中东地区孔隙型碳酸盐岩储层渗透率主控因素分析

2021-06-02 10:24吕苗苗宋本彪田昌炳毛先宇
油气地质与采收率 2021年3期
关键词:碳酸盐岩渗透率孔隙

吕苗苗,宋本彪,田昌炳,毛先宇,高 严,卜 宇

(中国石油勘探开发研究院,北京 100038)

渗透率是定量评价油气储层品质的关键参数,储层岩石的绝对渗透率取决于岩石的孔喉结构,尤其是孔隙和喉道的大小、分布及连通关系[1]。碳酸盐岩油藏由于储层岩石孔隙类型多样、孔隙结构复杂,导致其非均质性极强[2-5],突出表现为碳酸盐岩的渗透率与孔隙度相关性差。因此,准确计算和预测渗透率一直都是碳酸盐岩储层评价的重点和难点[6-8]。

中东地区近50%的油气可采储量来自于碳酸盐岩储层,Mishrif 组碳酸盐岩储层以孔隙型为主,少量发育溶孔和溶洞,基本不发育裂缝[9],但其非均质性依然很强,相同孔隙度的2 个不同样品的渗透率相差达3个数量级。其原因为原生沉积差异与后生成岩改造相叠加[10-13],使得岩石内部微观孔隙结构特征异常复杂,增加了该类油藏储层表征的难度。

笔者以中东地区M 油田Mishrif 组高压压汞实验数据为基础,通过毛管压力曲线分析,提取孔喉结构特征参数,并结合常规岩心分析孔隙度、渗透率和岩石铸体薄片,对储层内部微观孔隙结构特征进行定性和定量分析,以明确中东地区Mishrif 组孔隙型碳酸盐岩油藏渗透率的主控因素,为准确评价该类油藏渗透率提供依据。

1 地质概况

M 油田位于伊拉克东南部巴士拉以北,在鲁迈拉油田和祖拜尔油田以北约50 km 处,靠近两伊界线,构造上位于美索不达米亚盆地构造前缘带[14],美索不达米亚盆地全部位于阿拉伯板块的陆上部分,分为美索不达米亚前渊构造带和稳定阿拉伯地台2 个构造单元[15-18]。M 油田呈南北向长轴背斜,面积约为750 km2,为巨型碳酸盐岩油田,主力产层为白垩系Mishrif 组生物碎屑灰岩[19],其岩石类型主要包括厚壳蛤灰岩、有孔虫灰岩、球粒生屑灰岩、绿藻生屑灰岩、含生屑细晶白云岩、生屑泥晶灰岩和泥晶生屑灰岩等[20]。

2 孔隙类型及孔喉分布特征

2.1 孔隙类型

以M油田Mishrif组415个具有高压压汞实验分析的样品为基础开展相关研究。从其孔渗分析数据来看,孔隙度为2%~34%,渗透率为0.001~3 010 mD,孔隙度中值为17%,渗透率中值为3.6 mD。从孔渗交汇图(图1)可以看出,相同孔隙度条件下的渗透率相差超过3个数量级。分析具有岩石薄片资料的样品发现,研究区Mishrif 组原生孔隙和次生孔隙都很发育,主要的孔隙类型有基质溶孔、微孔、粒间孔、铸模孔、粒间溶孔、粒内溶孔、晶间孔、体腔孔和少量格架孔[21](图1,图2)。储层孔隙组合类型多样,同一样品中单一类型孔隙独占优势的占比并不大。其中,以粒间孔和粒间溶孔发育的储层物性最好,微孔为主的储层物性相对较差。以发育某一类型孔隙为主的储层在孔渗交会图上表现出较好的相关性,但发育多种孔隙类型的储层在孔渗交汇图上区分度较差。

图1 M油田Mishrif组储层主要岩石类型孔渗关系Fig.1 Main rocks’porosity-permeability crossplot of the Mishrif Formation in the M Oilfield

