多物源储层分区耦合建模方法及应用

2021-08-03 06:46窦梦皎李少华李志鹏郭士博杨明林
油气地质与采收率 2021年4期
关键词:砂体分区储层

窦梦皎,李少华,王 军,李志鹏,郭士博,杨明林

(1.长江大学地球科学学院,湖北武汉 430100;2.中国石化胜利油田分公司勘探开发研究院,山东东营 257015)

陆相盆地储层沉积体系变化频繁,岩性分布复杂,流体分布受构造和岩性双重控制,沉积相带横向变化快且垂向多期叠置,盆地内的局部凸起或高地决定着物源体系的分布格局,储层受多物源影响,连通性和连续性相对较差,非均质性严重[1-4]。多物源复杂沉积体系下的储层建模一直是广大学者关注和研究的重要问题[5-9],多采用分区建模的策略[10-12],可以提高建模效果的准确性。

李少华等提出了两种分区建模的方法:一是通过添加趋势线作为分区线,将研究区划分为若干区块,利用网格过滤功能对不同区块设置变差函数,以模拟多个物源条件下的储层分布;另一种方法是建立方位角分布的面文件,对不同位置设置不同的方位角进行模拟[13];卜范青等设定不同区带,对各区带独立进行随机模拟,实现多物源条件下深水浊积水道内部储层特征的模拟[14];李盼盼在已有模型的基础上,通过规则形状切割网格或不规则边界截取部分模型,对区块整体三维构造模型进行分区切割[15]。上述研究对多物源沉积体系下的储层建模方法进行了有益的探索,研究对象尽管受不同方向物源控制,但是模拟的砂体基本上是分开、无交叉叠合,在建模过程中不需考虑不同沉积体之间的砂体连通性等问题。当砂体分布贯穿多个分区时,已有建模方法会导致不同分区之间砂体出现不连续、突变的情况,不能反映真实的地质情况。

为此,笔者提出了一种多物源储层分区耦合的建模方法,解决了不同区块之间砂体突变的问题。以东营凹陷盐家油田盐935-936区块的砂砾岩油藏进行应用研究,并与传统的分区岩相建模方法和基于局部变化变差函数建模方法进行对比,结果表明提出的多物源储层分区耦合建模方法较好地解决了不同区块砂体分布不连续的问题。

1 建模基本思路

多物源储层分区耦合建模方法是指根据研究区不同方向物源的控制范围,划分为若干区块,分别对这些区块砂体进行模拟,后模拟的区块以先模拟的相邻区块边界的模拟结果作为条件数据,与井点数据共同约束模拟砂体分布。重复上述过程,直到全部区块模拟完成,这样就得到了全区的分区耦合模型。分区耦合建模的核心为分区建模、条件约束、模型耦合。分区建模是指根据不同沉积体系砂体分布特征不同而分别进行模拟。条件约束是指基于地质理论、认识及地震资料,在构建三维地质模型过程中,充分利用分区边界局部范围内的模拟结果作为已知约束条件,保证模型分区边界处砂体分布的真实性。模型耦合是指不同分区模型不是简单的拼接成一个整体模型,而是不同区块之间有内在的联系,从而解决了传统分区岩相建模方法导致的砂体突变问题。

2 建模流程

多物源储层分区耦合建模基本流程主要包括:多物源储层分区边界确定、分区网格模型构建、分区岩相模拟、岩相模型耦合(图1)。其中分区岩相模拟只包含两个分区A 和B,如果有更多的分区,实现的步骤是相同的。

2.1 分区边界确定

在物源研究的基础上,结合砂体描述及地震属性分析等手段,确定研究区内不同方向物源控制的沉积相展布范围,根据这些范围划分不同的区块,如果需要考虑边界的不确定性,可以设置多组边界,例如最可能的、乐观的和悲观的边界[16],为了简化问题,只采用最可能的边界划分方案。

2.2 分区网格模型构建

在模型网格化时,根据已确定的分区边界将研究区划分为若干区块,建立分区网格模型。该模型的构建,为后续分区岩相模拟及岩相模型耦合奠定了基础。

2.3 分区岩相模拟

传统的建模方法是在分区模拟的基础上直接拼接各个分区模型,而分区模型是独立的,因此容易出现分区边界砂体不连续的现象。为了建立不同分区之间的内在联系,需要将先模拟的分区边界作为相邻区块模拟的约束条件。由于模型是基于网格划分的,分区边界(图2)仅为一个面,转化为网格后不可能同时属于A 区和B区。在具体实施过程中,把边界两侧的网格都提取作为条件数据。假设先模拟A 区,采用A 区内的井点数据进行统计分析和模拟,得到基于A 区模拟参数的整个研究区模型AQ,提取边界两侧的网格作为条件数据A-B;然后模拟B 区,基于B 区内井点数据的统计分析进行全区模拟,在模拟过程中前面提取的条件数据A-B 参与计算,得到整个研究区模型BQ。如果还有分区,可以按照上述方式依次进行,得到基于各个分区模拟参数的全区模型。

