咸淡交替灌溉下生物炭对滨海盐渍土及玉米产量的影响

2021-01-14 03:50黄明逸张展羽翟亚明朱成立
农业工程学报 2020年21期
关键词:咸水盐渍滨海

黄明逸,张展羽,翟亚明,王 策,齐 伟,朱成立

咸淡交替灌溉下生物炭对滨海盐渍土及玉米产量的影响

黄明逸1,2,张展羽2※,翟亚明2,王 策2,齐 伟1,朱成立2

(1. 河海大学水利水电学院,南京 210098;2. 河海大学农业科学与工程学院,南京 210098)

滨海滩涂地区蕴藏着丰富的微咸水资源,该研究提出咸淡交替灌溉和生物炭相结合的方法来促进这类次等水土资源的农业生产。于2017年和2018年进行了遮雨条件下滨海盐渍土玉米种植试验,并设置了不同咸淡交替灌溉(全淡水灌溉,分别在六叶至抽雄、抽雄至吐丝、吐丝至成熟期灌溉3 g/L微咸水而其余时期淡水)和生物炭(0、15、30 t/hm2)处理。结果表明,咸淡交替灌溉下盐渍土电导率和碱化度明显升高,盐渍化程度与微咸水比例和顺序有关。六叶至抽雄期微咸水灌溉可严重抑制叶片生长和干物质累积,并导致籽粒数量和重量下降,造成27.2%~32.8%减产;抽雄至吐丝期微咸水灌溉下作物受损降低,但减少了籽粒数量,造成11.4%~14.0%减产;吐丝至成熟期微咸水灌溉无明显影响。施用生物炭后,咸淡交替灌溉下盐渍土电导率和碱化度降低了3.7%~21.7%和9.2%~45.2%,总孔隙度和水稳性团聚体增加了3.1%~11.9%和40.0%~168.9%,有效氮、磷、钾含量提高了34.9%~104.0%、21.0%~58.1%和13.6%~57.8%。随着土壤条件改良,生物炭有助于增强玉米生长前中期的耐盐性能进而缓解盐胁迫危害,在六叶至吐丝期间灌溉微咸水仍能保持良好的叶面积指数、干物质累积和产量特性,因此促进了咸淡交替灌溉的可行性和适用性,相同交替灌溉下籽粒产量提高了10.9%~32.3%。该结果对滨海地区盐渍化水土资源的农业利用具有指导作用。

灌溉;生物炭;玉米;滨海盐渍土;微咸水;交替灌溉

0 引 言

滨海滩涂地区蕴藏着大量可用于农业发展的潜在土地资源,对于缓解土地需求和确保粮食安全至关重要。近年来,滨海滩涂地已不断被复垦用于农业生产,但滩涂土壤含盐量高、质量差等障碍因素严重限制了作物产量[1]。同时,滨海地区复垦将消耗大量的淡水资源用于盐分淋洗和农业灌溉。随着海水顶托、地下淡水过度开采和工商业对水资源竞争的加剧,淡水资源对农业生产的供应日益减少。淡水资源匮乏成为了滨海垦区农业发展的另一个重大障碍,由于淡水短缺,农业用户每年遭受着约30%以上的产量损失[2]。滨海区丰富的微咸水已成为重要的淡水替代物,合理利用微咸水以推动农业发展得到了极大关注[3]。

微咸水可能导致次生盐渍化并引起土壤结构失稳、表面结皮、透水性降低等问题,破坏了土地资源的可持续性[4]。同时,过高的盐分可降低土壤溶液渗透势,抑制根系吸水和作物生长,随着盐分离子在作物体内积累,将造成离子毒性和营养失衡,破坏正常新陈代谢活动[5]。因此,适宜的微咸水利用方法对于滨海地区农业发展极其重要,交替使用微咸水和淡水进行灌溉不仅可缓解淡水短缺问题,还可降低微咸水对土壤和作物的不良影响[6]。牛君仿等[7]和Singh[8]发现,相比于微咸水直接灌溉或咸淡水混合灌溉,咸淡交替灌溉更有利于控制土壤盐分,降低土壤盐渍化风险,且可保证更高的作物产量。咸淡交替灌溉已在国内外多地玉米、小麦、棉花等作物生产中推广并获得较好的成效[9-11]。沿海季风气候下,滨海地区降水一般集中在较短时间内,淡水资源在时空分布上极不均匀。整个生育期内淡水供应可能是不充足的,可在短缺时段采用微咸水灌溉,以满足作物用水需求,因此咸淡交替灌溉在滨海农区是适宜的。然而,生长季节内的淡水资源分布和作物耐盐性能变化是影响咸淡交替灌溉的关键因素,通常需在耐盐性较差时采取淡水灌溉而耐盐性较好时实施微咸水灌溉,以收获良好的作物产量,保障咸淡交替灌溉效益[8-9]。目前,研究区通常采取微咸水和淡水混合灌溉,关于交替灌溉的信息较少,因此本研究旨在完善咸淡交替灌溉在滨海盐渍土壤玉米生产中的应用研究。

生物炭是在低氧下生物质热解生成的有机材料,具有多孔结构、大比表面积和高离子交换量等特点[12]。生物炭作为土壤改良剂可以改善土壤物理性质,如容重、孔隙结构、团聚特性、持水导水能力等[13]。生物炭施用还有利于提高土壤有机质含量、养分供应和阳离子交换量,从而促进养分有效性和肥力水平[14]。此外,添加生物炭有利于改善根际微生物环境,增强土壤酶活性和微生物生长[15]。勾芒芒等[16]发现,生物炭可以减缓盐分胁迫对作物的危害,并提高作物耐盐性能,如改善作物水分状况、降低盐分离子吸收、促进养分摄取和调节植物激素等。近年来,生物炭作为土壤改良剂在边际水土资源的农业生产中发挥着越来越大的作用,在盐渍化土壤或咸水灌溉条件下促进了玉米、小麦、水稻、马铃薯、番茄和大豆等作物的生长生产[17]。鉴于生物炭在盐碱农业环境中的应用潜力,可能有助于缓解作物耐盐性能薄弱时微咸水灌溉的不良影响,进而提高咸淡水交替灌溉的农业收益。

