直接种间电子传递对缓解厌氧消化抑制效应的研究进展

2020-03-04 13:43司哺春刘凯强林新宇刘志丹杨改秀张源辉
农业工程学报 2020年24期
关键词:产甲烷种间磁铁矿

司哺春,刘凯强,林新宇,刘志丹,杨改秀,张源辉,3

直接种间电子传递对缓解厌氧消化抑制效应的研究进展

司哺春1,刘凯强1,林新宇1,刘志丹1,杨改秀2,张源辉1,3

(1. 中国农业大学水利与土木工程学院农业农村部设施农业工程重点实验室,环境增值能源实验室,北京 100083;2. 中国科学院广州能源研究所,广州 510640;3. 美国伊利诺伊大学香槟校区农业与生物工程系伊利诺伊 IL61801)

厌氧消化是将生物质废弃物进行资源化利用的有效途径之一。然而,复杂的原料性质以及反应器高负荷的运行条件会使厌氧消化过程产生多种抑制效应,易导致反应器运行不稳定,产气效率低等问题。因此,提升厌氧消化反应器运行性能、减缓抑制效应成为当前的研究热点。区别于以氢气和甲酸为媒介的间接种间电子传递(Mediated Interspecies Electron Transfer,MIET)过程,微生物间的直接种间电子传递(Direct Interspecies Electron Transfer,DIET)能够在菌群间直接进行电子转移,传递效率更高。DIET的建立有助于强化厌氧反应的稳定性,提高反应效率,减缓抑制效应。基于此,该文总结了DIET的研究进展,分析了主要的种间电子传递机制,探讨了DIET对不同类型抑制效应的缓解作用,归纳了DIET潜在微生物的富集效果;在此基础上展望了DIET在减缓厌氧消化抑制效应方面的重点研究方向和应用前景。

发酵;反硝化;抑制效应;微生物群落;导电材料;直接种间电子传递

0 引 言

据统计,世界范围内每年大约产生1 460亿t的生物质废物[1]。中国每年产生约21亿t 农林业废弃物和38亿t畜禽粪污[2],但综合利用率不到60%[3]。废弃物的不当处理会造成严重的环境污染,包括地表和地下水污染、气味问题和病原体的传播[4]。

厌氧消化是一种经济、有效的生物质废物处理和能源生产技术,由不同微生物共同参与完成产甲烷过程,其反应效率依赖于系统中不同微生物间的协同作用[5]。高浓度废水、城市生活垃圾、剩余污泥、畜禽粪污、农业废弃物、微藻和餐厨垃圾等都可以通过厌氧消化进行能源转化[6-7]。但复杂的原料性质以及反应器运行条件的变化会导致厌氧消化过程的多种抑制效应。例如废水中的氮杂环化合物、苯酚、呋喃等[8],高有机负荷(Organic Loading Rate,OLR)运行条件下的中间产物挥发性脂肪酸(Volatile Fatty Acid,VFA)的积累[9],含氮物质转化导致的氨氮积累[10]等都会对厌氧微生物产生强烈的抑制作用,从而导致厌氧消化无法顺利进行[11]。

厌氧消化过程中,互养微生物产乙酸细菌和产甲烷古菌之间的电子传递过程由于存在热力学壁垒的问题,被认为是厌氧消化过程的限速步骤[12]。近年来的研究表明,在厌氧消化过程中,DIET(Direct Interspecies Electron Transfer)是一种比H2或甲酸介导的MIET更有效的种间电子传递机制[13],可加强互养微生物间的“交流”,促进反应自发进行,从而达到促进厌氧消化的目的[14]。因此,在厌氧消化过程中通过加入导电材料或乙醇,可促进DIET机制建立,进而缓解厌氧消化的抑制效应,强化微生物菌群间的互养代谢过程[15-16],保证了厌氧消化过程的稳定进行[17]。

目前已有文献探究通过建立DIET来提升厌氧消化性能,但与基于DIET减缓厌氧消化抑制效应的相关综述还未有报道。因此,本文旨在总结种间电子传递机制,回顾DIET的研究进展;探讨DIET对抑制效应的缓解作用,总结分析DIET潜在功能微生物群落的富集效果;最后基于以上内容提出DIET缓解厌氧消化抑制效应的作用机理探究和工程化应用所面临的挑战。

1 种间电子传递机制

传统厌氧发酵理论认为复杂有机物在被转换为单碳化合物(CO2、甲酸、甲醇、甲胺)和乙酸之前不能产生甲烷,厌氧消化的关键步骤是电子产生与消耗过程[18]。如图1a所示,MIET是指依赖于H2或甲酸作为载体在互养菌群之间进行的电子传递。氢化酶或甲酸脱氢酶的存在对互养微生物通过胞外电子传递进行链式生化反应是必不可少的。VFAs和乙醇氧化产生的质子被氢化酶还原成氢气,或被甲酸脱氢酶还原成二氧化碳,然后,氢和甲酸将电子从供体(乙酸菌)转移到受体(甲烷菌)。H+/H2的氧化还原电位较低,当与其他氧化还原介质发生耦合反应时,其在标准条件下反应的自由能通常为正值[19]。以丙酸产甲烷过程为例,产乙酸细菌将丙酸氧化成乙酸和氢气(CH3CH2COO-+ 3H2O → CH3COO-+HCO3-+ H++ 3H2),在标准生化条件下,这个反应过程存在能量壁垒(Δ=76.0 kJ/mol)[20],进而限制了电子传递效率[21]。传统的MIET机制对电子载体浓度极为敏感,例如,只有当氢营养型产甲烷菌通过消耗H2,使H2压力维持在较低水平(<1.013 25 Pa)时,MIET过程才能持续进行[22]。甲酸亦可替代H2作为电子载体,参与电子传递过程[23-25]。尽管氢气的扩散系数更高,但甲酸介导的MIET具有更高的传质速率[26]。以菲克定律为基础的扩散模型表明,种间甲酸传递比种间氢气传递(Interspecific H2Transfer,IHT)的产甲烷速率高100倍[21]。然而,许多产甲烷古菌在纯培养基中不能利用甲酸,种间氢气传递被认为是主要的电子传递机制[26]。

