床突旁动脉瘤颈内动脉近端阻断策略数值模拟及其临床应用

2019-12-19 02:07王明
软件 2019年11期
关键词:数值模拟

王明

摘  要: 探讨床突旁动脉瘤颈内动脉近端阻断策略的血流动力学参数的变化和特征,为手术方式的选择提供指导。方法: 利用一例床突旁动脉瘤患者的DICOM影像数据,通过MIMICS、3-matic、Geomagic Studio、Spaceclaim、DesignModeler、Meshing等软件建立颈内动脉近端阻断前后的动脉瘤及动脉瘤壁有限元模型,用Fluent、Transient Structural进行流固耦合计算求解。采用数值模拟与统计学分析颈内动脉阻断前后的动脉瘤血流动力学参数及动脉瘤壁的应力应变。计算出颈内动脉阻断前后模型的血流动力学参数及动脉瘤壁的应力应变参数,统计学结论显示脉阻断前后模型参数存在显著性差异。用本项目所构建的床突旁动脉瘤的有限元模型可有效分析不同模式下的动脉瘤血流特征,为临床治疗中手术方方案的设计提供指导。

关键词: 床突旁动脉瘤;双向流固耦合;近端阻断策略;数值模拟

【Abstract】: Purpose: The aim of this project are to investigate the changes and characteristics of hemodynamic parameters of proximal carotid artery occlusion strategy for cavernous sinus aneurysm, and to provide guidance for the selection of surgical methods. Methods: DICOM image data of a patient with cavernous sinus aneurysm were used to establish the finite element model of aneurysm and aneurysm wall before and after proximal occlusion of the internal carotid artery by using MIMICS, 3-matic, Geomagic Studio, Spaceclaim, DesignModeler, Meshing and other software. Fluid-solid coupling calculation was performed with Fluent and Transient Structural.The hemodynamic parameters of aneurysm and the stress and strain of aneurysm wall before and after internal carotid artery occlusion were analyzed by numerical simulation and statistics. Results: The hemodynamic parameters of the model and the stress-strain parameters of aneurysm wall before and after internal carotid artery occlusion were calculated. Statistical results showed that there were significant differences in the parameters of the models. Conclusion: The finite element model of cavernous sinus aneurysm constructed in this project can be used to effectively analyze the blood flow characteristics of aneurysms in different modes, and provide guidance for the design of surgical procedures in clinical treatment.

【Key words】: Cavernous sinus aneurysm; Bidirectional fluid-solid coupling; Proximal block strategy; The numerical simulation

0  引言

腦动脉瘤是一种严重的脑血管疾病,其破裂概率为1%[1],床突旁动脉瘤占颅内动脉瘤的3-5%,占颈内动脉瘤的14%[2-3]。床突旁动脉瘤的形成与床突旁内分支、血管硬化、自发性或外伤性血管夹层有关[4]。目前研究认为,壁面切应力、压力、血流速度等血流动力学参数与动脉瘤形成、发展、破裂有着密切的关系。颅内常规动脉瘤的治疗技术已经非常成熟,但对于海绵窦、床突旁及基底动脉动脉瘤等复杂动脉瘤,采用直接夹闭或栓塞都非常困难。因此通过改变动脉瘤局部血流动力学状态包括血流速度大小、冲击方向或通过减少瘤内的血流以促成血栓达到治疗目的成为一种间接处理动脉瘤的策略。

近些年来,一些学者应用计算流体力学对颅内动脉瘤进行数值模拟分析,有的学者采用牛顿流体与非牛顿流体模式进行对比分析,也有的学者采用刚性壁的方法对动脉瘤进行数值分析[5-8]。动脉瘤是一种流体、固体相互耦合的物理场,而应用双向流固耦合进行数值模拟分析更接近于动脉瘤的血流真实流动状况。本文建立颅内床突旁动脉瘤颈内动脉近端阻断前后的双向流固耦合模型,利用Ansys有限元软件对动脉瘤进行求解,获得血流动力学参数、应力应变情况并对结果进行配对t检验统计学分析,进而为复杂动脉瘤的治疗方案选择提供理论指导。

參考文献

[1]Paolo Di Achille, Jay D. Humphrey. Fluid-Solid-Growth TowardLarge-Scal Computational Intracranial Aneurysms[J]. Models of Yale J Biol Med. 2012, 85(2): 217–228.

[2]Fuyu Wang, Bainan Xu, Zhenghui Sun, Chen Wu, Xiaojun Zhang. Wall shear stress and adjacent arteries intracranial aneurysms in[J]. Neural Regen Res. 2013, 15; 8(11): 1007– 1015.

[3]J. D. Humphrey. Coupling hemodynamics with vascular wall mechanics and intracranial aneurysms mechanobiology to understand[J]. Int J Comut Fluid Dyn. 2009; 23(8): 569–581.

[4]Benjamin Owen, Nicholas Bojdo, Andrey Jivkov, Bernard Keavney, Alistair Revell. Structural modelling of the cardiovascular system[J]. Biomech Model Mechanobiol. 2018; 17(5): 1217–1242.