综上所述,考虑到滨海农区盐渍土较差的土壤质量和咸淡交替灌溉的局限性,本研究提出了咸淡交替灌溉与生物炭相结合的方法,以期促进滨海地区微咸水和盐渍土这类次等水土资源的农业利用效率。本试验目的是研究不同咸淡交替灌溉和生物炭施用对滨海盐渍土理化性质和玉米生长生产的影响。研究结果对滨海地区土地资源高效开发、缓解淡水匮缺压力和促进微咸水安全利用具有重要意义。

1 材料与方法

1.1 试验区概况

试验于2017年和2018年在河海大学节水园(31°57'N,118°50'E)进行。试验区气候为亚热带季风气候,多年平均气温为15.7 ℃,平均降水量为1 021.3 mm,平均蒸发量约为900 mm,日照数约为2 200 h。试验采取田间小区种植方式,小区位于透明遮雨棚内,单个小区长150 cm、宽100 cm、深100 cm,底部设有砾石层,便于排水,四周由防水板分隔(图1)。试验共计36个田间小区,呈条形布置,设有3条种植带,分别控制12个小区,种植带之间相隔100 cm。

图1 田间小区示意图

盐渍土取自东南沿海的盐城市滨海围垦区东川农场(32°96'N,120°87'E)的表层土壤,质地属于粉砂壤土。生物炭是在密封窑中通过550~600 ℃热解小麦秸秆4~6 h后获得,主要属性按国际生物炭协会所撰技术规范[18]进行了测定。供试滨海盐渍土和生物炭的主要特性如表1所示。灌溉用水为淡水和3 g/L微咸水,淡水取自试验区自来水系统,微咸水根据取土农区地下浅层微咸水的盐分组成,以Na2SO4、CaCl2、NaCl和MgCl2按2︰2︰1︰1质量比与淡水充分溶解至矿化度3 g/L浓度配置而成,淡水和微咸水电导率分别为0.30和4.75 dS/m,钠吸附比分别为1.0和11.9。

1.2 试验设计

供试作物为苏玉29号夏玉米,种植密度为每平方米6株,行距约75 cm,株距约25 cm,2017年于6月21日播种,播种前施以300、150、150 kg/hm2磷酸氢二铵、尿素、氯化钾作为底肥,并灌溉充足淡水,使小区土壤初始含水率基本达到田间持水率,以保证出苗和幼苗生长,10月17日收获,移除地上干物质后,小区翻耕至20 cm,2018年于6月23日播种,10月20日收获,农艺措施均按照当地大田种植经验进行。试验设咸淡交替灌溉和生物炭2个因素,包括了12个处理(3种生物炭水平×4种咸淡交替灌溉),每个处理进行3次重复,试验设计如表2所示。生物炭水平分别为0、15、30 t/hm2,于2017年播种前一次性施入小区,均匀铺撒在土壤表层并通过人工翻耕与0~20 cm土壤充分混合。玉米在三叶期进行定苗,按生育期划分六叶至抽雄、抽雄至吐丝和吐丝至成熟3个时期,各占30 d左右。咸淡交替灌溉是分别在六叶至抽雄期(B)、抽雄至吐丝期(C)、吐丝至成熟期(D)进行3 g/L微咸水灌溉而其他时期进行淡水灌溉,并以全淡水灌溉(A)作为对照。作物得到充分灌溉,灌水定额设为60 mm,使用取土烘干法确定0~60 cm土壤含水率以指导灌溉,当接近田间持水率70%时进行灌水,所有处理灌水量一致。2017年和2018年生育期内共灌水420 mm,六叶至抽雄期、抽雄至吐丝期、吐丝至成熟期灌水量分别为120、180、120 mm。

表2 生物炭施用下玉米咸淡交替灌溉试验设计

1.3 指标测定方法

玉米收获后,用环刀及土钻对表层20 cm土壤进行取样,每个小区随机各取3次计算平均值。土壤总孔隙度通过环刀法测定;水稳性团聚体采用湿筛法测定,取50 g风干土样置于孔径为0.1、0.25、0.5、1、2和5 mm的筛组,浸泡于水中,以每分钟20次速度筛分5 min,提取团聚体烘干后测得水稳性团聚体质量分数;土壤电导率采用饱和萃取液法,使用DDBJ-350电导率仪测定;碱化度测定为交换性Na+与阳离子交换量的百分比交换性,Na+含量采用醋酸铵-氢氧化铵法测得,阳离子交换量采用醋酸钠法测得[19];有效氮含量采用碱解扩散法[20]测得;速效磷采用Olsen法[21]测得;速效钾采用乙酸铵萃取法[22]测得。

灌溉开始后每2周测量叶面积,选择长势一致、有代表性的3株玉米采用LI-3000A叶面积仪测定有效叶片面积,根据种植密度计算叶面积指数(Leaf Area Index, LAI),收获时各小区收集每平方米6株玉米进行测产,根部干物质以植株周围50 cm×50 cm分层收集后水洗过筛得到。玉米根茎叶及果穗装入密封袋在105 ℃烘箱内杀青2 h,并于75 ℃下烘至恒质量后,确定根部干物质质量、地上干物质质量、每株穗粒数、百粒质量和籽粒产量。

