东昆仑造山带西段早古生代花岗岩锆石LA-ICP-MS年龄、岩石地球化学特征及地质意义

2022-03-28 11:05刘卫东平艳丽刘杰熊玉新路晓平焦秀美李兆营曹佳傅朋远山东省地质矿产勘查开发局济南250013山东省地矿局金刚石成矿机理与探测重点实验室山东临沂276006山东省第七地质矿产勘查院山东临沂276006山东省物化探勘查院济南250013山东省地质科学研究院济南250013
地质论评 2022年2期
关键词:造山锆石昆仑

刘卫东,平艳丽, 刘杰, 熊玉新, 路晓平焦秀美,李兆营, 曹佳, 傅朋远山东省地质矿产勘查开发局,济南,250013;2)山东省地矿局金刚石成矿机理与探测重点实验室,山东临沂,276006;3)山东省第七地质矿产勘查院,山东临沂,276006; 山东省物化探勘查院,济南,250013; 山东省地质科学研究院,济南,250013

内容提要: 笔者等对东昆仑造山带西段克其克孜苏花岗岩开展岩石学、岩石地球化学及LA-ICP-MS锆石U-Pb年代学研究,探讨岩体的形成时代、成因及地质意义。研究表明,克其克孜苏花岗岩中的锆石U-Pb加权平均年龄为442.3±4.4 Ma(MSWD=2.7),为晚奥陶世—早志留世,是区域上新解体出的早古生代花岗岩。花岗岩SiO2含量为68.96%~70.40%,Na2O含量为3.08%~3.14%、K2O含量为3.93%~4.32%,铝饱和指数A/CNK介于1.06~1.13,属于高钾钙碱性过铝质岩石。岩石富集大离子亲石元素K、Rb和U、Th,而不同程度亏损Ba、Nb、Sr、Ti、Zr等高场强元素。结合区域资料及前人成果,本文认为克其克孜苏花岗岩与俯冲碰撞构造环境有关,可能代表了东昆仑造山带西段原特提斯洋在晚奥陶世—早志留世的俯冲消减作用,为东昆仑造山带原特提斯洋的构造演化和南昆仑结合带早古生代的岩浆活动提供了证据。

东昆仑造山带位于青藏高原北部,是秦祁昆中央造山带的重要组成部分,其内侵入岩和火山岩分布广泛,是青藏高原内可与冈底斯带相媲美的另一条巨型岩浆岩带,也是我国的重要成矿区带,具有特殊的大地构造意义(袁万明等,2000;许志琴等,2006;杨经绥等,2010)。东昆仑造山带南邻巴颜喀拉,北邻柴达木盆地,其西端被阿尔金大型走滑断裂所截,大致以乌图美仁一带为界,划分为东、西两段(莫宣学等,2007)。东昆仑造山带构造动力学背景相对复杂,前人研究表明,东昆仑造山带至少经历了早古生代和晚古生代—中生代(加里东期和海西—印支期)两个重要造山旋回(姜春发等,1992;郭正府等,1998;潘桂棠等,2002;郝娜娜等,2014;菅坤坤等,2017;徐博等,2020a;鲁浩等,2021),分别代表了原特提斯洋和古特提斯洋的俯冲闭合。