[5]Xu Bai-Nan, Wang Fu-Yu, Liu Lei, Zhang Xiao-Jun, Ju Hai-Yue. Hemodynamics aneurysms[J]. in internal carotid artery interaction model of fluid–solid Neurosurg Rev. 2011, 34(1): 39–47.

[6]Fernando Mut, Rainald L?hner, Aichi Chien, Satoshi Tateshima, Fernando Vi?uela, Christopher Putman, Juan Cebral. Computational Hemodynamics Framework for the Aneurysms[J]. Analysis of Cerebral Int j numer method biomed eng. 2011, 27(6): 822–839.

[7]Daniel M. Sforza, Christopher M. Putman, Juan R. Cebral. aneurysms Computational fluid dynamics in brain[J]. Int J Numer Method Biomed Eng. 2012, 28(0): 801–808.

[8]Fatma Gulden Simsek, Young W. Kwon. Investigation of material modeling in fluid–structure analysis of an idealized three-layered abdominal interaction aneurysms[J]. initiation and fully developed aneurysm aorta: J Biol Phys. 2015, 41(2): 173–201.

[9]Paris Perdikaris, Joseph A. Insley, Leopold Grinberg, Yue Yu, Michael E. Papka, George Em. Karniadakis. Visualizing multiphysics, intracranial aneurysms[J]. phenomena in interaction fluid-structure Parallel Comput. 2016, 55: 9–16.

[10]Tianlun Qiu, Guoliang Jin, Wuqiao Bao, Haitao Lu. Intercorrelations of in computational fluid intracranial aneurysms morphology with hemodynamics in dynamics[J]. Neurosciences. 2017, 22(3): 205–212.

[11]Kristian Valen-Sendstad, Aslak W. Bergersen, Yuji Shimo gonya, et al. Real-World Wall Shear Stress: The Intracranial Aneurysm Variability in the Prediction of 2015 International CFD Challenge[J]. Aneurysm Cardiovasc Eng Technol. 2018; 9(4): 544–564.

[12]Yunling Long, Jingru Zhong, Hongyu Yu, Huagang Yan, Zhizheng Zhuo, Qianqian Meng, Xinjian Yang, Haiyun Li. model-based approach to aneurysm A scaling rupture aneurysm assessing the role of flow pattern and energy loss in prediction[J]. J Transl Med. 2015; 13: 311.

[13]Gambaruto AM, Janela J, Moura A, et al. Sensitivity of hemodynamics in a patient specific cerebral aneurysm to vascular geometry and blood rheology[J]. Math Biosci Eng. 2011, 8(2): 409-423.

[14]Cebral JR, Meng H. Counterpoint: realizing the clinical utility of computational fluid dynamics-closing the gap[J]. AJNR Am J Neuroradiol. 2012, 33(3): 396–398.

[15]Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J, Hopkins LN, Siddiqui AH, Levy EI, Meng H. Hemodynamic morphologic discriminants for intracranial aneurysm rupture[J]. Stroke J Cereb Circ. 2011, 42(1): 144–152.

[16]Lu G, Huang L, Zhang XL, Wang SZ, Hong Y, Hu Z, Geng DY. Influence of hemodynamic factors on rupture of intracranial aneurysms: patient-specific 3D mirror aneurysms model computational fluid dynamics simulation[J]. AJNR Am J Neuroradiol. 2011, 32(7): 1255–1261.

[17]Jia Lu, Shouhua Hu, Madhavan L. Raghavan. A shell-based inverse approach of stress analysis intracranial aneurysms in[J]. Ann Biomed Eng. 2013, 41(7): 1505–1515.

[18]Xu Bai-Nan, Wang Fu-Yu, Liu Lei, Zhang Xiao-Jun, Ju Hai-Yue. Hemodynamics model aneurysms[J]. in internal carotid artery interaction fluid–solid ofNeurosurg Rev. 2011 , 34(1): 39–47.

[19]Fatma Gulden Simsek, Young W. Kwon. Investigation analysis of an idealized interaction fluid structure of material modeling in initiation and fully aneurysm three-layered abdominal aorta: aneurysms developed[J]. J Biol Phys. 2015, 41(2): 173–201.

[20]Yue Yu, Paris Perdikaris, George Em Karniadakis. Fractional modeling of viscoelasticity in aneurysms[J]. 3D cerebral arteries and J Comput Phys. 2016 , 323: 219–242.

[21]J. D. Humphrey, G. A. Holzapfel. Mechanics, Aneurysms Mechanobiology, and Modeling of Human Abdominal Aorta and[J]. J Biomech. 2012, 45(5): 805–814.

[22]Malebogo N. Ngoepe, Alejandro F. Frangi, James V. Byrne, Yiannis Ventikos. Thrombosis Review and the Computa tional Modeling Thereof: A Aneurysms in Cerebral Front Physiol[J]. 2018, 9: 306.

[23]Michael J Bonares, A Leonardo de Oliveira Manoel, R Loch Macdonald, Tom A Schweizer. Behavioral review intracr anial aneurysms: a systematic profile of unruptured[J]. Ann Clin Transl Neurol. 2014, 1(3): 220–232.

猜你喜欢
数值模拟
锥齿轮精密冷摆辗成形在“材料成型数值模拟”课程教学中的应用
西南地区气象资料测试、预处理和加工研究报告