700 MW机组调频辅助服务控制系统优化提升

2021-10-09 09:56李强
南方能源建设 2021年3期
关键词:性能指标调频特性

李强

(广东能源集团有限公司珠海发电厂,珠海519000)

广东省能源集团珠海发电厂两台700 MW机组,DCS系统实现的功能包括数据采集系统(DAS)、模拟量控制(MCS)、顺序控制(SCS)、锅炉炉膛安全监控(FSSS)、汽机旁路控制(BPC)等,机组在投用AGC方式下存在变负荷速率偏低、负荷精度控制性能较差,一次调频响应情况较差,汽温汽压等主要数据偏离设定值较大,不利于机组安全稳定运行,且机组综合调频性能指标K值水平偏低。随着我国调频辅助服务市场的建立,由于珠海发电厂两台机组综合调频性能指标K值偏低,无法成为电网中标机组,经济损失巨大,所以需要设计一种适应调频市场环境的控制策略,保证控制系统既能满足电网频率控制需要,又能适应调频服务市场化的特性要求[1-3]。由于珠海发电厂DCS系统采用三菱公司提供的DIASYS Netmation分散控制系统,该系统在线修改逻辑存在重大安全风险,所以根据珠海发电厂实际情况,在不改变DCS系统的原有控制功能的情况下,设计独立于DCS控制系统的专用第三方优化控制系统(PLC),并采用先进的控制技术(预测控制、模糊控制等),在机组300~700 MW负荷段来实现机组的AGC控制、一次调频、协调控制、主汽压控制、主汽温控制、再热汽温控制的等控制系统的功能优化,从而全面提高机组AGC控制、机组综合调频性能指标K值和运行参数稳定性[4]。

1 优化方案

1.1 优化策略

采用外接的先控系统实现控制系统优化,对机组CCS控制系统及相关子系统进行相应的优化和机组升降负荷试验,实现机组风、煤、汽温和机炉协调的自动控制,提高机组AGC负荷响应能力,提高在调频辅助市场环境下的机组响应特性和机组综合调频性能指标K值,使机组的调频辅助服务综合能力排位在同类机组中处于领先水平。

1.2 硬件配置

目前,珠海发电厂DCS系统各控制回路采用的是PID控制器为基础的控制方式,该方式属于事后控制方式,控制效果欠佳。为了提高机组的机组负荷、主汽压力、汽包水位、主蒸汽温度、再热汽温度等的控制品质,采用一个外接PLC系统,将各控制回路的控制策略封装于此,通过专用通讯卡件与DCS进行数据交互。主要控制硬件系统设计示意图如下:

如图1所示,外挂系统与主机DCS系统采用标准的RS232、RS485/422连接方式,使用MODBUS通讯协议,还需要从外挂系统引一根RJ45网线到工程师站,连接上位机,方便调试和收集历史数据。

图1 外挂系统硬件配置图Fig.1 Hardware configuration of plug-in system

通讯卡起到桥梁作用,将不同控制系统之间的信号进行有效交互,从DCS系统中采集相关信号至外挂系统,经过外挂系统中的先进控制策略,输出相应的模拟量信号去控制现场设备。

1.3 先控系统控制原理图

该先进控制系统主要包括BM、TM的控制,以及一二级减温水和再热器减温水的控制,各个先控回路采用集成化封装,便于系统的维护[5-7]。各回路主要采用多种算法相结合的新型先进控制器APC-PID。

先进控制器APC-PID内部原理如图2(a)所示,通过一种近似滑动窗滤波器(Approximate sliding window filter,ASWF)可构造出高性能积分器,仿真试验证明该积分器具有比常规积分器更高的效率[8]。

图2 控制器构造示意图Fig.2 Schematic diagram of controller structure

通过超前观测可以提前获取系统响应的信息,常见的超前观测形式有:D、PD、相位超前校正等。图2(b)所示为具有高相位超前效率的高性能超前观测器(HPLO)。通过一种高增益PI(High gain PI,HGPI)控制器,实现了ASWF的逆变换。对逆变换的输出进行1阶滤波,得到HPLO。