早古生代,东昆仑造山带经历了洋盆的俯冲到闭合,代表了原特提斯洋的俯冲闭合消亡。早寒武世,东昆仑大洋扩张,形成蛇绿岩组合;中寒武世到奥陶纪,大洋持续俯冲消减碰撞;早志留世,由于构造位置的不同,南部形成碰撞花岗岩组合,北部形成钙碱性岩浆组合为主的大陆边缘岛弧环境;中志留世—顶志留世岛弧环境全部结束,进入剧烈碰撞阶段;早泥盆世,已处于造山后伸展阶段,持续处于碰撞汇聚阶段,至晚泥盆世,完成原特提斯洋的闭合(Yang Jingsui et al.,1996;陆松年,2002;王秉璋等,2014;祁生胜,2015;裴先治等,2018;李佐臣等,2018;徐博等,2020b;王秉璋等,2021)。前人对东昆仑早古生代的构造演化认识较一致,并且随着近年来东昆仑地区各类工作的开展,相继在东昆仑东段发现并报道了部分早古生代俯冲型岩浆岩,为东昆仑造山带东段早古生代洋壳俯冲运动提供了证据(刘战庆等,2011;刘彬等,2013;祁生胜,2015;Xiong Fuhao et al.,2015;陈加杰等,2016;Dong Yunpeng et al.,2017),这些俯冲型岩浆岩与早古生代寒武纪蛇绿岩套配套发育,相对准确地限定了原特提斯洋在东昆仑造山带东段俯冲运动的时间。但是关于造山带西段南昆仑结合带内是否发育早古生代俯冲碰撞型花岗岩,昆南洋是双向南北俯冲还是持续向北俯冲等,还存在一定争议,缺少与该时期俯冲消减机制配套的花岗岩数据支撑,加之南昆仑结合带西段地处海拔4500 m以上、交通极其不便的无人区,发现并报道的奥陶纪—志留纪俯冲碰撞型岩浆岩数据更少,缺乏对东昆仑造山带西段早古生代岩浆作用和原特提斯洋构造演化的支撑。

针对上述情况,本文对造山带西段南昆仑结合带内克其克孜苏沟花岗岩开展LA-ICP-MS锆石U-Pb年代学、岩石学和岩石地球化学研究,结合区域地质背景及前人研究成果,探讨侵入岩岩石成因及成岩构造背景,从而为确定东昆仑早古生代原特提斯洋洋壳俯冲和碰撞造山的转换时间提供重要的制约依据和参考。

1 地质背景

东昆仑造山带地质构造演化历史复杂,是秦祁昆造山系的一部分,夹于松潘—甘孜地块和柴达木盆地之间(图1),整体构造线为NWW方向,被柴南缘隐伏断裂和昆中断裂自北向南被分为北昆仑弧盆系和南昆仑结合带(殷鸿福等,1997;许志琴等,2006; 许志琴,2007;李荣社等,2008;潘桂棠等,2009;祁生胜,2015)。

北昆仑弧盆系是一个多阶段弧后盆地和岩浆弧带复合的增生造山带,主要以大面积出露前寒武纪变质基底和早古生代—晚中生代侵入岩为特征。岩浆岩呈岩基、岩株状大面积产出,主要为加里东期花岗片麻岩、花岗岩和华力西期花岗岩,以及少量奥陶纪和侏罗纪花岗岩,分布于古元古代变质基底残块和早古生代弧后盆地沉积物、晚古生代陆表海沉积物之间。南昆仑结合带是青藏高原北部地区一条重要的巨型结合带,北界为昆中断裂,南界为昆仑山口—布青山南缘断裂,走向北西西向,东西向分别与秦岭弧盆系勉略蛇绿混杂岩和西昆仑弧盆康西瓦—苏巴什蛇绿混杂岩相连通。结合带为一条构造混杂岩带,其内发育元古宙、古生代和中生代时期的构造岩块和基质。

南昆仑结合带被昆南断裂进一步分为昆南俯冲增生杂岩带和西大滩—布青山蛇绿岩混杂岩带,本次研究的克其克孜苏花岗岩位主要处于昆南俯冲增生杂岩带内(图1a、b,图2)。昆南俯冲增生杂岩带处于昆中断裂到昆南断裂之间,在东昆仑东西两段物质构成有一定差异。增生杂岩带西段主体为早古生代俯冲碰撞形成的俯冲混杂岩带,呈基底残块分布的金水口(岩)群、中元古代万保沟群,以及后期不同类型沉积建造,同时还出露一定规模的早古生代花岗侵入岩以及零星印支期侵入岩。混杂岩物质组成复杂,构造变形十分强烈,不同类型的岩石构造组合体、构造地层体和不同规模、形态各异的岩片拼贴或堆垛在一起,整体无序,局部有序,构成基质和岩块首尾相连的网结状构造,主体由无蛇绿岩碎片的浊积岩及玄武岩—安山岩建造、含有蛇绿岩碎片的浊积岩、英安岩—酸性凝灰岩建造的火山岩和砂砾岩构造透镜组成(祁生胜,2015)。前人在混杂岩带内的千枚岩、板岩中获得铷-锶同位素年龄为450 Ma(青海省区调综合地质大队❷),属奥陶纪,同时在相同地层内获早古生代微古植物分子Leiosphaeridiasp.,Quadratimorphasp.。陈有炘等(2013)、史连昌等(2017)对构造混杂岩内的纳赤台岩群火山岩开展锆石U-Pb年代学研究,获得了459~497 Ma的年龄数据,将构造混杂岩带的时限界定为奥陶纪—志留纪。增生杂岩带东段以古元古代泥砂质碎屑岩—碳酸盐岩—基性火山岩建造和新元古代花岗片麻岩发育为主(王国灿等,1999;朱云海等,1999;殷鸿福等,2003;张雪亭等,2007;裴先治等,2018)。西大滩—布青山蛇绿岩混杂岩带位于昆南断裂以南,呈北西西向展布,带内物质成分复杂,主要为石炭纪—中二叠世俯冲增生楔浊积岩系,与周边地层多为不整合接触关系,总体呈北西西向展布,同时伴有零星三叠纪中酸性小岩株侵入。另外,还有古元古代基底、早古生代侵入岩以及呈残块卷入的蛇绿岩。

