SGLT-2抑制剂治疗糖尿病肾病的研究进展

2020-04-27 13:18徐琪付佳韩睿
中国医药导报 2020年8期
关键词:重吸收小管肾小球

徐琪 付佳 韩睿

[摘要] 钠-葡萄糖协同转运蛋白-2(SGLT-2)在糖尿病患者中表达上调,介导近端肾小管约90%尿糖重吸收。SGLT-2抑制剂是一种新型降糖药,可减少缺氧诱导因子-1蛋白和肾损伤分子-1表达,改善肾素-血管紧张素-醛固酮系统的激活,降低氧化应激产生。还可通过降低血糖、血压、尿酸及改善血脂代谢等机制保护肾脏。此外,SGLT-2抑制剂联合血管紧张素转换酶抑制剂能够治疗2型糖尿病合并慢性肾脏病的患者。SGLT-2抑制剂在糖尿病肾病患者中安全性良好,但需关注达格列净的尿路感染风险增加,同时需警惕卡格列净、达格列净的急性肾损伤风险。本文从SGLT-2抑制剂对肾脏的作用机制及治疗糖尿病肾病的临床应用等方面进行综述,以期为糖尿病肾病提供新的治疗选择。

[关键词] 钠-葡萄糖协同转运蛋白-2抑制剂;糖尿病肾病;机制;临床应用

[中图分类号] R587.1          [文献标识码] A          [文章编号] 1673-7210(2020)03(b)-0021-04

[Abstract] Sodium-glucose transporter-2 (SGLT-2) is upregulated in patients with diabetes, and it is responsible for approximately 90% of the reabsorption of urine glucose in the proximal tubules. SGLT-2 inhibitor is a new type of hypoglycemic agent which can reduce the expression of hypoxia-inducible factor-1 protein and kidney injury molecule-1, and improve the activation of the renin-angiotensin-aldosterone system, while reduce the generation of oxidative stress. It can also protect the kidneys by reducing blood sugar, blood pressure, uric acid and improving lipid metabolism. In addition, SGLT-2 inhibitors combined with angiotensin-converting enzyme inhibitor are used to treat patients with type 2 diabetes combined with chronic kidney disease. SGLT-2 inhibitors have good safety in patients with diabetic nephropathy, but we need to pay attention to the increased risk of urinary tract infections of Dapagliflozin, and at the same time be alert to the risk of acute kidney injury of Canagliflozin and Dapagliflozin. This article reviews the effects of SGLT-2 inhibitors on the kidney and its clinical application in the treatment of diabetic nephropathy in order to provide new treatment options for diabetic nephropathy.

[Key words] Sodium-glucose cotransporter-2 inhibitors; Diabetic kidney disease; Mechanism; Clinical application

糖尿病腎病(DKD)作为糖尿病的常见微血管并发症,不仅严重影响糖尿病患者的生活质量,同时也带来沉重的经济负担。根据美国肾脏数据系统2018年数据报告[1],慢性肾脏病和终末期肾病(ESRD)患者2016年医疗保险总支出超过1140亿美元,其中糖尿病肾病患者的经济支出明显增加。钠-葡萄糖协调转运蛋白-2(SGLT-2)抑制剂除有效控制血糖外,还有降低血压、降低尿酸、减轻体重等作用,且大量研究证实SGLT-2抑制剂具有肾脏保护作用。本文针对SGLT-2抑制剂治疗DKD的研究进展进行综述。

1 DKD概述

正常情况下,原尿中几乎所有的葡萄糖通过近端小管重吸收入血,当近端小管重吸收达到上限即肾糖阈时,多余的葡萄糖则经尿液排出。近端小管上皮细胞在顶膜表达SGLT-2,在基底外侧膜上表达葡萄糖转运蛋白-2(GLUT-2),滤液中的葡萄糖和钠在近端小管以2∶1比例通过SGLT跨膜转运至上皮细胞内后,葡萄糖可通过GLUT-2被动向血浆转运、重吸收入血,从而导致血糖升高[2]。