研究区Mishrif 组储层的生物钻孔发育,被方解石/白云石充填,白云岩化与生物扰动作用相关。储集空间有孔虫灰岩以粒间孔、粒内溶孔和体腔孔为主,厚壳蛤灰岩以格架孔、粒间孔为主,球粒生屑灰岩以格架孔、粒间孔为主,绿藻生屑灰岩以铸模孔为主,细晶白云岩以晶间孔为主,生屑泥晶灰岩和泥晶生屑灰岩每种孔隙类型均有,且含量都较平均。在本组样品中铸模孔、粒间孔和粒内溶孔物性最佳(图2)。这是由于孔隙发育受岩石组构控制,灰泥及不同类型生屑共同控制孔隙发育,且岩石渗透性及连通性受微观孔喉制约,需结合注汞资料提取不同孔喉参数对物性进行相关性分析,以寻求孔隙型碳酸盐岩渗透率的主控因素。

2.2 微观孔喉分布特征

储层的渗流能力取决于孔隙类型和孔喉结构[22]。毛管压力曲线形态主要受孔喉的分选性和喉道大小控制,根据毛管压力曲线形态可以定性评估储层岩石的储集性能[23]。从毛管压力曲线提取孔喉半径制成概率分布图,其孔喉结构呈现单模态、双模态和多模态特征。在研究区Mishrif 组岩心中,占优势的孔喉类型不止一种,在复杂的孔隙类型及相同孔隙类型下,成岩差异的影响导致储层具有非均质性极强和物性相关性差的特点。根据归一化孔喉半径频率统计得,孔喉尺寸主要为0.001~100 μm,孔喉分布的峰值跨度较大,主要峰值分布点为0.001,0.05,0.1,0.5,10,60 和100 μm,甚至更高。

在本次实验样品中,单模态孔喉结构略多于双模态,多模态孔喉结构发育比例为10%~15%。对比孔喉半径、铸体薄片和样品的物性参数,分析不同模态孔喉结构的岩性和物性差异。

单模态孔喉结构储层的孔喉半径分布呈现锥形或钟形单峰(图3a),孔喉半径单峰集中在0.1~1 μm,孔隙度为8%~32%,渗透率为0.2~100 mD。岩性主要为泥晶生屑灰岩(图4a),微孔、晶间孔和铸模孔发育比例较高,生物扰动发育频繁(图4b),孔隙发育较好,与双模态、多模态孔喉结构相比,孔隙度和渗透率的相关性较好,样品分布较集中,同一孔隙度下渗透率级差达到2个数量级(图3d)。

图3 M油田Mishrif组储层微观孔喉分布特征Fig.3 Micro porous throat distribution in reservoirs of the Mishrif Formation in the M Oilfield

双模态孔喉结构储层的孔喉半径呈双峰特征(图3b),孔喉半径分散分布,主要为0.01~50 μm,双峰出现的位置集中在0.05,0.1 和10 μm,个别样品峰值超过10 μm。孔隙度为5%~35%,渗透率主要为0.01~1 000 mD,岩性主要为泥晶生屑灰岩和粒泥灰岩。多发育微孔、晶间孔和溶孔,黏土矿物、方解石(图4c)和白云石的充填导致出现双峰。次生孔隙中微孔、晶间孔和铸模孔的发育比例较高,孔隙发育较好,局部连通性较好,孔隙度和渗透率相关性较差,渗透率级差达到3 个数量级(图3e)。双模态孔喉结构储层的孔喉半径分布范围较单模态孔喉结构的更广,孔隙度和渗透率区间跨度均比单模态大。生物扰动发育较频繁,但对渗透率贡献却不明显,且无规律的生物扰动造成了储层微观各向异性。孔隙及次生孔隙被矿物充填对于改变储层的渗透率和渗流能力起到很大作用,进一步增强了储层的非均质性,并导致更复杂的孔喉结构及渗流规律。

图4 M油田Mishrif组储层微观特征Fig.4 Micro reservoir characteristics of the Mishrif Formation in the M Oilfield