图2 东昆仑造山带克其克孜苏花岗岩岩体地质简图Fig. 2 Simplified geological map of Keqikezisu granite, Eastern Kunlun Orogen Belt

2 花岗岩特征和样品概况

2.1 岩体特征

克其克孜苏花岗岩出露于昆中断裂带和昆南断裂带之间的构造混杂岩带内,主要为二长花岗岩,岩石为灰白色不等粒黑云母二长花岗岩。花岗岩侵入构造混杂岩带,侵入关系清楚,界面不平整,围岩中接触变质作用强烈,岩体边部见有较多的棱角状围岩捕掳体。岩体呈岩株、不规则条带状分布,长轴方向为北西向,与区域构造线方向一致(图2)。

2.2 样品描述

本次研究采集的岩石类型为灰白色不等粒黑云二长花岗岩,由实测剖面采集,样品采自岩体边部位置,新鲜面呈现灰白色,风化面黄褐色,岩石节理相对发育,不等粒花岗结构、块状构造(图3a、b),局部交代结构。主要由斜长石(35%~40%)、钾长石(25%~30%)、石英(25%~30%)、黑云母(10%±)组成。斜长石部分较小颗粒被钾长石包裹、半包裹,与钾长石接触颗粒有交代净边,构成交代净边结构;钾长石部分大颗粒内包裹少量斜长石、石英、黑云母,颗粒边缘及裂隙有糖粒状微钠长石交代;石英有的颗粒包裹、半包裹斜长石、黑云母;黑云母个别颗粒被绿帘石集合体交代,褐黑色、淡黄色、强吸收(图3c、d)。

图3 东昆仑造山带克其克孜苏二长花岗岩野外特征(a、b)及显微结构特征(c、d)Fig. 3 Photo of monzogranite in Keqikezisu area, Eastern Kunlun Orogen Belt: (a) (b) Photos of field features; (c) (d) Photos of microphotograph featuresPl—斜长石; Kf—钾长石;Bi—黑云母;Qz—石英Pl—plagioclase; Kf—K-feldspar; Bi—biotite; Qz—quartz

3 分析方法

本次工作选取无蚀变且表面新鲜的二长花岗岩进行了主、微量元素含量和锆石U-Pb同位素分析。

锆石微量元素含量和U-Pb同位素定年在吉林大学LA-ICP-MS实验室完成。激光剥蚀系统为GeoLas Pro,ICP-MS为Agilent 7700x。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个T型接头混合。每个时间分辨分析数据包括大约10 s的空白信号和40s的样品信号。分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U—Th—Pb同位素比值和年龄计算)采用软件Glitter 4.4完成。U-Pb同位素定年中采用锆石标准91500作外标进行同位素分馏校正。对于与分析时间有关的U—Th—Pb同位素比值漂移,利用91500的变化采用线性内插的方式进行了校正(Liu Yongsheng et al., 2010),锆石标准91500的U—Th—Pb同位素比值推荐值据Wiedenbeck 等(1995),样品的U-Pb年龄谐和图绘制和年龄权重平均计算均采用Isoplot/Ex-ver4.15(Ludwig,2008)完成,锆石微量元素含量利用参考标样NIST610玻璃作为多外标、Si作内标的方法进行定量计算(Liu Yongsheng et al., 2010)。