1.4 数据分析

数据分析在SPSS 20中进行,以咸淡交替灌溉(A、B、C、D)、生物炭(0、15、30 t/hm2)作为主效应因素对2017年和2018年土壤和产量指标进行方差分析,并采用Duncan法进行多重比较(=0.05),以不同小写字母表示差异性显著(<0.05)。

2 结果与分析

2.1 咸淡交替灌溉下生物炭对滨海盐渍土理化特性的影响

咸淡交替灌溉和生物炭对土壤电导率和碱化度的影响如表3所示。同一生物炭水平下,咸淡交替灌溉明显增加了电导率(<0.05),C处理最大,其次是D和B,2017年C处理电导率值较A增加了88.3%~104.9%,2018年升高了119.8%~153.66%。同一咸淡交替灌溉下,生物炭显著降低了电导率(<0.05),2017年15和30 t/hm2处理电导率较0 t/hm2降低了9.6%~17.0%和3.7%~12.3%,2018年降低了9.6%~21.7%和7.5%~13.4%。土壤碱化度变化趋势与电导率相似,2017年相同生物炭添加下C处理碱化度比A增长了93.6%~165.1%,2018年增长了104.5%~127.0%。碱化度随生物炭添加而降低,咸淡交替灌溉间碱化度差异也逐渐减小。2017年15和30 t/hm2相同灌溉处理的碱化度较0 t/hm2减少了16.9%~31.1%和24.9%~45.2%,2018年降低了9.0%~26.2%和22.8%~36.4%。土壤盐碱化程度最剧烈的是C0处理,而A15处理电导率最小,A30处理碱化度最小。此外,连续咸淡交替灌溉下,2018年平均电导率比2017升高了3.0%,平均碱化度提升了10.7%。

表3 2017和2018年咸淡交替灌溉和生物炭对土壤电导率和碱化度的影响及方差分析结果

注:±为标准差;同列不同字母表示差异性显著(<0.05);X、S表示咸淡交替灌溉、生物炭,X×S 表示交互作用;*和**表示显著性水平为0.05和0.01。下同。

Note: ± means standard deviation; different letters within the same column mean significant difference at 0.05 level; X and S are alternate irrigation and biochar, X×S is interaction effect; * and ** mean significant at 0.05 and 0.01 levels. The same below.

咸淡交替灌溉和生物炭对总孔隙度和水稳性团聚体的影响如表4所示。同一生物炭水平下,C处理总孔隙度最小,2017年较A降低了3.0%~3.3%,2018年降幅为0.7%~5.5%,而B和D处理差异不显著。总孔隙度随生物炭施用而增加,2017年15和30 t/hm2相同灌溉处理的总孔隙度比0 t/hm2增加了3.7%~5.7%和7.3%~10.6%,2018年升高了3.1%~6.9%和6.4%~11.9%。2017年和2018年B0、C0、D0处理水稳性团聚体较A0显著降低(<0.05)。生物炭明显增加了水稳性团聚体(<0.05),2017年15和30 t/hm2相同灌溉处理水稳性团聚体比0 t/hm2增加了40.0%~84.4%和95.2%~160.5%,2018年增加了50.0%~93.8%和105.0%~168.9%。从交互作用看,生物炭缓解了微咸水对土壤孔隙结构的不良影响,15和30 t/hm2下咸淡交替灌溉间的总孔隙度和水稳性团聚体的差异逐渐减小。2017年和2018年总孔隙度和水稳性团聚体间无明显变化规律。

表4 2017和2018年咸淡交替灌溉和生物炭对土壤总孔隙度和水稳性团聚体率的影响及方差分析结果

表5 2017和2018年咸淡交替灌溉和生物炭对土壤有效氮、磷、钾含量的影响及方差分析结果

表5显示生物炭对土壤有效氮、磷、钾含量有显著影响(<0.05)。相同咸淡交替灌溉下,2017年15和30 t/hm2处理有效氮含量较0 t/hm2增加了91.4%~104.0%和39.3%~55.3%,2018年升高了73.9%~95.2%和34.9%~36.9%。2017年15和30 t/hm2相同交替灌溉处理速效磷含量较0 t/hm2提升了46.9%~58.1%和37.6%~44.4%,2018年增加了34.5%~43.8%和21.0%~30.9%。土壤速效钾含量随生物炭添加而增加,2017年15和30 t/hm2相同交替灌溉处理速效钾含量较0 t/hm2增加了19.8%~36.7%和42.2%~57.8%,2018年增加了13.6%~28.4%和25.4%~50.0%。生物炭形成的土壤养分增幅存在时效性,2018年有效养分含量较2017年有所降低,15和30 t/hm2的平均有效氮含量在2018年较2017年降低了14.0%和12.8%,平均速效磷含量降低了13.7%和11.6%,平均速效钾含量减少了9.0%和10.1%。

2.2 咸淡交替灌溉下生物炭对玉米生长生产的影响

咸淡交替灌溉和生物炭对叶面积指数的影响如图2所示。从咸淡交替灌溉看,微咸水可抑制叶片生长,减小叶面积指数,越早使用微咸水,叶面积指数下降越大,影响时间越长。B处理的LAI在整个生育期均最小,2017年相同生物炭B处理LAI较A降低了17.2%~42.1%,2018年减少了19.3%~62.8%。C处理的LAI在抽雄期灌溉微咸水后有所下降,2017年相同生物炭C处理LAI较A减小了7.6%~11.6%,2018年降低了10.6%~16.3%。D处理LAI受影响较小,与A差异不大。生物炭促进了咸淡交替灌溉下叶片生长,2017年15和30 t/hm2相同灌溉处理LAI比0 t/hm2增加了9.9%~25.3%和5.0%~19.9%,2018年增加了12.2%~45.8%和9.2%~34.4%。2017和2018年生育期内B0处理的LAI最小而A15处理最大。此外,2018年整个生育期的平均LAI较2017年降低了6.9%。