2005年,麻省大学Lovley团队研究发现,富集在Fe(III)氧化物表面的的菌毛具有良好的导电性,可以将电子直接转移到Fe(III)氧化物中[27]。2010年,该团队首次证明了电活性微生物和之间存在DIET[28],并在处理啤酒废水的上流式厌氧污泥反应器中验证了颗粒污泥中DIET的形成[29]。Rotaru等[18,30]进一步证实了和常见的产甲烷菌(如、等)能够进行DIET。如图 1b所示,互养微生物之间可通过导电菌毛(electrically conductive pili,e-pili)和细胞色素蛋白(c-type Cytochromes,OmcS)进行DIET[16]。通过e-pili和OmcS,细菌可以直接将中间产物产生的电子转移到产甲烷古菌,还原CO2产生甲烷。互养微生物之间也可通过导电材料建立DIET,且机制与导电材料尺寸和结构相关。如果导电材料的尺寸小于微生物细胞,那么导电材料只能附着在单个细胞上(见图1e);而大面积导电碳材料可以在其表面附着多种微生物菌群,进而提供流畅的电子通道(见图1c)。缺乏e-pili或OmcS,微生物之间无法通过生物连接建立DIET,但添加导电材料后,如图1d,1f所示,导电材料可以充当电子通道,促进微生物间建立DIET。炭基导电材料(生物炭[2,31]、颗粒活性炭[32-33]、石墨烯[34]、碳布[35]等)和铁基导电材料(磁铁矿[36-37]、赤铁矿[38]、针铁矿[39]以及零价铁[40]等)具有高导电性、化学稳定性、轻质和成本较低等优势,被广泛用于促进厌氧消化过程中DIET的建立。

DIET可通过e-pili和OmcS或结合生物和非生物电子传递元件,如导电材料等进行电子传递。与MIET相比,DIET具有以下优势:1)通过反应-扩散-电化学模型计算得到DIET(44.9×103cp-1s-1)的电子传递速率是IHT(5.24×103 cp-1s-1)的8~9倍[26],可加速菌群间的互养代谢过程,提高厌氧消化产气效率;2)DIET不依赖于介质转移电子,无需酶的催化,避免了不必要的能量损耗;3)在DIET过程中,电子直接转移到产甲烷菌,避免了扩散到周围环境的损失。

图1 种间电子传递机制

2 DIET对厌氧消化抑制效应的缓解作用

在厌氧消化过程中,微生物群落通常会受到氨氮积累、高浓度硫化物等无机离子以及VFAs积累、芳香族类等难降解有机物引起的抑制作用。目前研究表明微生物菌群间DIET的建立对厌氧消化的抑制效应可起到显著的缓解作用(表1、表2)。其缓解抑制效应的主要结果和相应的机制将在下文进行具体阐述。

2.1 无机离子抑制作用的缓解

在厌氧消化过程中,有机态氮(蛋白质、尿素、核酸等)转化成无机态氨氮。但是由于厌氧微生物生长缓慢,只有少量氨氮可被细胞利用,导致氨氮积累,从而对厌氧消化过程产生抑制作用[41-42]。当氨氮浓度较低时,其作为微生物生长必须的营养物质,可以促进微生物生长,但随着氨氮逐渐累积,当氨氮浓度达到1 500~1 700mg/L[43]时,会对厌氧消化产生较强的抑制性[44-45]。由于产甲烷菌比水解酸化菌的氨氮敏感性更强,因此,高浓度氨氮对产甲烷古菌会产生更显著的影响[46]。此外,高浓度氨氮抑制产乙酸代谢过程,导致VFAs累积,VFAs浓度超过阈值,使产甲烷菌活性进一步降低,最终形成“抑制的稳定状态”[44-45,47-48]。近年来,国内外初步研究了关于DIET与厌氧消化氨氮抑制减缓之间的关系,Zhuang等[43]探究了在不同氨氮浓度下磁铁矿对厌氧消化的影响,发现在高氨氮浓度条件下(5 g/L),添加了磁铁矿的反应器中甲烷效率相比对照组提升58%,磁铁矿的添加可能促进了乙酸氧化细菌与氢营养型产甲烷古菌之间建立了DIET。类似的,Lee等[49]也发现在氨氮抑制情况下(6.5g/L),添加磁铁矿可显著缩短厌氧消化的延滞期(21%),强化有机酸的转化。Lu等[50]则认为在氨氮浓度逐渐升高的情况下,添加磁铁矿可促进氢营养型产甲烷菌和产酸菌之间的DIET,进而提升厌氧消化效果。在氨氮逐渐累积的高浓度厌氧消化环境中,DIET的建立为缓解氨氮抑制,提升反应效率提供了可能。

硫酸盐是含金属废水、纺织废水、制药废水等废水中的典型成分。硫酸盐将促进硫酸盐还原菌的富集,进而硫酸盐还原菌将会与产甲烷菌竞争电子,同时硫酸盐的还原产物硫化氢会抑制微生物菌群间的互养代谢,从而影响厌氧消化的性能。DIET机制的建立可以缓解厌氧消化过程中硫酸盐、硫化氢等对产甲烷过程产生的抑制效应,强化甲烷生成过程。Li等[51]在含硫酸盐废水的厌氧消化过程中添加不锈钢,发现DIET对电子供体的动力学优势比IHT高108倍,添加不锈钢条件下反应器的平均产气量是对照组的4.5倍。Jin等[37]在含硫酸盐废水的厌氧消化过程中添加磁铁矿,发现磁铁矿组c型细胞色素的浓度为113.54 nmol/L,约为对照组的一半,表明通过磁铁矿建立的DIET取代了c型细胞色素,而且,Fe(III)还原菌在磁铁矿表面富集,并与产甲烷菌和建立了DIET通道,使含硫废水甲烷产量提高了3~10倍,进而推断DIET是强化甲烷生成和硫酸盐去除的主要机制。