多模态孔喉结构储层的孔喉分布呈现多峰特征(图3c),且峰值分布范围广,从0.01~100 μm 均有出现,孔隙度为5%~30%,渗透率分布更广,相差可超过3 个数量级,孔渗相关程度非常低(图3f)。岩性主要为生屑泥晶灰岩,多见矿物充填,与双模态孔喉结构相比,充填物除方解石、白云石,还有黏土矿物和黄铁矿充填溶孔(图4d,4e)。孔隙发育类型较多,有粒间溶孔、晶间溶孔、壳体内溶孔、晶间孔、基质溶孔、体腔孔及微孔等(图4f)。多模态孔喉结构特征反映出微观上复杂的孔喉结构和孔隙类型,也导致储层具有非常强的非均质性。

3 渗透率主控因素分析

3.1 渗透率变化规律

通过对研究区Mishrif组415块样品的孔隙度和渗透率进行统计学分析(图5),分别提取最小值、中值、最大值、第一四分位、第三四分位以及样品数。四分位是统计学中分位数的一种,即将所有数值由小到大排列并分成四等份,处于三个分割点位置的数值即为四分位。第一四分位(Q1),又称较小四分位,等于该样本中所有数值由小到大排列后第25%的数值。第三四分位(Q3),又称较大四分位,等于该样本中所有数值由小到大排列后第75%的数值。通过分析最小值、中值、最大值、第一四分位、第三四分位5 个统计量,可以更细致地观察样品点的分布规律、极端值以及分布峰度、斜度。

图5 M油田Mishrif组储层样品渗透率统计学分析结果Fig.5 Statistics analysis of permeability of Mishrif Formation samples from the M Oilfield

分析图5 发现,M 油田Mishrif 组储层渗透率随孔隙度的变化可以分为4 个阶段:①第1 阶段。孔隙度小于6%,渗透率随孔隙度的增加快速递增,5条曲线均表现出相同的变化趋势和相似的斜率。孔隙类型以基质微孔为主,绝大多数样品渗透率低于10 mD。②第2 阶段。孔隙度约为6%~20%,渗透率和孔隙度具有较好的正相关关系,即渗透率随着孔隙度的增加缓慢递增;孔隙类型多为晶间孔和粒内溶孔(图2),也见体腔孔。③第3阶段。孔隙度约为20%~26%,渗透率最大值曲线和第三四分位曲线出现最大峰值区间,渗透率最大值在孔隙度约为22%~25%时达到1 000 mD,中值曲线也具有相同的变化趋势,而最小值曲线则出现与其他4 条曲线不同的变化趋势,甚至略有下降,由此看出该阶段孔隙度增大,粒间孔、粒间溶孔以及铸模孔的出现提高了孔隙度,溶蚀作用改善了孔隙间的连通性和储层的渗透性。④第4阶段。随着孔隙度的进一步增加,最大值、第三四分位和中值降低,与孔隙度呈现负相关,即大孔隙不是渗流能力最强的区域,反映出储层渗流能力强的区域并不在高孔区。

3.2 渗透率主控因素

孔隙结构是控制储层物性的关键因素,其中孔喉半径与储层的渗透率具有很好的相关性,根据高压压汞实验数据分析可以得到一系列孔喉半径,目前较为常用的是汞饱和度为50%对应的孔喉半径(R50)和汞饱和度为35%对应的孔喉半径(R35)。为了进一步分析不同孔喉半径与渗透率的相关性,针对研究区Mishrif 组415 个高压压汞实验样品,根据汞饱和度为5%~95%,共选取10 个不同的孔喉半径值,分别与渗透率进行线性回归,进而得到相关系数。将其与孔喉半径进行对比分析,发现R20与渗透率的相关性最好,相关系数为0.77(图6)。

图6 M油田Mishrif组储层样品不同孔喉半径与渗透率的相关系数Fig.6 Correlation coefficient between permeability and pore throat radius of Mishrif Formation samples from the M Oilfield