表6显示咸淡交替灌溉和生物炭对玉米生物量及产量特性的影响。相同生物炭水平下,B处理严重抑制了生物量累积,干物质质量最小,2017年根部和地上干物质重量较A减少了31.5%~40.3%和20.0%~25.5%,2018年降低了33.0%~42.7%和12.2%~29.9%;C处理下仅地上干物质质量较A显著降低(<0.05),2017年和2018年分别减少了8.2%~11.2%和5.1%~14.9%;D处理下生物量累积未受影响。相同咸淡交替灌溉下,2017年15和30 t/hm2的根部干物质质量较0 t/hm2增加了19.7%~39.1%和15.6%~32.6%,地上干物质质量增加了13.0%~23.9%和7.3%~17.1%,2018年根部干物质质量提高了22.7%~41.9%和12.0%~37.2%,地上干物质质量提高了15.5%~38.9%和9.6%~37.2%。2017年和2018年B0的干物质质量最小而A15最大。

从咸淡交替灌溉看,B处理显著降低了穗粒数和百粒重(<0.05),2017年穗粒数和百粒质量比A低了17.4%~31.4%和9.9%~19.1%,2018年减少了18.0%~34.3%和10.4%~18.2%;C处理下仅C0穗粒数较A0显著降低(<0.05),2017年和2018年分别减少了21.6%和22.2%;D处理下穗粒数和百粒质量与A无显著差异。生物炭添加下穗粒数明显增加(<0.05),2017年15和30 t/hm2相同灌溉处理穗粒数较0 t/hm2增加了13.7%~34.3%和12.3%~38.8%,2018年增加了13.1%~41.6%和12.1%~42.9%。生物炭还显著提高了B处理下百粒质量(<0.05),2017年B15和B30百粒质量较B0增加了12.2%和11.0%,2018年提高了10.5%和9.3%。2017年和2018年B0的穗粒数和百粒质量最小,A15处理最大。

图2 2017和2018年咸淡交替灌溉和生物炭对玉米叶面积指数的影响

表6 2017和2018年咸淡交替灌溉和生物炭对玉米生物量及产量特性的影响及方差分析结果

随着穗粒数和百粒质量的降低,B和C处理造成了显著减产(<0.05),而D处理下籽粒产量与A无明显差异。相同生物炭施用下,2017年B和C处理籽粒产量较A减少了20.0%~27.2%和10.5%~14.0%,2018年降低了23.5%~32.8%和8.7%~11.42%。相同咸淡交替灌溉下,2017年15和30 t/hm2籽粒产量较0 t/hm2增加了15.4%~26.9%和10.9%~19.9%,2018年增加了16.7%~32.3%和11.1%~28.6%。其中,B15、B30、C15和C30籽粒产量较B0和C0增加了0.9~1.4 t/hm2,生物炭有效促进了微咸水在生长中前阶段的应用效果。此外,连续咸淡交替灌溉导致2018年平均地上干物质质量、穗粒数和籽粒产量较2017年有所下降,分别减少了3.4%、3.5%、3.8%。

3 讨 论

咸淡交替灌溉导致表层土壤含盐量明显升高,盐渍土电导率与微咸水使用比例和交替顺序有关。随着耗水量增加,C处理使用了更多的微咸水,从而造成额外的盐分累积;先咸后淡交替处理通过后续淡水淋洗,有效降低了上层土壤盐分,相同微咸水用量下,B处理土壤电导率较D更低。此外,咸淡交替灌溉下土壤碱化度显著增加,尤其是C处理,加重了盐渍化程度。同时,由于过高的Na+浓度,土壤黏粒和胶体产生了崩解、膨胀和分散效应,进而对土壤结构稳定和颗粒聚集形成破坏作用[23],导致C处理的土壤总孔隙度和水稳性团聚体有所下降。可见,咸淡交替灌溉存在着加剧土壤盐渍化风险,随着微咸水进入土壤中的盐分若未得到后续淡水的充分淋洗,可能逐渐积聚于土壤表层,引发土壤退化问题,遏制土地资源的可持续发展能力。因此,适宜的盐分淋洗和土壤改良措施是必要的,以保障长期咸淡交替灌溉的可持续性。已有研究报道,通过种植淡季自然降雨淋洗有利于咸淡交替灌溉下土壤含盐量恢复到可接受水平[24],并应完善盐分监测系统,在需要时采取淡水灌溉压盐,以促进滨海垦区土地资源可持续利用。

生物炭有效缓解了咸淡交替灌溉下滨海盐渍土盐碱化程度,降低了土壤电导率和碱化度。生物炭能够提高滨海盐渍土水分入渗性能,促进盐分淋洗效果,同时,生物炭-土壤结构可有效抑制蒸发蒸腾过程中盐分沿土壤毛细管上升,因此进一步缓解了表层土壤盐渍化危害[18,24]。生物炭包含部分Ca2+和Mg2+并具有较高的离子交换性,施入后提高了土壤Ca2+、Mg2+含量和阳离子交换量,这促进了滨海盐渍土中Na+的置换和淋洗,降低了土壤碱化风险[25-26]。生物炭施用有利于滨海盐渍土结构性质,增加了总孔隙度和水稳性团聚体[27]。生物炭具有良好的多孔结构和较小的容重,混合后可增加土壤孔隙性,并通过“稀释作用”降低土壤容重,因此提高了总孔隙度[16]。同时,生物炭改善了土壤团聚性,通过增加有机炭分子与土壤颗粒间相互作用,促进土壤颗粒团聚过程,形成新的多级孔隙结构[13]。此外,生物炭提高了滨海盐渍土养分水平,增加了有效氮磷钾含量。生物炭具有多孔结构、大比表面积等特点,产生了养分吸附缓释作用,降低了营养元素淋失和挥发[28]。同时,生物炭有利于微生物生存环境,增加了生物酶活性,提高了养分有效性[29]。生物炭也存在时效性,可能由于老化、分解和流失等,养分增益在第二年显著降低。尽管如此,部分相关研究亦报道了生物炭在盐渍土治理中的不良结果,生物炭中包含了一定量可溶性盐分离子,施用过量可导致土壤含盐量升高,且由于自身碱性特征,可能引起碱性土壤盐渍化加剧,此外,过多生物炭还可能堵塞土壤孔隙,改变土壤持水导水性能,影响土壤水分运移[16,25,30]。本研究同样发现生物炭施加量不宜过高,由15增至30 t/hm2后,土壤电导率有所增加,且随土壤碳氮比升高,可造成氮素固化,降低了有效氮含量[31]。因此,仍需针对滨海盐渍土治理进行适宜的生物炭类型及施用量的研究,并开发有效的复合改良剂,以促进治理效果。