样品的主量、微量和稀土元素测试由山东省第七地质矿产勘查院实验室完成,其中主量元素采用X-荧光光谱仪(XRF)测定,相对误差低于5%;微量和稀土元素采用电感耦合等离子质谱仪(ICP-MS)分析,相对误差低于10%。

4 样品测试

4.1 锆石U-Pb同位素测试

在克其克孜苏沟南岩体内采集年龄样品一件(DP19-1-1),地理坐标为36°17′59″N,97°27′11″E,对其进行粉碎并挑选锆石,完成LA-ICP-MS定年测试(表1)。阴极发光图片显示,锆石颗粒普遍为自形晶,多为长柱状,少量锆石浑圆状或具扇形分带,包裹体及裂隙较少,大小不均匀,长轴介于100~200 μm之间,长宽比2∶1~3∶1,还可以观察到明显的核幔结构和岩浆韵律环带(Wilde et al.,2001)(图4)。锆石Th/U值为0.16~0.97,平均0.65,整体大于0.4,且最小比值大于0.1(Hermann et al.,2001;Li Changmin et al.,2009)。锆石稀土元素球粒陨石配分曲线具左倾特点,轻稀土亏损,重稀土富集(图5),具有明显的负Eu异常(δEu=0.08~0.26),上述特征表明,应为岩浆成因锆石(吴元保等,2004)。

图4 东昆仑造山带克其克孜苏二长花岗岩中锆石的阴极发光图像Fig. 4 Cathodoluminescene images of zircons for the monzogranites in Keqikezisu area, Eastern Kunlun Orogen Belt

图5 东昆仑造山带克其克孜苏二长花岗岩锆石稀土元素配分曲线Fig. 5 REE patterns of zircons for the monzogranite in Keqikezisu area, Eastern Kunlun Orogen Belt

样品(DP19-1-1)测年分析获得有效测点28个,经Pb校正,测试数据呈串珠状,均投影到U-Pb谐和线及其附近区域(图6a),分布相对集中,28个点的n(206Pb)/n(238U)表面年龄值分布在427~459 Ma之间,加权平均值为442.3±4.4 Ma(MSWD=2.7)(图6b),代表了黑云二长花岗岩体的结晶年龄。

图6 东昆仑造山带克其克孜苏二长花岗岩锆石谐和曲线及加权平均年龄图Fig. 6 Zircon U-Pb concordia diagrams and weighted ages of the monzogranite in Keqikezisu area, Eastern Kunlun Orogen Belt

4.2 主、微量元素分析

4.2.1主量元素

主量元素分析结果见表2,岩石SiO2含量为68.96%~70.40%,Na2O含量为3.08%~3.14%、K2O含量为3.93%~4.32%,全碱(Na2O+K2O)在7.06%~7.40%之间。在QAP图中,样品数据投影均落入二长花岗岩区域(图7a)。CaO的含量介于1.48%~1.80%之间,在SiO2—(Na2O+K2O—CaO)图解中,样品数据投影落入碱钙性区域内,为碱钙性系列(图7b)。K2O/Na2O值在1.26~1.40之间,平均1.33,相对富钾,Al2O3含量介于13.81~14.22之间,A/CNK值为1.09~1.13,A/NK值为1.42~1.51,在A/CNK—A/NK图中落入过铝质岩石(图7c)。在SiO2—K2O图解中,样品落入高钾钙碱性系列中(图7d)。

图7 东昆仑造山带克其克孜苏二长花岗岩体QAP图解(a)、SiO2—(Na2O+K2O—CaO) 图(b) (据Frost et al.,2001)、A/CNK—A/NK 图解(c) (据Shand,1943)和SiO2—K2O图(d) (据Peccerillo and Taylor,1976) Fig. 7 QAP diagram;SiO2—(Na2O+K2O—CaO)(b, after Frost et al., 2001);A/CNK—A/NK(c, after Shand,1943)and SiO2—K2O(d, after Peccerillo and Taylor,1976)diagrams of the monzogranite in Keqikezisu area, Eastern Kunlun Orogen Belt