2.2 有机物抑制作用的缓解

当OLR过高时,VFAs积累、pH下降,厌氧消化产甲烷过程被抑制[35]。在高OLR的反应器中加入碳布[52]、GAC[53]、磁铁矿[54]、生物炭[55-56]等导电材料,可促进产电细菌和产甲烷古菌之间建立DIET,形成高效的电子传递通道,增强微生物间的协同代谢。DIET功能微生物代谢活性的提高可缓解VFAs积累,提升产甲烷效率,维持厌氧反应器在高OLR下的稳定运行(见表2)。例如,丙酸在厌氧消化过程中转化效率低,容易积累,易导致抑制效应。Cruz等[57]探究了添加微米级磁铁矿对丙酸盐厌氧消化的影响,通过使用共聚焦激光扫描显微镜(Confocal Laser Scanning Microscopy,CLSM)与荧光原位杂交(Fluorescence In Situ Hybridization,FISH)结合方法显示了聚集微生物的存在,古菌总是靠近细菌。进一步推测添加磁铁矿促进了DIET机制的建立,进而提升了丙酸的降解效率。乙酸是厌氧消化过程中重要的中间代谢产物,Baek等[5]在进行乳制品厌氧消化处理时,添加磁铁矿可通过建立DIET促进二氧化碳还原和乙酸分解,提高甲烷产量。推测主要是进行了基于DIET的互养乙酸氧化产甲烷途径[58]。与乙酸营养型产甲烷菌相比,互养乙酸氧化产甲烷菌更能适应高浓度VFA的胁迫[59]。Zhuang等[43]研究发现,与对照组相比,添加磁铁矿纳米颗粒可促进互养乙酸氧化菌和产甲烷菌之间建立DIET机制,从而使乙酸产甲烷速率提高36%~58%。

芳香族化合物结构稳定,在厌氧环境中不易分解,且对微生物毒性很强。水解酸化细菌与产甲烷古菌受到毒性抑制,难以进行产甲烷过程。通过建立DIET,促进了互养微生物代谢活性,可进一步强化芳香族化合物的分解利用。Usman等[8]在厌氧消化处理组分复杂的水热液化废水过程中发现,添加GAC可通过富集DIET潜在功能微生物促进含氮有机物和芳香族化合物的降解。苯甲酸脂是芳香族化合物在厌氧消化过程常见的中间体,Zhuang等[60]发现通过添加赤铁矿和磁铁矿可使苯甲酸酯的降解率分别提高25%和53%。Zhuang等[61]发现,在厌氧消化反应器中添加赤铁矿和磁铁矿可能是由于促进互养苯甲酸酯氧化菌和硫酸盐还原菌之间建立了DIET,进而使苯甲酸盐的降解率分别提高了81.8%和91.5%。芘是城市污泥中一种常见的多环芳烃,Li等[62]在城市污泥的厌氧消化过程中添加FeS和磁性碳,通过建立DIET可使芘去除率由40.8%分别提高到77.5%和72.1。

表1 DIET缓解无机离子抑制作用

注:AnDMBRs:厌氧动态膜生物反应器,AMPTSII:全自动甲烷潜力测试系统,CSTR:全混流反应器,UASB:上流式厌氧污泥床,ASBR:厌氧序批反应器。

Note: AnDMBRs: anaerobic dynamic membrane bioreactor, AMPTSII: automated methane potential testing system, CSTR:continuous stirred tank reactor, UASB: upflow anaerobic sludge blanket, ASBR: anaerobic sequencing batch Reactor.

2.3 DIET潜在功能微生物的富集

虽然大量研究表明DIET可缓解厌氧消化过程中高浓度无机物和有机物的抑制作用,但如何针对性的建立微生物间的DIET,确认DIET的存在,从而揭示缓解厌氧消化抑制效应的机制,需要对DIET功能和潜在功能微生物进一步深入研究。到目前为止,有直接且充分证据证明具有DIET功能的细菌包括、以及,具有DIET功能的古菌为、以及和[28,68-71]。作为MIET研究最深入的微生物模型之一,2020年,Walker等[71]的研究表明其可通过导电菌毛建立DIET。因此,DIET机制可能是进行MIET微生物群落的一种选择,这表明能够参与DIET的微生物群落可能比已确认的更广泛。

在厌氧消化过程中添加导电材料,会富集许多具有DIET潜力的电活性微生物。图2所示微生物菌群中,和是水解过程中主要的菌群;、、和是酸化过程中主要的菌群[72]。除中的产电细菌可与产甲烷古菌和建立DIET机制外,以上几类菌门中的许多产电细菌也具有与乙酸营养型或氢营养型产甲烷菌建立DIET机制的潜力。

供电子细菌的富集,可被认为是微生物菌群间建立DIET的有效证据。Lin等[34]研究发现,以乙醇为发酵底物,在厌氧消化过程中添加石墨烯后,产电细菌和的丰度提高,氢营养型产甲烷菌和占据了主导地位,进而推测电子供体细菌、以及电子受体古菌、之间建立了DIET,增强了厌氧消化的性能。Guo等[23]通过在厌氧反应器中添加GAC,发现、、和28以及、和在GAC生物膜上得到富集,这些与DIET相关的电活性微生物扩展了DIET潜力微生物范围。Lee等[73]在以乙酸为底物的厌氧消化反应器中添加GAC,观察到除得到富集外,、以及氢营养型产甲烷菌和的丰度也得到提高,进一步推测除外,其他细菌也具有参与DIET的潜力。