在DKD发生发展过程中,高血糖可刺激肾小球中细胞色素C及半胱氨酸-天冬氨酸蛋白酶9在线粒体的释放,细胞色素C在线粒体释放并形成凋亡体,引起间质细胞的应激和损伤,导致肾小球系膜细胞的细胞毒性和间质细胞凋亡[3]。肾脏缺氧时,人类肾脏近肠管状细胞中缺氧诱导因子-1(HIF-1)和肾损伤分子-1(KIM-1)的表达显著增加,可引起糖尿病肾纤维化[4-5]。此外,代谢紊乱、炎症、缺氧、氧化应激等可直接或间接导致肾脏损伤。

2 SGLT-2抑制剂对肾脏的作用

在高血糖状态下,肾小球过滤的尿葡萄糖增加,SGLT-2在近端肾小管的表达增加,导致葡萄糖和钠重吸收增加,引起血糖升高和体液增加。SGLT-2抑制剂可通过降低肾脏葡萄糖重吸收的阈值,使尿葡萄糖排泄(UGE)增加,从而降低血浆葡萄糖水平[6]。

研究显示[5],伊格列净可降低小鼠尿中KIM-1的排泄,减少中性粒细胞明胶酶相关脂质运载蛋白(NGAL)的表达,大剂量伊格列净还可通过减少8-羟基-2′-脱氧鸟苷的尿排泄改善氧自由基引起的DNA损伤。血管紧张素Ⅱ受体1(AT1R)依赖性激活可增强环磷腺苷效应元件结合蛋白(CREB)磷酸化,介导葡萄糖诱导的上游刺激因子2(USF2)在肾脏中的表达,而USF2的过度表达参与糖尿病状态下肾小管间质纤维化的过程[7]。SGLT-2抑制剂可使AT1R表达下调,改善肾素-血管紧张素-醛固酮系统(RAS)的激活,显著增加抗氧化酶的表达水平,降低氧化应激产生,减少肾间质纤维化[8]。SGLT-2抑制剂还可增加肾小球体积,同时可显著改善肾小球系膜扩张、减少远端肾小管中的糖原积累,从而减轻肾小管损伤、減少蛋白尿[9]。

然而另一部分研究则显示,SGLT-2抑制剂不能改善肾损伤甚至会加重肾损伤。研究显示[10],恩格列净使肾小管损伤标志物KIM-1和NGAL的尿排泄显著增加,通过减少炎性因子的表达来减少部分促肾纤维化基因的上调,但不能改善白蛋白尿、肾小管损伤及肾小球硬化。SGLT-2抑制剂可导致肾小球旁器缺氧,显著增加低密度的邻肾小球细胞中囊泡的数量,刺激细胞分泌肾素,并可能参与RAS的激活。且SGLT-2抑制剂可通过减少巨蛋白表达来减少近端小管中的白蛋白重吸收,增加尿白蛋白排泄,导致白蛋白尿[5,9]。磷酸烯醇式丙酮酸羧激酶1(PEPCK1)和葡萄糖-6-磷酸酶(G6Pase)是糖异生过程的关键限速酶,达格列净可增加PEPCK1、G6Pase的表达,导致肝糖原增加、血糖升高,高血糖通过细胞凋亡途径引起肾小球基底膜增厚、内皮细胞融合及线粒体的肿胀、坏死,加重肾小管损伤[11]。

3 SGLT-2抑制剂的肾脏外作用

3.1 降糖作用

SGLT-2抑制剂通过降低肾糖阈UGE,UGE与基线葡萄糖浓度呈正相关。因此,SGLT-2抑制剂的降糖效果取决于基线血浆葡萄糖水平,且对UGE的作用呈剂量依赖性增加[6]。在不增加胰岛素浓度的情况下,SGLT-2抑制剂通过增加UGE来降低血糖,SGLT-2抑制剂抑制葡萄糖转运的作用与肾功能水平无关[12-13]。对于饮食/运动及利拉鲁肽单药治疗血糖控制不佳的2型糖尿病患者,加用鲁格列净治疗52周时糖化血红蛋白(HbA1c)较基线下降0.68%,空腹血糖下降32.1 mg/dL,餐后2 h血糖下降56.5 mg/dL[14]。