咸淡交替灌溉导致了土壤盐渍化加重,将对作物产生盐分胁迫,危害作物生长生产。盐分胁迫包括渗透胁迫和离子胁迫:渗透胁迫将减少细胞分裂和伸长,抑制幼叶、茎和根系的生长扩张;离子胁迫将造成离子毒害和营养失衡,加速叶片老化和脱落[32]。六叶至抽雄期使用微咸水(B)引发了剧烈的盐分胁迫,严重限制了根茎叶生长;而抽雄期后使用微咸水(C和D),盐分胁迫造成的生长抑制有限,这是因为抽雄期后玉米根茎叶生长基本完成并具备更好的耐盐性。相关研究也报道,作物耐盐性在生长前期普遍较弱,应尽量采用淡水灌溉,可在具备一定耐盐性后转为微咸水灌溉,以改善咸淡交替灌溉效果[1,6]。籽粒数量和重量是决定玉米产量的关键因素。B和C籽粒数量明显减少,说明果穗储存和利用同化物的库容能力下降,玉米在籽粒形成时期对外界影响高度敏感,若在期间受到胁迫,将抑制酸转化酶活性,导致籽粒流产,降低成粒率[33]。B产量的锐减也与降低的百粒重有关,B盐分胁迫强烈,限制了籽粒灌浆时光合同化物的生产和运输,导致籽粒接受同化物不足。因此,六叶至抽雄期需灌溉淡水,以避免严重的盐分胁迫和产量损失。C百粒重无明显变化,籽粒数量受限是减产的主要原因。抽雄至吐丝期是初始籽粒形成的关键期,此阶段仍需规避微咸水,以保证充足籽粒数量来实现高产。D未对籽粒数量和重量造成限制,吐丝期后可使用微咸水满足灌水需求,产量并无明显损失。

生物炭促进了咸淡交替灌溉下盐渍土玉米生长生产,尤其在六叶至抽雄和抽雄至吐丝期灌溉微咸水后(B和C)玉米依旧能够保持较高的生长生产水平,这可能是因为生物炭提高了玉米在生长前中期时较弱的耐盐性能,进而缓解了微咸水灌溉引起的盐分胁迫。研究表明,生物炭能够促进盐碱环境中玉米的出苗和幼苗生长,改善盐胁迫下玉米幼苗抗氧化性、根系活力等生理特性[30,34]。生物炭施用后苗期玉米耐盐性能得到加强,因此在六叶至吐丝期这段抗逆性薄弱时期里可以更好地适应微咸水灌溉,进而提高了咸淡交替灌溉的可行性和适用性。本研究中,B15和B30处理叶面积指数在整个生育期内均比B0大,这有助于光能吸收利用,从而增加光合同化物积累并促进籽粒生长发育,最终提高了干物质重量、穗粒数、百粒重和籽粒产量。同样,C15和C30处理在灌溉微咸水后较C0具有更好的叶片生长状况,并也增加了地上干物质重量、穗粒数及籽粒产量。玉米抗盐性能的提升可归因于生物炭施用下滨海盐渍土理化性质的改善和养分水平的提高[35-36]。生物炭降低了咸淡交替灌溉下土壤盐碱化程度,并提高了总孔隙度和水稳性团聚体,改善了土壤导水通气性能,同时增加了有效氮、磷、钾含量。土壤环境的改善和养分水平的提高有利于根系的生长,从而促进水分和养分吸收。良好的水分状况和营养条件能够增加玉米抗逆能力,通过促进光合作用、蛋白质合成、水分调节和离子平衡等来抵抗盐分胁迫[36-37]。15和30 t/hm2处理下增产效果无明显差异,考虑成本问题,以15 t/hm2作为添加量更适宜。咸淡交替灌溉结合生物炭的方法可为滨海农区缓解淡水短缺和稳定玉米生产提供参考,但仍需开展长期田间试验,以更好的了解咸淡交替灌溉-生物炭下滨海低质量水土资源的可持续利用。

4 结 论

1)咸淡交替灌溉升高了土壤电导率和碱化度,这与微咸水使用比例和顺序相关。抽雄至吐丝期微咸水灌溉下盐渍化最为强烈,总孔隙度和水稳性团聚体亦有所下降。长期咸淡交替灌溉应考虑利用淡季降雨淋洗表层土壤盐分并建立盐分监测以降低盐渍化风险。生物炭能够缓解咸淡交替灌溉下土壤盐渍化,电导率和碱化度减小了3.7%~21.7%和9.0%~45.2%。生物炭还增加了总孔隙度和水稳性团聚体,改善了土壤养分条件,提高了有效氮磷钾含量,但养分增益在第二年有所下降。生物炭施用不宜过多,30 t/hm2可导致土壤电导率升高而有效氮含量减少。