图2 分区岩相模拟条件数据示意Fig.2 Conditional data for partitioned modeling

2.4 岩相模型耦合

基于分区岩相模拟结果在边界处的条件化,把传统独立的分区模拟变成了有内在联系的分区模拟。利用网格过滤功能,对基于各个分区模拟参数建立的全区岩相模型进行拼接,构建整体岩相模型。在此基础上,再进行相控物性参数建模。

3 实例应用

以东营凹陷盐家油田盐935-936区块砂砾岩储层为研究对象。对研究区构建模拟网格,平面网格按照50 m×50 m 进行划分,垂直方向网格1 m×1 m。岩相划分为泥岩和砂岩。

3.1 地质背景

东营凹陷盐家油田地理位置位于山东省东营市垦利县西张乡,构造位置处于济阳坳陷东营凹陷北部陡坡断裂构造带东段,其北部为陈家庄凸起,东部为青坨子凸起,两凸起均系花岗片麻岩的古凸起,南临民丰生油洼陷[8,17-20](图3a)。

研究区构造相对比较简单,西部具有北高南低的特点,东部具有东北高、西南低的特点。砂砾岩油藏自西向东呈现含油气连片的趋势,主要含油层段为沙四段的砂砾岩体,为断陷湖盆陡坡带的近岸水下扇砂砾岩复合扇体。砂砾岩体内幕岩性复杂,为多期次快速堆积或再次垮塌沉积[21-23],储层电性受致密砾岩影响大。该类油藏由于埋藏较深,且多为有效储层与非有效储层混杂、非均质性严重,为特低孔、特低渗透油藏。

根据前人对沙四段上亚段沉积时期古冲沟沉积物源的分析,盐18 古冲沟存在3 个方向的物源(图3b),分别为沿冲沟方向的北部物源以及来自冲沟西部和东部的侧向物源[18,24-25]。其中东部和西部两个扇体相对独立,中部处于扇间位置。

图3 盐935-936区块区域构造位置及砂砾岩体展布示意(据文献[21]修改)Fig.3 Regional structural location and glutenite distribution in the Y935-936 block of the Yanjia Oilfield in the Dongying Sag(Modified after Reference[21])

3.2 多物源储层分区耦合建模

在地震及地质综合研究基础上,依据东、西2个扇体展布形态将研究区划分为A,B 和C 区3 个不同物源控制区块(图4a),并建立相应分区网格模型(图4b)。

图4 盐935-936区块分区示意Fig.4 Segments in the Y935-936 block

对3 个区块分别设置相应的变差函数、砂体百分比等模拟参数。A,B和C区变差函数方位角分别设置为340°,0°和45°。使用序贯指示模拟的方法进行砂体模拟,基于传统分区岩相模拟方法得到分区岩相模型(图5)。

图5 传统分区岩相模型模拟结果Fig.5 Traditional partitioned modeling results

采用分区耦合建模方法时,首先需要对分区边界模拟结果进行条件化。将分区边界线向两侧指定范围内扩展得到闭合多边形,采用将闭合多边形转化为断层-断层面-离散点的处理方法,提取分区边界两侧的网格(图6)。

图6 边界条件数据网格的提取Fig.6 Grid extraction from conditional data on the boundary

在具体模拟过程中,按顺序依次对各个分区进行岩相模型模拟。首先模拟A 区,基于A 区内的井数据统计分析的结果模拟计算得到整个研究区模型AQ。然后利用边界网格A-B对模型AQ提取模拟结果作为条件数据(图7a);然后模拟B区,此时模拟参数基于B 区内的井点数据分析得到,边界A-B 提取的条件数据结合B区内原有的井点数据共同作为条件数据,模拟得到全区模型BQ;最后模拟C区,此时仅B 区与C 区相邻,因此提取模型BQ 的边界B-C上的模拟结果作为条件数据(图7b),得到模型CQ。