3.2 降低血压

Na+/H+交换异构体3(NHE3)是H+葡萄糖调节转运蛋白,在肾近端小管中与SGLT-2共位点,SGLT-2受抑制时NHE3活性也被抑制[15]。SGLT-2抑制剂降低血压过程中,早期可显著增加尿葡萄糖排泄,导致渗透性利尿,尿钠排泄增加引起的血浆容量减少均可降低收缩压。后期则主要通过抑制NHE3减少近端小管中的钠重吸收,增加尿钠排泄,引起渗透性利尿、血浆容量减少,从而降低收缩压及舒张压[16]。

3.3 降低尿酸

2型糖尿病患者中常合并高尿酸血症,升高的血尿酸水平可能加速肾病的发展。SGLT-2抑制剂不直接影响肾脏对尿酸的排泄,而是通过作用于近端小管的葡萄糖转运蛋白-9(GLUT9)异构体2或其他转运蛋白增加尿糖排泄,抑制集合管对尿酸的重吸收,尿酸排泄率增加从而降低血尿酸水平[17]。

3.4 减轻体重

在Look AHEAD(糖尿病健康行动)多中心随机临床试验中[18],减轻体重有利于降低肾病相关危险因素。恩格列净可增加脱钩蛋白1的表达及棕色脂肪选择性基因的mRNA水平,提高在骨骼肌中腺苷活性蛋白激酶和乙酰-CoA曲霉素磷酸化,促进脂肪褐化[19]。SGLT-2抑制剂可减少脂肪含量及内脏脂肪面积,且治疗前内脏脂肪面积越大,治疗后内脏脂肪面积的减少越显著[20]。与安慰剂比较,SGLT2抑制剂可减轻体重,其中卡格列净体重减轻最为显著[21]。

4 SGLT-2抑制剂治疗DKD的临床应用

研究显示[22-23],西格列汀可有效降低2型糖尿病伴CKD3期患者的HbA1c、空腹血糖、体重等结局指标。一项关于伊格列净对糖尿病肾病和血压长期影响的研究中显示,随访期间伊格列净可显著降低2型糖尿病患者尿白蛋白排泄,而不会降低肾小球滤过率估值(eGFR),在真实环境中对血糖控制、体重、血压和糖尿病肾病发挥多效作用[24]。

SGLT-2抑制剂与血管紧张素转换酶抑制剂(ACEI)类药物作为靶点不同,且具有降糖、降压、保护肾脏作用。因此,SGLT-2抑制剂可协同ACEI治疗糖尿病肾病。一项动物实验显示[25],ACEI联合SGLT-2抑制剂在增加尿葡萄糖排泄、降低血压、减少蛋白尿及减少肾脏损伤程度等方面优于SGLT-2抑制剂或ACEI单药治疗。我国一项关于ACEI药物联合SGLT-2抑制剂治疗糖尿病肾病患者的研究显示[26],二者联合应用可有效降低尿微量白蛋白、尿蛋白及肌酐等水平,并能改善患者的社会功能、认知功能。

目前已有多例关于血糖正常糖尿病酮症酸中毒的病案报道[27],伪膜性结肠炎分解代谢状态和SGLT-2抑制剂对胰腺细胞的直接作用可能协同诱导血糖正常的严重酮症酸中毒。虽然SGLT-2抑制剂与尿路感染风险之间没有剂量相关性,但达格列净(剂量≥10 mg)与尿路感染风险有相关性,提示在临床使用中需注意达格列净的尿路感染风险,这与一项SGLT-2抑制剂与感染风险的meta分析结果一致[28-29]。此外,2016年美国食品药品监督管理局(FDA)提出了对2型糖尿病药物卡格列净和达格列净急性肾损伤风险的警告[30]。

5 小結

总之,SGLT-2抑制剂能够有效控制血糖,并能通过降压、降尿酸、减轻体重等多方面发挥肾脏保护作用,成为糖尿病肾病治疗的新选择。但在临床应用中,SGLT-2抑制剂在糖尿病肾病患者中的有效性及安全性需更多研究数据进一步证实。

[参考文献]

[1]  Saran R,Robinson B,Abbott KC,et al. US Renal Data System 2018 Annual Data Report:Epidemiology of Kidney Disease in the United States [J]. Am J Kidney Dis,2019, 73(3S1):A7-A8.

[2]  Ghezzi C,Loo DDF,Wright EM. Physiology of renal glucose handling via SGLT1,SGLT2 and GLUT2 [J]. Diabetologia,2018,61(10):2087-2097.