在高性能PI控制器(HPPI)和高性能超前观测器(HPLO)的基础上,构造出一种先进控制器(APC-PID),如图2(c)所示。

搭建好先进控制器(APC-PID)后,再使其与DCS系统中的锅炉主控、汽机主控、过热器再热器温控制等控制回路配合,实现DCS系统各控制回路的优化控制。各回路典型原理参见图3~图7。

2 控制对象特性测定

2.1 需要测定控制对象的主要控制对象

为了快速、准确整定控制系统相关控制参数,分别在40%~50%Pe、60%~70%Pe、80%~90%Pe负荷段(低、中、高负荷)进行以下控制对象特性测试。

图3 锅炉主控先控原理图Fig.3 Schematic diagram of master and advanced control of the boiler

图4 汽机主控先控原理图Fig.4 Schematic diagram of master and advanced control of the turbine

图5 过热汽温先控原理图Fig.5 Schematic diagram of temperature advanced control for super heat steam

图6 再热汽温微量喷水先控原理图Fig.6 Schematic diagram of spray water advanced control for reheat steam

图7 先控回路的集成化封装图Fig.7 Integrated package diagram of the advanced control circuit

1)燃料量扰动特性试验,如图8所示:

图8 燃料量扰动特性Fig.8 Characteristicsoffuelflowdisturbance

2)一次风压扰动特性试验,如图9所示:

图9 一次风压扰动特性Fig.9 Characteristicsofprimaryairpressuredisturbance

3)给水流量特性试验,如图10所示:

图10 给水流量特性Fig.10 Characteristicsoffeedwaterflow

4)再热汽燃烧器摆角-再热汽温特性,如图11所示:

图11 再热汽燃烧器摆角特性Fig.11 Characteristicsofreheatsteamburnertilt

5)减温水门开度-流量特性,如图12所示:

图12 减温水门开度-流量特性Fig.12 Openingandflowcharacteristicsofthespraywatervalve

6)减温水流量-被调汽温及特性,如图13所示。

3 先控系统投运及试验

完成外挂先控控制系统的硬件实施和通讯接口后,根据控制对象特定测定,将各控制回路建模所得数据置于先控系统中,设定各控制回路在相关负荷段下进行运行,检测先控系统的调节品质,根据现场实际工况,进一步完善各控制回路相关参数,使其达到最优控制状态[9-11]。

计算机组性能的综合调频指标K[12-13]:

式中:k1为调节速率指标;k2为响应时间指标;k3为调节精度指标。

图13 减温水流量-被调汽温及特性Fig.13 Characteristics of spray water flow and regulated steam temperature

调节品质及目标均以以上公式中的参数最优化为标准。

3.1 调频模式下机组变负荷试验

投入先进控制系统,在400~700 MW负荷范围内,机组的综合调频性能指标K的值在1.0以上。若综合调频性能指标K低于1.0,则调整相关控制参数,保证综合调频性能指标K不低于1.0。

机组在调频模式下或AGC调峰模式下,在400~700 MW负荷范围内,机组相关运行参数平稳,控制偏差满足《火力发电厂模拟量控制系统在线验收测试规程(DL/T 657—2015)》要求[14-15],如主蒸汽压力、主蒸汽温度、再热汽蒸汽温度、锅炉壁温、炉膛负压、氧量等参数。若相关运行参数无法满足要求,优化调整相关控制参数和控制策略,直到相关运行参数满足要求为止。

3.2 控制系统投运及试验结果

3.2.1 大幅度连续升负荷300~650 MW

1)图14中,该机组的负荷从300 MW开始,逐次升负荷到650 MW,负荷率设定为14 MW/min,升负荷过程中有启动2台磨煤机的操作。

2)各次升负荷过程中,机组负荷控制非常平稳,实际负荷与负荷设定值几乎重叠。

3)主蒸汽压力控制平稳,最大偏差0.53 MPa。

4)主汽温度控制平稳,A侧主汽温度(SP=535℃)最低526℃,最高545℃。B侧主汽温度(SP=535℃)最低525℃,最高545℃。

3.2.2 大幅度连续降负荷650~300 MW 1)图15中,该机组进行高负荷速率下连续降负荷(650~300 MW)试验,降负荷过程中有停止2台磨煤机的操作。