2)六叶至抽雄期使用微咸水可严重抑制叶片生长和干物质累积,并减少籽粒数量和质量,造成大幅减产;抽雄至吐丝期使用微咸水下玉米生长生产受损减小,但籽粒产量仍因籽粒数量减少而降低;微咸水可有效施用于吐丝至成熟期,并无不良影响。生物炭改善了土壤理化性质和养分条件,有利于提升作物耐盐性能进而缓解微咸水灌溉在生长前中期的盐分胁迫,因此促进了咸淡交替灌溉下玉米生长生产,叶面积指数和干物质质量等指标值均明显增加,籽粒产量提升了10.9%~32.3%。15 t/hm2可作为适宜的添加量。

综上,生物炭提高了咸淡交替灌溉在滨海盐渍土中的农业生产效益,咸淡交替灌溉结合生物炭土壤改良剂可成为促进滨海地区低质量水土资源农业发展的有效手段。

[1] 朱成立,强超,黄明逸,等. 咸淡水交替灌溉对滨海垦区夏玉米生理生长的影响[J]. 农业机械学报,2018,49(12):253-261.

Zhu Chengli, Qiang Chao, Huang Mingyi, et al. Effect of alternate irrigation with fresh and slight saline water on physiological growth of summer maize in coastal reclamation area[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(12): 253-261. (in Chinese with English abstract)

[2] Yao Rongjiang, Yang Jingsong, Zhang Tongjuan, et al. Short-term effect of cultivation and crop rotation systems on soil quality indicators in a coastal newly reclaimed farming area[J]. Journal of Soils and Sediments, 2013, 13(8): 1335-1350.

[3] 朱成立,吕雯,黄明逸,等. 生物炭对咸淡轮灌下盐渍土盐分分布和玉米生长的影响[J]. 农业机械学报,2019,50(1):226-234.

Zhu Chengli, Lyu Wen, Huang Mingyi, et al. Effects of biochar on coastal reclaimed soil salinity distribution and maize growth with cycle fresh and saline water irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1): 226-234. (in Chinese with English abstract)

[4] 张余良,陆文龙,张伟,等. 长期微咸水灌溉对耕地土壤理化性状的影响[J]. 农业环境科学学报,2006,25(4):969-973.

Zhang Yuliang, Lu Wenlong, Zhang Wei, et al. Effects of long-term brackish water irrigation on characteristics of agrarian soil[J]. Journal of Agro-Environment Science, 2006, 25(4): 969-973. (in Chinese with English abstract)

[5] Munns R. Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses[J]. Plant, Cell & Environment, 1993, 16(1): 15-24.

[6] 朱成立,舒慕晨,张展羽,等. 咸淡水交替灌溉对土壤盐分分布及夏玉米生长的影响[J]. 农业机械学报,2017,48(10):220-228.

Zhu Chengli, Shu Muchen, Zhang Zhanyu, et al. Effect of alternate irrigation with fresh and brackish water on saline distribution characteristics of soil and growth of summer maize[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10): 220-228. (in Chinese with English abstract)

[7] 牛君仿,冯俊霞,路杨,等. 咸水安全利用农田调控技术措施研究进展[J]. 中国生态农业学报,2016,24(8):1005-1015.

Niu Junfeng, Feng Junxia, Lu Yang, et al. Advances in agricultural practices for attenuating salt stress under saline water irrigation[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 1005-1015. (in Chinese with English abstract)

[8] Singh A. Conjunctive use of water resources for sustainable irrigated agriculture[J]. Journal of Hydrology, 2014, 519: 1688-1697.

[9] Singh R. Simulations on direct and cyclic use of saline waters for sustaining cotton–wheat in a semi-arid area of north-west India[J]. Agricultural Water Management, 2004, 66(2): 153-162.

[10] 米迎宾,屈明,杨劲松,等. 咸淡水轮灌对土壤盐分和作物产量的影响研究[J]. 灌溉排水学报,2010,29(6):83-86.

Mi Yingbin, Qu Ming, Yang Jingsong, et al. Effects of rotational irrigation with saline water on soil salinity and crop yield[J]. Journal of Irrigation and Drainage, 2010, 29(6): 83-86. (in Chinese with English abstract)

[11] 黄金瓯,靳孟贵,栗现文. 咸淡水轮灌对棉花产量和土壤溶质迁移的影响[J]. 农业工程学报,2015,31(17):99-107.

Huang Jinou, Jin Menggui, Li Xianwen. Effects of alternative irrigation with brackish and freshwater on cotton yields and solute transport in soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(17): 99-107. (in Chinese with English abstract)

[12] 李帅霖,王霞,王朔,等. 生物炭施用方式及用量对土壤水分入渗与蒸发的影响[J]. 农业工程学报,2016,32(14):135-144.

Li Shuailin, Wang Xia, Wang Shuo, et al. Effects of application patterns and amount of biochar on water infiltration and evaporation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 135-144. (in Chinese with English abstract)

[13] Blanco-Canqui H. Biochar and soil physical properties[J]. Soil Science Society of America Journal, 2017, 81(4): 687-711.

[14] 高德才,张蕾,刘强,等. 旱地土壤施用生物炭减少土壤氮损失及提高氮素利用率[J].农业工程学报,2014,30(6):54-61.

Gao Decai, Zhang Lei, Liu Qiang, et al. Application of biochar in dryland soil decreasing loss of nitrogen and improving nitrogen using rate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(6): 54-61. (in Chinese with English abstract)

[15] 王欣,尹带霞,张凤,等. 生物炭对土壤肥力与环境质量的影响机制与风险解析[J]. 农业工程学报,2015,31(4):248-257.