4.2.2微量元素

由表2可知,样品中稀土元素总量(ΣREE)最小值为197.50×10-6,最大值为239.60×10-6,平均值为223.60×10-6,总体低于世界酸性岩的平均丰度(288×10-6)。轻稀土元素(LREE)值为160.66×10-6~172.10×10-6,平均值为161.76×10-6,(La/Sm)N平均值为3.24,分馏较好;重稀土元素(HREE)值为56.70×10-6~67.50×10-6,平均值为61.84×10-6,(Eu/Yb)N值平均1.06,LREE/HREE值为2.26~2.96,轻稀土分异程度较强,重稀土分异程度较弱,δEu值为0.54~0.55,岩石具中等程度的负铕异常。球粒陨石稀土元素配分图(图8a)总体呈右倾,轻稀土曲线倾斜较陡,重稀土曲线相对平坦,近于水平分布。

表2 东昆仑造山带西段克其克孜苏二长花岗岩主量元素(%)、微量(×10-6)和稀土元素(×10-6)分析数据Table 2 Analysis data of majorelements(%) , trace elements and rare earth elements(×10-6) of the granites in Keqikezisu area, western part of the East Kunlun Orogenic Belt

样品原始地幔标准化微量元素蛛网图(图8b)显示克其克孜苏岩体富集大离子亲石元素K、Rb、U、Th,不同程度亏损Ba、Nb、Sr、Ti、Zr等高场强元素。

图8 东昆仑造山带克其克孜苏二长花岗岩稀土元素配分图(a)(Boynton,1984)和微量元素蛛网图(b)(Sun and Mcdonough,1989)Fig. 8 Chondrite-normalized REE abundances(a)(after Boynton,1984)and primitive mantle-normalized trace elements diagrams(b)(after Sun and Mcdonough,1989)of the monzogranite in Keqikezisu area, Eastern Kunlun Orogen Belt

5 讨论

5.1 成岩年代

克其克孜苏花岗岩一直缺少精确可靠的年龄数据,前人将侵位时代界定为泥盆纪,本次工作对克其克孜苏二长花岗岩进行了锆石U-Pb测年,获得442.3±4.4 Ma(MSWD=2.7,n=28)的加权平均值年龄,分析测试点主要位于锆石幔部结晶环带部位或锆石边部,n(206Pb)/n(238U)年龄值数据点全部分布于谐和线附近,分布较集中,可以代表二长花岗岩岩体的结晶年龄。前人对克其克孜苏花岗岩同一构造单元内东侧小库赛湖二长花岗岩进行了锆石U-Pb年龄测年,获得437.3±3 Ma、428.1±3.4 Ma(1∶25万布伦台幅❶)的年龄值(图1b-2),同时,本次工作在克其克孜苏二长花岗岩东10 km内还获得了415 Ma(山东省地质矿产勘查开发局第七地质大队❸)的花岗质侵入岩岩体的年龄数据,这些年龄与区域上东昆仑南昆仑结合带内东段获得的没草沟被二长花岗岩、万宝沟二长花岗岩、大灶火沟二长花岗岩(445.9±1.3 Ma,446.82±0.98 Ma,449.9±1.4 Ma,祁生胜,2015)以及沟里敖洼得二长花岗岩(454±2 Ma,陈加杰等,2016)等系列酸性岩浆活动的年龄相一致,它们处在同一构造带内,代表了南昆仑结合带内早古生代晚奥陶世—早志留世的岩浆活动,另外与区域上获得的胡晓钦镁铁质岩石的结晶年龄(438±2 Ma,刘彬等,2013)、清水泉辉绿岩脉(436±1 Ma,任军虎等,2009)、夏达乌花岗闪长岩(446.5±2.5 Ma,Xiong Fuhao et al.,2015)年龄也相对应,这些岩浆记录共同反映了整个东昆仑地区早古生代发生的岩浆活动。

5.2 岩石成因

Whalen等(1987)认为A型花岗岩中常见碱性暗色矿物,且Zr+Nb+Ce+Y值>350×10-6,10000Ga/Al值>2.6,克其克孜苏黑云二长花岗岩Zr+Nb+Ce+Y 值(184×10-6~218×10-6)低于350×10-6,10000Ga/Al值介于2.3~3.1,平均2.76,但岩体中未见碱性暗色矿物,因此克其克孜苏黑云二长花岗岩应不属于A型花岗岩。