图2 DIET潜在功能微生物群落

厌氧消化过程在受到较强的抑制作用下,不能有效地降解复杂有机物[74]。当丰度较低时,DIET被推测可能是其他重要的细菌参与完成的。Capson等[10]发现,高氨氮浓度的食品废弃物在进行厌氧消化时,未检测到电活性细菌,所以推测厌氧消化抑制情况下参与DIET的细菌可能是和。Lei等[35]在处理焚烧垃圾渗滤液的UASB反应器中添加碳布,推测和能够以碳布为电子通道,与产电细菌、和进行DIET。Zhang等[13]在厌氧消化处理餐厨垃圾油菜籽的试验中发现,GAC表面富集了大量,进一步说明具有参与DIET的潜力。

胞外电子转移到Fe(III)氧化物的机制通常与电子通过DIET转移到产甲烷菌的机制密切相关。与一样,也是一种Fe(III)还原菌,可在添加木屑生物炭的条件下得到富集,因此推测参与了DIET[9]。Wang等[55]在厌氧消化过程中添加木屑生物炭,发现的丰富度明显增加,属于Fe(III)还原菌属,具有生成菌毛的pilA基因,而且与已确定能进行DIET的同时得到了富集。也属于Fe(III)还原菌,在磁铁矿存在的条件下在厌氧消化反应器中被富集,因此,推测通过建立DIET进行共养代谢[37]。Zhao等[16]将剩余污泥与乙醇发酵液混合进行厌氧消化,发现污泥电导率提高约3-5倍,且Fe(III)还原菌和具有高丰度导电菌毛的被富集,因此推断和之间建立了DIET。Jia等[64]在处理啤酒废水的厌氧消化反应器中添加碳布发现细菌得到富集。表明也具有参与DIET的潜力。

3 结论和展望

厌氧消化抑制效应的缓解,除进行原料预处理、厌氧反应器结构的设计以及反应参数的优化外,促进微生物菌群间建立DIET是一种具有潜力和前景的方法。

虽然目前已有诸多研究证明了DIET对厌氧消化抑制效应的缓解效果,然而还存在诸多挑战:1)已经证实能进行DIET的互养微生物种类单一。不同于纯培养体系,目前大部分研究是在复杂生物质废物厌氧消化过程中基于导电材料对微生物的特异性富集来推测能进行胞外电子传递的微生物是否参与了DIET,其结果还需要进一步验证。2)已有研究推测氢营养型产甲烷菌也参与了DIET,然而在氢营养型产甲烷菌主导的反应系统中,IHT也会被促进,即使存在DIET,也难以验证DIET在厌氧消化过程的主导地位。3)在厌氧消化过程中加入导电材料或乙醇等可以促进微生物间建立DIET,但相关机理仍需进一步探究,特别是如何准确论证DIET的形成以及DIET对抑制效应的缓解作用。4)考虑到工程应用时,导电材料如何在大型反应器中持续稳定的发挥作用以及导电材料的成本和回收等仍是需要解决的难题。

因此,进一步的研究可以考虑但不局限于以下几个方面:

1)通过长期连续试验验证,基于16S rRNA 基因序列分析,结合蛋白质组学和宏基因技术,确定厌氧体系中参与抑制物降解以及能够进行DIET的微生物,拓展DIET功能微生物的数据库。此外,基于复杂模型的定量化对比,例如厌氧消化1号模型(Anaerobic Digestion Model No. 1,ADM1),也将有助于揭示DIET缓解厌氧消化抑制机制。

2)厌氧消化反应器中添加导电材料,在探究DIET减缓厌氧消化抑制作用的同时,也要全面考虑导电材料比表面积、表面粗糙度和吸附性能等特性对厌氧消化的促进作用,建立导电材料物化特性和厌氧强化机理以及DIET机制的对应关系。

3)目前实验室规模研究已经证明多种导电材料能够促进微生物间的DIET形成,减缓抑制效应。然而,在实际工程中,导电材料的经济技术可行性、环保性的评价将成为重要的考量因素。因此,进一步对厌氧反应器内导电材料添加的经济技术分析以及生命周期评估的研究将极为重要。

[1] Rasapoor M., Young B, Brar R, et al. Recognizing the challenges of anaerobic digestion: Critical steps toward improving biogas generation[J]. Fuel, 2020, 261: 116497.

[2] 冯晶,荆勇,赵立欣,等. 生物炭强化有机废弃物厌氧发酵技术研究[J]. 农业工程学报,2019,35(12):256-264. Feng Jing, Jing Yong, Zhao Lixin, et al. Research progress on biochar enhanced anaerobic fermentation technology of organic wastes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 256-264. (in Chinese with English abstract)

[3] Bluemling Bettina, Wang Fang. An institutional approach to manure recycling: Conduit brokerage in Sichuan Province, China[J]. Resources, Conservation and Recycling, 2018, 139: 396-406.

[4] Lu T, Zhang J, Li P, et al. Enhancement of methane production and antibiotic resistance genes reduction by ferrous chloride during anaerobic digestion of swine manure[J]. Bioresource Technology, 2020, 298: 122519.

[5] Baek Gahyun, Kim Jaai, Lee Changsoo. A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent: Enhancement in process performance and stability[J]. Bioresource Technology, 2016, 222: 344-354.

[6] Vasco-Correa J, Khanal S, Manandhar A, et al. Anaerobic digestion for bioenergy production: Global status, environmental and techno-economic implications, and government policies[J]. Bioresource Technology, 2018, 247: 1015-1026.

[7] Mushtaq K, Zaidi Asad A., Askari Syed J. Design and performance analysis of floating dome type portable biogas plant for domestic use in Pakistan[J]. Sustainable Energy Technologies and Assessments, 2016, 14: 21-25.