将415个高压压汞实验样品的孔隙度和渗透率绘制交会图(图7),并根据样品R20 值的范围按照从小到大的顺序划分为RⅠ—RⅦ共7个区间,其对应的孔喉半径分别为0~0.1,0.1~0.5,0.5~1,1~2,2~5,5~10,10~21 μm(表1)。对同一孔喉半径区间的样品点用同一颜色标注,并对每一个R20 范围内的渗透率求取平均值,进而获得更直观、清晰的孔渗分布及孔喉半径与渗透率的关系(图8)。从图7 和图8 可以看出:①样品整体物性与孔喉半径具有很好的正相关关系,随着R20的增大,渗透率持续增大,渗透率最大值和最大平均值均处于RⅦ区间(图7),即孔喉半径最大区间。②孔隙度与渗透率相关性较差,同一孔隙度条件下渗透率区间跨度大,可达1~4 个数量级。③渗透率最大值超过1 000 mD,平均值约为100 mD,孔隙度为14%~24%,平均值约为20%,渗透率并未一直随着孔隙度的增大而增大。④当孔喉半径大于2 μm,渗透率明显与孔喉半径相关性更好,而与孔隙度呈负相关。

图7 M油田Mishrif组孔隙度与渗透率交会图Fig.7 Corssplot of porosity with permeability of the Mishrif Formation in the M Oilfield

表1 M油田Mishrif组物性参数统计Table1 Physical parameters of the Mishrif Formation in the M Oilfield

图8 M油田Mishrif组渗透率平均值与孔隙度平均值交会图Fig.8 Crossplost of average permeability with average porosity of the Mishrif Formation in the M Oilfield

由M 油田Mishrif 组储层R20 与渗透率交会图(图9)可以看出,排除样品数过少的孔喉半径小于0.01 μm 和大于50 μm 的区间,渗透率与R20具有明显的正相关关系,且渗透率随着R20的增加而增大。

图9 M油田Mishrif组储层R20与渗透率交会图Fig.9 Crossplot of reservoir R20 with permeability of the Mishrif Formation in the M Oilfield

基于高压压汞实验数据、岩石铸体薄片和岩石物理学资料分析,研究区Mishrif 组碳酸盐岩渗透率的主控因素为孔喉半径,渗透率与R20相关性最高。因不同的沉积背景和成岩环境,导致中东地区碳酸盐岩具有复杂多变的岩性和孔隙类型,不同储层渗透率对不同孔喉半径的响应特征不同。通过此次研究厘清了伊拉克M 油田储层微观分布特征和物性规律,明确了渗透率的主控因素,为更准确的评价碳酸盐岩储层品质及分类提供了有利依据。

4 结论

综合中东地区M 油田Mishrif 组高压压汞实验数据和常规孔渗分析、岩石薄片分析等资料,认为孔隙结构是决定岩石渗透率的关键参数,孔喉半径与渗透率具有很好的相关关系,以R20 与渗透率的相关性最好。研究区Mishrif 组碳酸盐岩储层存在多种模态并存的孔喉结构特征,其中单模态孔喉结构的孔渗相关性明显好于双模态和多模态孔喉结构储层,多种模态孔喉结构共存也是中东地区同类型碳酸盐岩储层非均质性严重的根本原因。随着孔喉半径的增加,孔隙度和渗透率具有不同的变化趋势。从统计规律看,随着孔喉半径的增加,平均渗透率持续增加,但平均孔隙度增加至一定程度后开始下降,究其原因为成岩作用发生过程中溶蚀和胶结作用同时存在,溶蚀作用导致孔喉半径扩大,改善了渗透性,而同时发生的胶结作用生成的胶结物占据孔隙,导致孔隙度降低。中东地区碳酸盐岩储层中最大孔隙度与最大渗透率并不对应,且随着孔喉半径的变化,孔隙度和渗透率具有明显不同的变化规律,因此对于该类储层渗透率计算模型的建立需充分考虑孔喉半径的影响。

猜你喜欢
碳酸盐岩渗透率孔隙
RVE孔隙模型细观结构特征分析与对比
非饱和土壤中大孔隙流的影响因素研究
大牛地气田奥陶系碳酸盐岩元素录井特征分析
储层孔隙的“渗流” 分类方案及其意义
花岗岩残积土大孔隙结构定量表征
高渗透率分布式电源控制方法
预计明年智能网联新车渗透率达51.6%
贵州云炉河坝地区铅锌矿床元素地球化学特征、碳氧同位素组成及其地质意义
鄂尔多斯盆地早奥陶世碳酸盐岩有机质研究
纸尿裤市场每年1000亿却只开发了四成