Wang Xin, Yin Daixia, Zhang Feng, et al. Analysis of effect mechanism and risk of biochar on soil fertility and environmental quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 248-257. (in Chinese with English abstract)

[16] 勾芒芒,屈忠义,王凡,等. 生物炭施用对农业生产与环境效应影响研究进展分析[J]. 农业机械学报,2018,49(7):1-12.

Gou Mangmang, Qu Zhongyi, Wang Fan, et al. Progress in research on biochar affecting soil-water environment and carbon sequestration-mitigating emissions in agricultural fields[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 1-12. (in Chinese with English abstract)

[17] Huang Mingyi, Zhang Zhanyu, Zhai Yaming, et al. Effect of straw biochar on soil properties and wheat production under saline water irrigation[J]. Agronomy, 2019, 9(8): 457.

[18] International Biochar Initiative (IBI). Standardized product definition and product testing guidelines for biochar that is used in soil V.2.0[Z]. International Biochar Initiative, 2014.

[19] Lashari M S, Liu Yuming, Li Lianqing, et al. Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain[J]. Field Crops Research, 2013, 144: 113-118.

[20] 张世熔,孙波,赵其国,等. 南方丘陵区不同尺度下土壤氮素含量的分布特征[J]. 土壤学报,2007,44(5):885-892.

Zhang Shirong, Sun Bo, Zhao Qiguo, et al. Distribution characteristics of soil nitrogen at multi-scales in hilly region in South China[J]. Acta Pedologica Sinica, 2007, 44(5): 885-892. (in Chinese with English abstract)

[21] Blake L, Johnston A E, Poulton P R, et al. Changes in soil phosphorus fractions following positive and negative phosphorus balances for long periods[J]. Plant and Soil, 2003, 254(2): 245-261.

[22] 袁晶晶,同延安,卢绍辉,等. 生物炭与氮肥配施对枣园土壤培肥效应的综合评价[J]. 农业工程学报,2018,34(1):134-140.

Yuan Jingjing, Tong Yan’an, Lu Shaohui, et al. Comprehensive evaluation on soil fertility quality of jujube orchard under combined application of biochar and nitrogen fertilizer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(1): 134-140. (in Chinese with English abstract)

[23] Basile A, Buttafuoco G, Mele G, et al. Complementary techniques to assess physical properties of a fine soil irrigated with saline water[J]. Environmental Earth Sciences, 2012, 66(7): 1797-1807.

[24] Sharma D P, Rao K V G K, Singh K N, et al. Conjunctive use of saline and non-saline irrigation waters in semi-arid regions[J]. Irrigation Science, 1994, 15(1): 25-33.

[25] 周文志,孙向阳,李素艳,等. 生物炭和园林废弃物堆肥对滨海盐碱土淋溶的影响[J]. 中国水土保持科学,2019,17(3):23-30.

Zhou Wenzhi, Sun Xiangyang, Li Suyan, et al. Effects of adding biochar and compost on the leaching of coastal saline-alkali soil[J]. Science of Soil and Water Conservation, 2019, 17(3): 23-30. (in Chinese with English abstract)

[26] Chaganti V N, Crohn D M. Evaluating the relative contribution of physiochemical and biological factors in ameliorating a saline-sodic soil amended with composts and biochar and leached with reclaimed water[J]. Geoderma, 2015, 259-260: 45-55.

[27] 孙枭沁,房凯,费远航,等. 施加生物质炭对盐渍土土壤结构和水力特性的影响[J]. 农业机械学报,2019,50(2):242-249.

Sun Xiaoqin, Fang Kai, Fei Yuanhang, et al. Structure and hydraulic characteristics of saline soil improved by applying biochar based on Micro-CT scanning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 242-249. (in Chinese with English abstract)

[28] Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–A review[J]. Biology and Fertility of Soils, 2002, 35(4): 219-230.

[29] 唐行灿,陈金林. 生物炭对土壤理化和微生物性质影响研究进展[J]. 生态科学,2018,37(1):192-199.

Tang Xingcan, Chen Jinlin. Review of effect of biochar on soil physi-chemical and microbial properties[J]. Ecological Science, 2018, 37(1): 192-199. (in Chinese with English abstract)

[30] 王凡,屈忠义. 生物炭对盐渍化农田土壤的改良效果研究进展[J]. 北方农业学报,2018,46(5):68-75.

Wang Fan, Qu Zhongyi. Progress research on the improvement effect of biochar on salinized farmland soil[J]. Journal of Northern Agriculture, 2018, 46(5): 68-75. (in Chinese with English abstract)

[31] Nguyen T T N, Xu Chengyuan, Tahmasbian I, et al. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis[J]. Geoderma, 2017, 288: 79-96.

[32] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681.

[33] Huang Mingyi, Zhang Zhangyu, Sheng Zhuping, et al. Soil salinity and maize growth under cycle irrigation in coastal soils[J]. Agronomy Journal, 2019, 111(5): 2276-2286.

[34] 赵铁民,李渊博,陈为峰,等. 生物炭对滨海盐渍土理化性质及玉米幼苗抗氧化系统的影响[J]. 水土保持学报,2019,33(2):196-200.

Zhao Tiemin, Li Yuanbo, Chen Weifeng, et al. Effect of biochar on the physicochemical properties of coastal saline soil and the antioxidation system activity in maize seedlings[J]. Journal of Soil and Water Conservation, 2019, 33(2): 196-200. (in Chinese with English abstract)

[35] 夏阳. 生物炭对滨海盐碱植物生长及根际土壤环境的影响[D]. 青岛:中国海洋大学,2015.

Xia Yang. Impact of Biochar-Rhizosphere System on Plant Growth by Affecting Soil Nutrient Availability and Microbial Community in Coastal Saline Soil[D]. Qingdao: Ocean University of China, 2015.