[8] Usman M, Hao Shilai, Chen Huihui, et al. Molecular and microbial insights towards understanding the anaerobic digestion of the wastewater from hydrothermal liquefaction of sewage sludge facilitated by granular activated carbon (GAC)[J]. Environment International, 2019, 133: 105257.

[9] Wang Gaojun, Li Qian, Gao Xin, et al. Sawdust-derived biochar much mitigates VFAs accumulation and improves microbial activities to enhance methane production in thermophilic anaerobic digestion[J]. ACS Sustainable Chemistry & Engineering, 2018, 7(2): 2141-2150.

[10] Capson-Tojo G, Moscoviz R, Ruiz D, et al. Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste[J]. Bioresource Technology, 2018, 260: 157-168.

[11] 范庆文,李岩,华栋梁,等. 水热液化废水厌氧处理研究进展[J]. 现代化工,2020,40(2):23-27. Fan Qingwen, Li Yan, Hua Dongliang, et al. Research advances in anaerobic treatment of hydrothermal liquefaction wastewater[J]. Modern Chemical Industry, 2020, 40(2): 23-27. (in Chinese with English abstract)

[12] Wang Tao, Zhang Dong, Dai Lingling, et al. Magnetite triggering enhanced direct interspecies electron transfer: A Scavenger for the blockage of electron transfer in anaerobic digestion of high-solids sewage sludge[J]. Environmental Science & Technology, 2018, 52(12): 7160-7169.

[13] Zhang Jing, Zhang Rongtang, Wang Hongyu, et al. Direct interspecies electron transfer stimulated by granular activated carbon enhances anaerobic methanation efficiency from typical kitchen waste lipid-rapeseed oil[J]. Science of The Total Environment, 2020, 704: 135282.

[14] 徐俊,朱雯喆,谢丽. 生物强化技术对厌氧消化特性影响研究进展[J]. 化工进展,2019,38(9):4227-4237. Xv Jun, Zhu Wenzhe, Xie Li. Effect of bioaugmentation on the performance of anaerobic digestion: A review[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4227-4237. (in Chinese with English abstract)

[15] Zhao Zhiqiang, Wang Jianfeng, Li Yang, et al. Why do DIETers like drinking: Metagenomic analysis for methane and energy metabolism during anaerobic digestion with ethanol[J]. Water Research, 2020, 171: 115425.

[16] Zhao Zhiqiang, Sun Cheng, Li Yang, et al. Upgrading current method of anaerobic co-digestion of waste activated sludge for high-efficiency methanogenesis: Establishing direct interspecies electron transfer via ethanol-type fermentation[J]. Renewable Energy, 2020, 148: 523-533.

[17] Igarashi K, Miyako E, Kato S. Direct interspecies electron transfer mediated by graphene oxide-based materials[J]. Frontiers in Microbiology, 2020, 10: 3068.

[18] Rotaru Amelia-Elena, Shrestha Pravin Malla, Liu Fanghua, et al. A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to methanosaeta for the reduction of carbon dioxide to methane[J]. Energy &Environmental Science, 2014, 7(1): 408-415.

[19] 安彤,吴宗林,庞悦,等. 导电材料强化挥发性脂肪酸互营氧化产甲烷菌群的种间直接电子传递研究进展[J]. 应用与环境生物学报,2020, 26(6):1-11. An Tong, Wu Zonglin, Pang Yue, et al. A review of direct interspecies electron transfer strengthened by conductive materials between syntrophic methanogenesis communities of volatile fatty acids[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(6): 1-11. (in Chinese with English abstract)

[20] Cruz Viggi Carolina, Rossetti Simona, Fazi Stefano, et al. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation[J]. Environmental Science & Technology, 2014, 48(13): 7536-7543.

[21] Stams Alfons J M, Plugge Caroline M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea[J]. Nature Reviews Microbiology, 2009, 7(8): 568-577.

[22] Schmidt J E, Ahring B K. Interspecies electron transfer during propionate and butyrate degradation in mesophilic, granular sludge[J]. Applied and Environmental Microbiology, 1995, 61(7): 2765-2767.

[23] Guo Bing, Zhang Yingdi, Zhang Lei, et al. RNA-based spatial community analysis revealed intra-reactor variation and expanded collection of direct interspecies electron transfer microorganisms in anaerobic digestion[J]. Bioresource Technology, 2020, 298: 122534.

[24] Rotaru Amelia-Elena, Shrestha Pravin Malla, Liu Fanghua, et al. Direct interspecies electron transfer between Geobacter metallireducens and methanosarcina barkeri[J]. Applied and Environmental Microbiology, 2014, 80(15): 4599-4605.

[25] Boone David R, Johnson Richard L, Liu Yitai. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake[J]. Applied and Environmental Microbiology, 1989, 55(7): 1735-1741.

[26] Storck Tomas, Virdis Bernardino, Batstone Damien J. Modelling extracellular limitations for mediated versus direct interspecies electron transfer[J]. The ISME Journal, 2015, 10(3): 621-631.

[27] Reguera Gemma, McCarthy Kevin D, Mehta Teena, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045): 1098-1101.

[28] Summers Z M, Fogarty H E, Leang C, et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria[J]. Science, 2010, 330(6009): 1413-1415.

[29] Morita Masahiko, Malvankar Nikhil S, Franks Ashley E, et al. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates[J]. mBio, 2011, 2(4): 159.

[30] Liu Fanghua, Rotaru Amelia-Elena. Promoting direct interspecies electron transfer with activated carbon[J]. Energy & Environmental Science, 2012(5): 8982.