[3]  Mishra R,Emancipator SN,Kern T,et al. High glucose evokes an intrinsic proapoptotic signaling pathway in mesangial cells [J]. Kidney Int,2005,67(1):82-93.

[4]  Bessho R,Takiyama Y,Takiyama T,et al. Hypoxia-inducible factor-1α is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy [J]. Sci Rep,2019,9(1):14754.

[5]  Kamezaki M,Kusaba T,Komaki K,et al. Comprehensive renoprotective effects of ipragliflozin on early diabetic nephropathy in mice [J]. Sci Rep,2018,8(1):4029.

[6]  Sasaki T,Seino Y,Fukatsu A,et al. Pharmacokinetics,Pharmacodynamics,and Safety of Luseogliflozin in Japanese Patients with Type 2 Diabetes Mellitus:A Randomized,Single-blind,Placebo-controlled Trial [J]. Adv Ther,2015, 32(4):319-340.

[7]  Visavadiya NP,Li Y,Wang S. High Glucose Upregulates Upstream Stimulatory Factor 2 in Human Renal Proximal Tubular Cells through Angiotensin Ⅱ-Dependent Activation of CREB [J]. Nephron Exp Nephrol,2011,117(3):e62-e70.

[8]  Shin SJ,Chung S,Kim SJ,et al. Effect of Sodium-Glucose Co-Transporter 2 Inhibitor,Dapagliflozin,on Renal Renin-Angiotensin System in an Animal Model of Type 2 Diabetes [J]. PLoS One,2016,11(11):e0165703.

[9]  Takiyama Y,Sera T,Nakamura M,et al. Impacts of Diabetes and an SGLT2 Inhibitor on the Glomerular Number and Volume in db/db Mice,as Estimated by Synchrotron Radiation Micro-CT at SPring-8 [J]. E Bio Medicine,2018,36:329-346.

[10]  Gallo LA,Ward MS,Fotheringham AK,et al. Once daily administration of the SGLT2 inhibitor,empagliflozin,attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice [J]. Sci Rep,2016,6:26428.

[11]  Jia Y,He J,Wang L,et al. Dapagliflozin Aggravates Renal Injury via Promoting Gluconeogenesis in db/db Mice [J]. Cell Physiol Biochem,2018,45(5):1747-1758.

[12]  Nishimura R,Osonoi T,Kanada S,et al. Effects of luse-ogliflozin,a sodium-glucose co-transporter 2 inhibitor,on 24-h glucose variability assessed by continuous glucose monitoring in Japanese patients with type 2 diabetes mellitus:a randomized,double-blind,placebo-controlled,crossover study [J]. Diabetes Obes Metab,2015,17(8):800-804.

[13]  Sahasrabudhe V,Terra SG,Hickman A,et al. The Effect of Renal Impairment on the Pharmacokinetics and Pharmacodynamics of Ertugliflozin in Subjects with Type 2 Diabetes Mellitus [J]. J Clin Pharmacol,2017,57(11):1432-1443.

[14]  Seino Y,Yabe D,Sasaki T,et al. SGLT2 inhibitor luseog-liflozin added to glucagon-like peptide 1 receptor agonist liraglutide improves glycemic control with bodyweight and fat mass reductions in Japanese patients with type 2 diabetes:a 52-week,open-label,single-arm study [J]. J Diabetes Investig,2018,9(2):332-340.

[15]  Pessoa TD,Campos LC,Carraro-Lacroix L,et al. Functional Role of Glucose Metabolism,Osmotic Stress,and Sodium-Glucose Cotransporter Isoform-Mediated Transport on Na+/H+ Exchanger Isoform 3 Activity in the Renal Proximal Tubule [J]. J Am Soc Nephrol,2014,25(9):2028-2039.

[16]  Kawasoe S,Maruguchi Y,Kajiya S,et al. Mechanism of the blood pressure-lowering effect of sodium-glucose cotransporter 2 inhibitors in obese patients with type 2 diabetes [J]. BMC Pharmacol Toxicol,2017,18(1):23.

[17]  Chino Y,Samukawa Y,Sakai S,et al. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria [J]. Biopharm Drug Dispos,2014,35(7):391-404.

[18]  Look AHEAD Research Group. Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes:a secondary analysis of the Look AHEAD randomised clinical trial [J]. Lancet Diabetes Endocrinol,2014,2(10):801-809.