图14 连续升负荷(300~650 MW)控制过程记录曲线Fig.14 Curve of continuous load increase(300~650 MW)control process

图15 连续降负荷(650~300 MW)控制过程记录曲线Fig.15 Curve of continuous load reduction(650~300 MW)control process

2)各次降负荷过程中,机组各参数运行稳定,机组负荷设定值与机组实际负荷跟随平稳且响应及时,负荷机组调频性能相关要求。彻底解决了原DCS控制系统主蒸汽压力波动大的问题,对主蒸汽温度的稳定也起到了较大的改善作用。

3)主汽压力控制平稳,最大偏差0.54 MPa。

4)主汽温度控制平稳,A侧主汽温度(SP=536℃)最低525℃,最高547℃。B侧主汽温度(SP=532℃)最低524℃,最高540℃。

3.2.3 AGC调频模式下变负荷结果(400~480 MW)

(K值分别为1.4、1.26、1.45、1.46,均值达到1.39)

1)图16中,2020年07月02日3时~7时(4小时),机组在AGC辅助调频模式下变负荷,机组负荷在400~480 MW范围内,根据电网频率偏差反复调节变化,负荷率设定为14 MW/min。

图16 调频模式变负荷(400~480 MW)控制记录过程曲线Fig 16 Curve of frequency modulation mode variable load(400~480MW)control process

2)机组AGC辅助调频模式下,各次升/降负荷过程中,高负荷变化速率下,各相关主要参数运行稳定,响应及时。

3)机组AGC辅助调频模式下,主汽压力控制平稳,最大偏差0.60 MPa。

4)机组AGC辅助调频模式下,主汽温度控制平稳,A侧主汽温度最低529℃,最高550℃。B侧主汽温度最低528℃,最高543℃。

3.2.4 综合调频性能指标

机组调频性能指标如表1所示,综合调频K值的小时均值在1.25~1.46之间,平均达到1.34,且每天24 h连续中标。调频综合性能超出预期。

表1 综合调频性能统计Tab.1 Statistics of integrated frequency modulation performance

根据机组实际调频辅助服务的运行结果,满足以下各项指标要求:

1)机组实际AGC合格率在90%以上。

2)单机综合调节指标满足以下要求:正常运行期间的综合调频性能指标K值不小于0.9。机组实际K值达到1.25~1.46,满足要求。

3)在CCS方式下,300~700 MW负荷范围内,各被调参数动静态指标如下:

在一次设备正常调节范围内,各被调参数动静态指标满足机组相关运行参数平稳要求。

4 结 论

为提高机组的机组负荷、主汽压力、汽包水位、主蒸汽温度、再热汽温度等的调节性能,对协调、汽温等控制回路采用先进控制策略而创新使用的外挂先进控制系统与DCS系统协同控制方式,不仅大大提高了机组AGC综合调频性能,而且再热汽温、过热汽温度及主汽压力控制等控制回路在同等负荷升速率下,较原DCS系统控制更为准确及稳定,达到了优化机组调频性能,优化机组控制回路的预期目标。采用该外挂先控系统,能实现高负荷变化速率下,机组各项主要指标稳定,机组调频响应时间及精度均得到大幅提高,机组综合调频性能K值由原来的0.9~0.95,提升到1.25~1.46,AGC综合调频性能指标明显提升,为机组储能调频获得竞争优势打下了良好基础。

猜你喜欢
性能指标调频特性
海上风电场一次调频改造与试验分析
茶树吸收营养物质的特性
安萨尔多AE94.3A燃气轮机一次调频分析及优化
色彩特性
异地调频主备发射自动切换的思考与实践
Quick Charge 4:什么是新的?
自动控制系统的优劣评价分析
基于Ganglia和Nagios的云计算平台智能监控系统
300W火力发电机组一次调频投运试验及分析
中国十八大名酒的度数和特性