[31] 于亚梅,沈雁文,朱南文,等. 生物炭和石墨的电化学性质对剩余污泥厌氧消化产甲烷的影响[J]. 环境工程学报,2020,14(3):807-820. Yu Yamei, Shen Yanwen, Zhu Nanwen, et al. Effect of electrochemical properties of biochar and graphite on methane production in anaerobic digestion of excess activated sludge[J]. Chinese Journal of Environmental Engineering, 2020, 14(3): 807-820. (in Chinese with English abstract)

[32] Park Jeong-Hoon, Park Jong-Hun, Je Seong Hoon, et al. Metagenomic insight into methanogenic reactors promoting direct interspecies electron transfer via granular activated carbon[J]. Bioresource Technology, 2018, 259: 414-422.

[33] Yang Libin, Si Buchun, Zhang Yuanhui, et al. Continuous treatment of hydrothermal liquefaction wastewater in an anaerobic biofilm reactor: Potential role of granular activated carbon[J]. Journal of Cleaner Production, 2020, 276: 122836.

[34] Lin Richen, Cheng Jun, Zhang Jiabei, et al. Boosting biomethane yield and production rate with graphene: The potential of direct interspecies electron transfer in anaerobic digestion[J]. Bioresource Technology, 2017, 239: 345-352.

[35] Lei Yuqing, Sun Dezhi, Dang Yan, et al. Stimulation of methanogenesis in anaerobic digesters treating leachate from a municipal solid waste incineration plant with carbon cloth[J]. Bioresource Technology, 2016, 222: 270-276.

[36] Yin Qidong, Yang Shuo, Wang Zhongzhong, et al. Clarifying electron transfer and metagenomic analysis of microbial community in the methane production process with the addition of ferroferric oxide[J]. Chemical Engineering Journal, 2018, 333: 216-225.

[37] Jin Zhen, Zhao Zhiqiang, Zhang Yaobin. Potential of direct interspecies electron transfer in synergetic enhancement of methanogenesis and sulfate removal in an up-flow anaerobic sludge blanket reactor with magnetite[J]. Science of The Total Environment, 2019, 677: 299-306.

[38] Zhu Ruilin, Chen Yongdong, Zhao Ting, et al. Enhanced mesophilic anaerobic co-digestion of waste sludge and food waste by using hematite (-Fe2O3) supported bentonite as additive[J]. Bioresource Technology, 2020, 313: 123603.

[39] 钟成,王进,徐诚,等. 针铁矿添加量对丙酸钠厌氧产甲烷的影响[J]. 矿物岩石地球化学通报,2019,38(5):961-965. Zhong Cheng, Wang Jin, Xu Cheng, et al. The effect of goethite dosage on the anaerobic methanogenesis by sodium propionate[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(5): 961-965. (in Chinese with English abstract)

[40] Li Shiyang, Cao Yi, Zhao Zhiqiang, et al. Regulating secretion of extracellular polymeric substances through dosing magnetite and zerovalent iron nanoparticles to affect anaerobic digestion mode[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9655-9662.

[41] 于芳芳,伍健东. 氨氮对厌氧颗粒污泥产甲烷菌的毒性研究[J]. 化学与生物工程,2008,5(4):75-78. Yu Fangfang, Wu Jiandong. Toxicity study of ammonium on methanogenic bacteria in anaerobic granular sludge[J]. Chemistry & Bioengineering, 2008, 5(4): 75-78. (in Chinese with English abstract)

[42] 何仕均,王建龙,赵璇. 氨氮对厌氧颗粒污泥产甲烷活性的影响[J]. 清华大学学报(自然科学版),2005,45(9):1294-1296. He Shijun, Wang Jianlong, Zhao Xuan. Effect of ammonium concentration on the methanogenic activity of anaerobic granular sludge[J]. Journal of Tsinghua Unirersity (Science and Technology), 2005, 45(9): 1294-1296. (in Chinese with English abstract)

[43] Zhuang Li, Ma Jinlian, Yu Zhen, et al. Magnetite accelerates syntrophic acetate oxidation in methanogenic systems with high ammonia concentrations[J]. Microbial Biotechnology, 2018, 11(4): 710-720.

[44] Shi Xuchuan, Lin Jia, Zuo Jiane, et al. Effects of free ammonia on volatile fatty acid accumulation and process performance in the anaerobic digestion of two typical bio-wastes[J]. Journal of Environmental Sciences, 2017, 55: 49-57.

[45] Rajagopal Rajinikanth, Massé Daniel I, Singh Gursharan. A critical review on inhibition of anaerobic digestion process by excess ammonia[J]. Bioresource Technology, 2013, 143: 632-641.

[46] 贾传钊,李香真,肖洪文,等. 高氨氮浓度对产甲烷厌氧发酵过程中微生物活性及转录组的影响[J]. 中国沼气,2019,37(4):3-10. Jia Chuanzhao, Li Xiangzhen, Xiao Hongwen, et al. Effects of high ammonium concentration on microbial community activity and metatranscriptome in biogas anaerobic digestion[J]. China Biogas, 2019, 37(4): 3-10. (in Chinese with English abstract)

[47] Siles J A, Brekelmans J, Martín M A, et al. Impact of ammonia and sulphate concentration on thermophilic anaerobic digestion[J]. Bioresource Technology, 2010, 101(23): 9040-9048.

[48] 王珅,田颖,刘阳生,等. 厌氧消化过程氨抑制解除技术研究进展[J]. 工业水处理,2015,35(5):10-15. Wang Shen, Tian Ying, Liu Yangsheng, et al. Research progress in ammonia inhibiting and removing technologies in anaerobic digestion process[J]. Industrial Water Treatment, 2015, 35(5): 10-15. (in Chinese with English abstract)

[49] Lee Joonyeob, Koo Taewoan, Yulisa Arma, et al. Magnetite as an enhancer in methanogenic degradation of volatile fatty acids under ammonia-stressed condition[J]. Journal of Environmental Management, 2019, 241: 418-426.

[50] Lu Tiedong, Zhang Junya, Wei Yuansong, et al. Effects of ferric oxide on the microbial community and functioning during anaerobic digestion of swine manure[J]. Bioresource Technology, 2019, 287: 121393.