[36] Ali S, Rizwan M, Qayyum M, et al. Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review[J]. Environmental Science and Pollution Research, 2017, 24(14): 12700-12712.

[37] 李思平,曾路生,李旭霖,等. 不同配方生物炭改良盐渍土对小白菜和棉花生长及光合作用的影响[J]. 水土保持学报,2019,33(2):363-368.

Li Siping, Zeng Lusheng, Li Xulin, et al. Amelioration of saline soil with different biochar fertilization formulas and its effects on growth and photosynthesis ofand cotton[J]. Journal of Soil and Water Conservation, 2019, 33(2): 363-368. (in Chinese with English abstract)

Effects of biochar on coastal saline soil and maize yield under alternate irrigation with brackish and freshwater

Huang Mingyi1,2, Zhang Zhanyu2※, Zhai Yaming2, Wang Ce2, Qi Wei1, Zhu Chengli2

(1.,,210098,; 2.,,210098,)

The coastal areas possess substantial brackish water resources. The agricultural utilization of saline soil and brackish water resources in coastal regions is crucial to guarantee food security and can be conducive to alleviate increasing land demands and water shortages. Nonetheless, suitable irrigation and field management is essential to improve agricultural production of coastal saline soil and brackish water. In this study, alternate irrigation with brackish and freshwater combined with biochar was proposed to promote the agricultural utilization of these low-quality soil and water resources. A maize planting experiment in coastal saline soil was carried out using field plots under the condition of rain shelter in 2017 and 2018, respectively. We investigated the effects of alternate irrigation with brackish and freshwater and biochar application on coastal soil properties and maize yield parameters. The maize growth season was separated into three periods, that is, the six leaves stage to the tasseling stage, the tasseling stage to the silking stage, and the silking stage to the maturity stage. The alternate irrigation with brackish and freshwater was carried out by using brackish water irrigation during one of the three periods and freshwater irrigation during the remaining stages. The check treatment was conducted by using freshwater irrigation throughout the whole growing season. Biochar with three application rates (0, 15, 30 t/hm2) was incorporated into the surface layer of coastal saline soil in the first experiment year, respectively. Maize leaf area index was observed during the growing season. Maize dry matter accumulation and yield parameters were measured at harvest. Soil properties related to soil salinization, porosity, aggregate, and nutrient content were determined after harvest. The electrical conductivity and exchangeable sodium percentage of coastal saline soil remarkably increased under alternate irrigation with brackish and freshwater. The soil salinization was related to the proportion and order of brackish water use. The brackish water irrigation during the six leaves stage to the tasseling stage severely inhibited maize leaf growth and dry matter accumulation, and lead to a decline in grain number and grain weight, resulting in a 27.2%-32.8% yield reduction. The reduction in maize growth and production by the brackish water irrigation during the tasseling stage to the silking stage was less, but the reduced grain number still resulted in a 11.4%-14.0% yield reduction. The brackish water irrigation during the silking stage to the maturity stage did not have a significant adverse effect on maize growth and yield. Under alternate irrigation with brackish and freshwater, biochar application reduced the electrical conductivity and exchangeable sodium percentage of coastal saline soil by 3.7%-21.7% and 9.2%-45.2%, respectively. The total porosity and water-stable aggregate with biochar applications were increased by 3.1%-11.9% and 40.0%-168.9%, respectively. Biochar application also promoted the soil nutrient status and increased available nitrogen, available phosphorus, and available potassium content by 34.9%-104.0%, 21.0%-58.1%, and 13.6%-57.8%, respectively. With the improvement in soil conditions, biochar application was helpful to enhance salt tolerance in the early and middle stages of maize growth, thus alleviating the damage of salt stress under brackish water irrigation. The maize maintained a good condition of leaf area index, dry matter accumulation, and yield characteristics when brackish water irrigation was applied during the six leaves stage to the silking stage. Therefore, biochar application promoted the feasibility and applicability of alternate irrigation with brackish and freshwater. Compared to the treatments without biochar application, the grain yield of the treatments with biochar application increased by 10.9%-32.3% under the same alternate irrigation with brackish water and freshwater. The results could be helpful to improve the agricultural utilization of saline soil and brackish water resources in coastal regions.

irrigation; biochars; maize; coastal saline soil; brackish water; alternate irrigation

黄明逸,张展羽,翟亚明,等. 咸淡交替灌溉下生物炭对滨海盐渍土及玉米产量的影响[J]. 农业工程学报,2020,36(21):88-96.doi:10.11975/j.issn.1002-6819.2020.21.011 http://www.tcsae.org

Huang Mingyi, Zhang Zhanyu, Zhai Yaming, et al. Effects of biochar on coastal saline soil and maize yield under alternate irrigation with brackish and freshwater[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 88-96. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.21.011 http://www.tcsae.org

2020-07-05

2020-08-27

国家自然科学基金项目(51879071);国家重点研发计划(2016YFC0400200)

黄明逸,博士,博士后,主要从事盐碱地改良、高效灌排理论与技术研究。Email:hhuhuangmingyi@163.com

张展羽,博士,教授,博士生导师,主要从事节水灌溉理论与技术等方面研究。Email:zhanyu@hhu.edu.cn

10.11975/j.issn.1002-6819.2020.21.011

S275

A

1002-6819(2020)-21-0088-09

猜你喜欢
咸水盐渍滨海
盐渍土二次相变温度变化规律
脱硫石膏对滨海盐渍土理化性能的影响研究
滨海白首乌
江苏滨海:让农民工吃下定“薪”丸
滨海顶层公寓
聊城市地下咸水地质特征与综合开发利用分析
淡水·咸水·微咸水在吹填土和吹填砂脱盐中的优化利用研究
打动顾客
惊险!大胆蜗牛鳄口脱险
滨海,中国航天再出发