图7 盐935-936区块边界条件数据Fig.7 Conditional data on the boundary in the Y935-936 block

模型耦合是将分区模拟的全区岩相模型AQ,BQ和CQ拼接起来。采用网格过滤的方式,AQ只保留A 区部分的网格(图8a),同样的方式得到BQ 和CQ 的分区岩相模型(图8b 和8c)。将3 个区块截取的部分模型组合在统一的三维空间框架下,得到研究区的分区耦合模型(图9)。

图8 盐935-936区块各分区岩相模型Fig.8 Partitioned model of each segment in the Y935-936 block

图9 盐935-936区块分区耦合模型模拟结果Fig.9 Partitioned coupling modeling results in the Y935-936 block

3.3 局部变化变差函数建模

除了与传统的独立分区建模方法对比,本文还对比了采用局部变化变差函数的整体模拟方法。局部变化变差函数建模方法是根据砂体在不同物源控制区展布的方向和规模分别设置变差函数,根据砂体展布方向设置变差函数方位角(图10),并根据各个区块的砂泥比分别建立砂、泥岩趋势面,模拟过程是针对整个研究区进行的,不再是分区块模拟,最终得到模型如图11所示。

图10 盐935-936区块变差函数方位角分布Fig.10 Distribution of variogram azimuth in the Y935-936 block

图11 盐935-936区块局部变化变差函数模型模拟结果Fig.11 Variogram modeling results based on local variations in the Y935-936 block

3.4 模拟结果对比

将分区耦合建模方法模拟结果与传统分区岩相模型、局部变化变差函数模拟结果在剖面和平面上进行对比,分析模拟砂体在分区边界处的分布情况。

3.4.1 剖面对比

传统分区岩相模型模拟的各分区内砂泥比与井点统计数据基本一致,能够体现砂体西部发育、东部不发育的特点,砂体在东、西两条边界处连续性差,呈突变接触,其中以中部区块与东部区块底层砂层组边界处突变最为明显(图12a),不符合地质认识。分区耦合建模方法建立的模型模拟的各分区之间砂体的分布是连续的,没有出现突变的情况(图12b)。局部变化变差函数构建的模型模拟的砂体在不同区块边界处依然存在突变的问题(图12c),略好于传统的分区岩相模拟方法。

图12 不同方法模拟结果剖面(剖面位置分别见图5,图9和图11)Fig.12 Cross-sectional view of results from different modeling methods(See Fig.5,Fig.9 and Fig.11 for cross-sectional positions)

3.4.2 平面对比

研究区目的层包括7小层和8小层共2个小层,利用传统分区岩相建模方法、分区耦合建模方法和局部变化变差函数建模方法分别建立各小层砂体等厚图。从图13可以直观地看出,不论是传统分区岩相建模方法还是基于局部变化的变差函数建模方法得到的砂体等厚图,在分区边界处砂体厚度均存在突变的现象,传统分区岩相建模方法砂体突变最明显,B 区与C 区的分区边界处(图13b)因为C 区砂岩不发育,导致B区砂体向C区是突然尖灭的。

图13 不同方法砂体厚度模拟结果Fig.13 Results of sandbody thickness from different modeling models

4 结论

研究区存在多个物源控制的沉积体分布区块时,采用传统分区岩相建模或局部变化的变差函数建模方法能够较好地刻画各个区块砂体的展布特点,但是存在分区边界处砂体突变的问题。本文提出一种分区耦合建模的方法,较好地解决了该问题。按照一定的顺序进行分区模拟,后模拟的分区以先模拟的相邻分区边界的模拟结果作为条件数据,并结合该分区内的井点数据进行模拟。新方法解决了传统建模方法导致的分区边界砂体不连续的问题,提高了模型精度。以盐家油田盐935-936区块沙四段上亚段砂砾岩储层为例进行应用研究,并与传统分区岩相建模方法、局部变化变差函数建模方法进行对比,通过模型剖面及砂体厚度平面图可以直观地看出,新方法更加合理地刻画了砂体的空间分布,较好解决了由分区带来模型在分区边界处砂体突变、不连续的问题。

猜你喜欢
砂体分区储层
致密气有效砂体结构模型的构建方法及其应用
贵州省地质灾害易发分区图
冷冻断裂带储层预测研究
上海实施“分区封控”
川中高石梯地区灯四段储层地震响应及差异性分析
“深层页岩气储层”专辑征稿启事
曲流河复合点坝砂体构型表征及流体运移机理
富县地区长8致密油储集砂体成因及分布模式
渤海河流相油田储层连通性研究与挖潜实践
——以KL油田3-1483砂体为例
大型数据库分区表研究