[51] Li Yue, Zhang Yaobin, Yang Yafei, et al. Potentially direct interspecies electron transfer of methanogenesis for syntrophic metabolism under sulfate reducing conditions with stainless steel[J]. Bioresource Technology, 2017, 234: 303-309.

[52] Liu X, Chen Q, Sun D, et al. Applying potentials to conductive materials impairs high-loading anaerobic digestion performance by affecting direct interspecies electron transfer[J]. Bioresource Technology, 2020, 297: 122422.

[53] 冯显露,刘新颖,孙德智,等. 投加颗粒活性炭强化餐厨垃圾的厌氧处理[J]. 中国环境科学,2018,38(3):1018-1023. Feng Xianlu, Liu Xinying, Sun Dezhi, et al. Enhancing anaerobic methanogenic treatment of kitchen wastes by incorporating granular activated carbon[J]. China Environmental Science, 2018, 38(3): 1018-1023. (in Chinese with English abstract)

[54] Wang Tao, Zhang Dong, Dai Lingling, et al. Magnetite triggering enhanced direct interspecies electron transfer: A scavenger for the blockage of electron transfer in anaerobic digestion of high-solids sewage sludge[J]. Environmental Science & Technology, 2018, 52(12): 7160-7169.

[55] Wang Gaojun, Li Qian, Gao Xin, et al. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: Performance and associated mechanisms[J]. Bioresource Technology, 2018, 250: 812-820.

[56] Zhuang Haifeng, Zhu Hao, Shan Shengdao, et al. Potential enhancement of direct interspecies electron transfer for anaerobic degradation of coal gasification wastewater using up-flow anaerobic sludge blanket (UASB) with nitrogen doped sewage sludge carbon assisted[J]. Bioresource Technology, 2018, 270: 230-235.

[57] Cruz Viggi Carolina, Rossetti Simona, Fazi Stefano, et al. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation[J]. Environmental Science & Technology, 2014, 48(13): 7536-7543.

[58] 吴伟,郑珍珍,麻婷婷,等. 互营乙酸氧化菌研究进展[J]. 中国沼气,2016,34(2):3-8. Wu Wei, Zheng Zhenzhen, Ma Tingting, et al. Recent advances on syntrophic acetate oxidation bacteria[J]. China Biogas, 2016, 34(2): 3-8. (in Chinese with English abstract)

[59] 易悦,董劼,王慧中,等. 基于甲酰四氢叶酸合成酶基因解析厌氧消化系统中互营乙酸氧化菌群[J]. 中国沼气,2018,36(1):8-14. Yi Yue, Dong Jie, Wang Huizhong, et al. Analysis of syntrophic acetate-oxidizing bacterial community in anaerobic digesters based on formyltetrahydrofolate synthetase gene[J]. China Biogas, 2018, 36(1): 8-14. (in Chinese with English abstract)

[60] Zhuang Li, Tang Jia, Wang Yueqiang, et al. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation[J]. Journal of Hazardous Materials, 2015, 293: 37-45.

[61] Zhuang Li, Tang Ziyang, Ma Jinlian, et al. Enhanced anaerobic biodegradation of benzoate under sulfate-reducing conditions with conductive iron-oxides in sediment of pearl river estuary[J]. Frontiers in Microbiology, DOI: 10.3389/fmicb.2019.00374.

[62] Li L, Zhang X, Zhu P, et al. Enhancing biomethane production and pyrene biodegradation by addition of bio-nano FeS or magnetic carbon during sludge anaerobic digestion[J]. Environmental Technology, 2020, 56: 1-12.

[63] Lee Joonyeob, Koo Taewoan, Yulisa Arma, et al. Magnetite as an enhancer in methanogenic degradation of volatile fatty acids under ammonia-stressed condition[J]. Journal of Environmental Management, 2019, 241: 418-426.

[64] Jia R, Sun D, Dang Y, et al. Carbon cloth enhances treatment of high-strength brewery wastewater in anaerobic dynamic membrane bioreactors[J]. Bioresource Technology, 2020, 298: 122547.

[65] Xu Yanguang, Wang Mingwei, Yu Qilin, et al. Enhancing methanogenesis from anaerobic digestion of propionate with addition of Fe oxides supported on conductive carbon cloth[J]. Bioresource Technology, 2020, 302: 122796.

[66] Zhao Zisheng, Li Yang, Yu Qilin, et al. Ferroferric oxide triggered possible direct interspecies electron transfer between Syntrophomonas and Methanosaeta to enhance waste activated sludge anaerobic digestion[J]. Bioresource Technology, 2018, 250: 79-85.

[67] Baek Gahyun, Kim Jinsu, Kim Jaai, et al. Individual and combined effects of magnetite addition and external voltage application on anaerobic digestion of dairy wastewater[J]. Bioresource Technology, 2020, 297: 122443.

[68] Chen Shanshan, Rotaru Amelia-Elena, Liu Fanghua, et al. Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures[J]. Bioresource Technology, 2014, 173: 82-86.

[69] Chen Shanshan, Rotaru Amelia-Elena, Shrestha Pravin Malla, et al. Promoting interspecies electron transfer with biochar[J]. Scientific Reports, 2015, 4(1): 5019.

[70] 赵智强,李杨,张耀斌. 厌氧消化中直接种间电子传递产甲烷机理研究与技术应用[J]. 科学通报,2020,65(26):2820-2834. Zhao Zhiqiang, Li Yang, Zhang Yaobin. Direct interspecies electron transfer in anaerobic digestion: Research and technological application[J]. Chinese Science Bulletin, 2020, 65(26): 2820-2834. (in Chinese with English abstract)

[71] Walker David J F, Nevin Kelly P, Holmes Dawn E, et al. Syntrophus conductive pili demonstrate that common hydrogen-donating syntrophs can have a direct electron transfer option[J]. The ISME Journal, 2020, 14(3): 837-846.