[19]  Xu L,Nagata N,Nagashimada M,et al. SGLT2 Inhibition by Empagliflozin Promotes Fat Utilization and Browning and Attenuates Inflammation and Insulin Resistance by Polarizing M2 Macrophages in Diet-induced Obese Mice [J]. EBioMedicine,2017,20:137-149.

[20]  Tosaki T,Kamiya H,Himeno T,et al. Sodium-glucose Co-transporter 2 Inhibitors Reduce the Abdominal Visceral Fat Area and May Influence the Renal Function in Patients with Type 2 Diabetes [J]. Intern Med,2017,56(6):597-604.

[21]  Storgaard H,Gluud LL,Bennett C,et al. Benefits and Harms of Sodium-Glucose Co-Transporter 2 Inhibitors in Patients with Type 2 Diabetes:A Systematic Review and Meta-Analysis [J]. PLoS One,2016,11(11):e0166125.

[22]  Grunberger G,Camp S,Johnson J,et al. Ertugliflozin in Patients with Stage 3 Chronic Kidney Disease and Type 2 Diabetes Mellitus:The VERTIS RENAL Randomized Study [J]. Diabetes Ther,2018,9(1):49-66.

[23]  Kashiwagi A,Takahashi H,Ishikawa H,et al. A randomized,double-blind,placebo-controlled study on long-term efficacy and safety of ipragliflozin treatment in patients with type 2 diabetes mellitus and renal impairment:results of the Long-Term ASP1941 Safety Evaluation in Patients with Type 2 Diabetes with Renal Impairment(LANTERN)study [J]. Diabetes Obes Metab,2015,17(2):152-160.

[24]  Ito D,Inoue K,Sumita T,et al. Long-Term Effects of Ipragliflozin on Diabetic Nephropathy and Blood Pressure in Patients With Type 2 Diabetes:104-Week Follow-up of an Open-Label Study [J]. J Clin Med Res,2018, 10(9):679-687.

[25]  Kojima N,Williams JM,Takahashi T,et al. Effects of a New SGLT2 Inhibitor,Luseogliflozin,on Diabetic Nephr-opathy in T2DN Rats [J]. J Pharmacol Exp Ther,2013, 345(3):464-472.

[26]  隋超,陳亚镇,赖贻旺.血管紧张素转化酶抑制剂联合SGLT-2抑制剂治疗糖尿病肾病效果研究[J].临床军医杂志,2018,46(12):1437-1438,1440.

[27]  Yeo SM,Park H,Paek JH,et al. Ketoacidosis with euglycemia in a patient with type 2 diabetes mellitus taking dapagliflozin:A case report [J]. Medicine(Baltimore),2019,98(3):e14150.

[28]  Donnan JR,Grandy CA,Chibrikov E,et al. Dose response of sodium glucose cotransporter-2 inhibitors in relation to urinary tract infections:a systematic review and network meta-analysis of randomized controlled trials [J]. CMAJ Open,2018,6(4):E594-E602.

[29]  Puckrin R,Saltiel MP,Reynier P,et al. SGLT-2 inhibitors and the risk of infections:a systematic review and meta-analysis of randomized controlled trials [J]. Acta Diabetol,2018,55(5):503-514.

[30]  The U.S. Food and drug administration. FDA Drug Safety Communication:FDA strengthens kidney warnings for diabetes medicines canagliflozin(Invokana,Invokamet)and dapagliflozin(Farxiga,Xigduo XR)[EB/OL].(2016-06-17)https://www.fda.gov/media/98683/download

(收稿日期:2019-11-26  本文编辑:王晓晔)

猜你喜欢
重吸收小管肾小球
盐地碱蓬养分重吸收对不同水盐交互梯度的响应∗
腰椎间盘突出自发重吸收的研究进展
引导队员向完美进发
和你在安详的社区走一走
消髓化核汤对腰椎间盘突出后重吸收影响的临床研究
尿的形成动态模拟装置的制作和使用
中西医治疗慢性肾小球肾炎80例疗效探讨
3D打印肾脏近在咫尺
肾小球系膜细胞与糖尿病肾病
中西医结合治疗小儿急性肾小球肾炎的疗效观察