey [J]. Renewable & Sustainable Energy Reviews, 2012,16(2): 1146-1156.

[74] Pang M, Zhang L, Ulgiati S, et al. Ecological impacts of small hydropower in China: Insights from an emergy analysis of a case plant [J]. Energy Policy, 2015,76:112-122.

[75] Kumar P, Saroj D. Water–energy–pollution nexus for growing cities [J]. Urban Climate, 2014,10:846-853.

[76] Hellegers P, Zilberman D, Steduto P, et al. Interactions between water, energy, food and environment: Evolving perspectives and policy issues [J]. Water Policy, 2008,10:1-10.

[77] McCornick P, Awulachew S, Abebe M. Water-food-energy- environment synergies and tradeoffs: Major issues and case studies [J]. Water Policy, 2008,10:23-36.

[78] Schornagel J, Niele F, Worrell E, et al. Water accounting for (agro)industrial operations and its application to energy pathways [J]. Resources, Conservation and Recycling, 2012,61:1-15.

[79] Fraiture C, Giordano M, Liao Y. Biofuels and implications for agricultural water use: Blue impacts of green energy [J]. Water Policy, 2008,10:67-81.

[80] Fthenakis V, Kim H. Land use and electricity generation: A life-cycle analysis [J]. Renewable & Sustainable Energy Reviews, 2009,13(6/7): 1465-1474.

[81] Lofman D, Petersen M, Bower A. Water, energy and environment nexus: The California experience [J]. International Journal of Water Resources Development, 2002,18(1):73-85.

[82] Sovacool B, Sovacool K. Identifying future electricity-water tradeoffs in the United States [J]. Energy Policy, 2009,37(7):2763-2773.

[83] Hussey K, Pittock J. The energy–water nexus: Managing the links between energy and water for a sustainable future [J]. Ecology and Society, 2012,17(1).

[84] Sattler S, Macknick J, Yates D, et al. Linking electricity and water models to assess electricity choices at water-relevant scales [J]. Environmental Research Letters, 2012,7(4):045804.

[85] Scott C, Pierce S, Pasqualetti M, et al. Policy and institutional dimensions of the water-energy nexus [J]. Energy Policy, 2011, 39(10):6622-6630.

Review of the studies on the water-energy nexus of the electricity sector.

WANG Chun-yan1, TIAN Lei2, YU Min3, LIU Yi1*

(1.School of Environment, Tsinghua University, Beijing 100084, China;2.Energy Research Institute, National Development and Reform Commission, Beijing 100038, China;3.Institute for Resources and Environmental Policies, Development Research Center of the State council, Beijing 100010, China)., 2018,38(12):4742~4748

The electricity generation consumes around 8% of global water use. The water use for the electricity generation and transmission is defined as “the water for energy” or “the water-energy nexus of the electricity sector”. This study went through the literatures that are relevant to this topic from the following aspects: the quantification of the water consumption and withdrawal by various electricity generation types; the analysis of the mismatch between electricity generation/transmission and water resources; and other related environmental issues. This study concluded that: the cooling technologies would have significant influence on the water consumption and withdrawal for the electricity generation; there are tremendous spatial disparities of local water resources and electricity generation; comprehensive management of the water and energy is still lacking and urgently needed.

electricity generation;water-energy nexus;water consumption prediction;environmental issues;integrate management

X703.5

A

1000-6923(2018)12-4742-07

王春艳(1991-),女,河南濮阳人,博士后,主要研究方向为水-能耦合系统分析、环境系统分析、产业生态学.发表论文3篇.

2018-05-24

国家自然科学基金资助项目(71774096);国家重点研发计划项目(2017YFC0404602)

* 责任作者, 教授, yi.liu@mail.tsinghua.edu.cn

猜你喜欢
耗水量电力行业耦合
故城县五角枫耗水特征研究
非Lipschitz条件下超前带跳倒向耦合随机微分方程的Wong-Zakai逼近
白条党参耗水规律试验研究
滴灌对苹果和梨树周年耗水规律的影响
共谱新时代电力行业党建和企业文化建设新篇章
基于磁耦合的高效水下非接触式通信方法研究
浅谈电力行业知识管理的集成信息化
多星座GNSS/INS 紧耦合方法
基于CFD/CSD耦合的叶轮机叶片失速颤振计算
Preliminary evidence for 17 coastal terraces on Fildes Peninsula,King George Island, Antarctica