[72] Wang Pan, Wang Hongtao, Qiu Yinquan, et al. Microbial characteristics in anaerobic digestion process of food waste for methane production: A review[J]. Bioresource Technology, 2018, 248: 29-36.

[73] Lee Jung-Yeol, Lee Sang-Hoon, Park Hee-Deung. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors[J]. Bioresource Technology, 2016, 205: 205-212.

[74] Wu Dong, Wang Ting, Huang Xinghua, et al. Perspective of harnessing energy from landfill leachate via microbial fuel cells: novel biofuels and electrogenic physiologies[J]. Applied Microbiology and Biotechnology, 2015, 99(19): 7827-7836.

Research progress of the relief of anaerobic digestion inhibitions based on direct interspecies electron transfer

Si Buchun1, Liu Kaiqiang1, Lin Xinyu1, Liu Zhidan1, Yang Gaixiu2, Zhang Yuanhui1,3

(1.(2),,,,,100083,; 2.,.510640,; 3.,,IL 61801,)

Anaerobic digestion is one of the most effective technologies to valorize biomass waste for bioenergy production. However, complex characteristics of raw materials and varied operating conditions of the reactor resulted in multiple inhibitions during anaerobic digestion. Therefore, improving the performance of anaerobic reactors and reducing the inhibitory effects have attracted increasing attentions. Unlike mediated interspecies electron transfer (MIET) by hydrogen or formic acid, direct interspecies electron transfer (DIET) can directly transfer electrons among microbes. Establishing DIET could enhance the stability of digestion, improve reaction efficiencies, and relieve inhibitory effects during anaerobic digestion. However, DIET is still in its infancy stage. To this end, this study aim to summarize the main mechanisms of interspecific electron transfer, in particular, review and discuss the effects of DIET on relief of inhibitions of anaerobic digestion. DIET can be established via e-pili, OmcS and conductive materials between syntrophic bacteria and methanogens. Compared with electron transfer via MIET, DIET shows several advantages. Electron transfer rate of DIET is 8-9 times that of MIET. In addition, DIET does not depend on the medium to transfer electrons, which indicates that it has no requirement of hydrogenase or formate dehydrogenases, thus avoiding unnecessary energy loss. What’s more, during the DIET, electrons are directly transferred between bacteria and methanogens, and it avoids the loss of electrons caused by the diffusion to surrounding environment. Further, the effects of DIET on different inhibitions were summarized and discussed. Present studies indicated the inhibitions caused by nitrogen heterocyclic compounds, aromatic organics and furans, and accumulated volatile fatty acids could be significantly relived with the establishment of DIET. In addition, DIET was also proved could effectively improve the anaerobic digestion with inorganic inhibitors, high content of ammonia and sulfur-containing compounds. Adding conductive materials or ethanol could stimulate the establishment of DIET and enrich DIET related microbes, so as to alleviate the inhibitory effects and strengthen the activities of microbial communities. The enriched DIET related microorganisms were also summarized in this review. So far, microbes includedandwere confirmed involved in DIET. Other syntrophic bacteria, such as,,,,,,,,,,,,andshowed a potential to establish DIET with Methanogens. Lastly, future researches and application prospects of DIET for relieving inhibitions of anaerobic digestion were proposed. 1) The direct evidence for verifying DIET related microbes should be provided. Most of present studies proposed DIET related microorganisms were based on indirect evidence, such as the specific enrichment by conductive materials and improved methane production; 2) It has been speculated that hydrogenotrophic methanogens also participated in DIET. However, MIET will also be promoted in the system dominated by hydrogenotrophic methanogens. The roles of DIET and MIET during anaerobic digestion with inhibitors are desperate to reveal; 3) In depth mechanisms of relieved inhibitions via addition of conductive materials need further exploration. There is an urgent requirement for building up the corresponding relationship between physicochemical properties of additives and establishment of DIET; 4) The techno-economic analyses and environmental evaluations of conductive materials should be conducted to provide insights for commercial application of DIET enhanced anaerobic digestion.

fermentation; inhibitors; microbial communities; conductive materials; direct interspecies electron transfer

司哺春,刘凯强,林新宇,等. 直接种间电子传递对缓解厌氧消化抑制效应的研究进展[J]. 农业工程学报,2020,36(24):227-235.doi:10.11975/j.issn.1002-6819.2020.24.027 http://www.tcsae.org

Si Buchun, Liu Kaiqiang, Lin Xinyu, et al. Research progress of the relief of anaerobic digestion inhibitions based on direct interspecies electron transfer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(24): 227-235. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.24.027 http://www.tcsae.org

2020-09-07

2020-11-27

国家自然科学基金青年项目(51806243)

司哺春,博士,副教授,主要从事厌氧发酵产甲烷抑制解除及过程强化研究,暗发酵用于农业废弃物产氢及酸化产物调控以及厌氧高效反应器的设计与优化。Email:sibuchun@cau.edu.cn

10.11975/j.issn.1002-6819.2020.24.027

S2

A

1002-6819(2020)-24-0227-09

猜你喜欢
产甲烷种间磁铁矿
三峡库区支流花溪河浮游植物种间关联及影响因子分析
发酵罐中不同菌源降解甘肃煤和内蒙古煤产甲烷效果分析*
种间距离对玉米-大豆带状套作土壤理化性状及根系空间分布的影响
磁铁矿对废水中U(Ⅵ)的固定途径与机理
小蓬竹群落优势种群的种间联结
添加蛭石对奶牛粪厌氧干发酵的影响
新疆某超贫钒钛磁铁矿工业指标探讨
预处理对泥炭孔结构的影响*
预先抛废技术在低品位磁铁矿中的工业应用
零价铁对城市污泥和餐厨垃圾联合厌氧消化产甲烷的影响