Chappell(1999)通过对比I型、S型花岗岩主量、微量的含量元素随SiO2含量的变化指出:I型花岗岩中P2O5含量随SiO2含量增加呈负相关,S型花岗岩中P2O5含量随SiO2含量增加无明显降低的趋势,I型花岗岩La含量随SiO2含量增加呈轻微正相关,S型花岗岩La含量随SiO2增加呈负相关,当SiO2含量达73%时下降速度变快;I型花岗岩Y含量在SiO2含量<73%时,总体在40×10-6线下分布,当SiO2含量>73%时,呈激增趋势。S型花岗岩Y含量随SiO2的变化基本保持在40×10-6线附近,变化不大。虽然这种趋势不是绝对的,但为区分I型和S型花岗岩提供了一定依据。将本次所获数据作哈克图解(SiO2/P2O5、SiO2/Y、SiO2/La和Rb/Th图)(图9),显示克其克孜苏岩体P2O5含量随SiO2的增加而增加(图9a),Y含量随SiO2含量增加保持在40×10-6左右(图9b),La含量随SiO2含量呈下降趋势(图9c),同时克其克孜苏二长花岗岩Rb含量与Th含量呈负相关变化(图9d),与Chappell(1999)的研究结果对比,呈S型花岗岩的特点。

图9 东昆仑造山带克其克孜苏二长花岗岩哈克图及Rb/Th图(Chappell,1999)Fig. 9 Harker diagrams about P2O5,La, Y and Ba and Rb vs Th for the monzogranite in Keqikezisu area, Eastern Kunlun Orogen Belt

Champion& Chappell(1992)等认为I型花岗岩的特征矿物为角闪石和辉石,其A/CNK值小于1.1。对于钠含量,S型花岗岩较I型花岗岩要低,通常当岩石中K2O含量近5%时,Na2O低于3.2%,K2O近2%时,Na2O低于2.2%。I型花岗岩的化学特征是钠的含量相对较高,长英质岩石中,Na2O含量一般>3.2%。S型花岗岩A/CNK值多大于1.1(邓晋福等,2015a, 2015b;吴福元,2007),标准矿物刚玉含量大于1.0%,典型S型花岗岩指含堇青石的强过铝质花岗岩类岩石(Clemens,2003),并且Miller(1985)认为石榴子石和白云母不能作为S型花岗岩的主要标志。克其克孜苏黑云二长花岗岩虽未见堇青石和白云母等特征矿物,但其A/CNK值为1.09~1.13,平均值>1.1,CIPW标准矿物刚玉含量为1.61%~2.06%(见表2),平均1.84%,含量大于1.0%,且标准矿物无角闪石和辉石矿物,K2O含量近5%,Na2O低于3.2%,呈现S型花岗岩特征。

Chappel 和 White(1974)认为S型花岗岩的源岩物质来自壳层沉积岩。克其克孜苏花岗岩在Laurent 等(2014)的Al2O3/(FeOt+MgO)—5K2O/Na2O—3CaO岩浆物质来源判断图中(图10),落入变质沉积物区域,表明克其克孜苏花岗岩成岩过程中存在地壳沉积物质的参与。

图10 东昆仑造山带克其克孜苏二长花岗岩Al2O3/(FeOt+MaO)—5K2O/Na2O—3CaO源区判别图(底图据Laurent et al.,2014)Fig. 10 Source diagram of the monzogranite in Keqikezisu area, Eastern Kunlun Orogen Belt(Laurent et al.2014)

综上所述,克其克孜苏黑云二长花岗岩具S型花岗岩的特征,与区域上东昆南地区早古生代晚奥陶世—早志留世的构造活动也相对应。

5.3 构造背景

前人对东昆仑地区早古生代的构造演化认识相对统一。东昆仑原特提斯洋始于寒武纪,Yang Jingsui 等(1996)、陆松年(2002)在南昆仑结合带内的清水泉蛇绿混杂岩带中获得蛇绿岩组合的年龄为518±3 Ma、辉长岩的年龄为522.3 ±4.1 Ma,为寒武纪洋盆发育提供了证据,表明存在寒武纪洋壳;中寒武世到晚奥陶世原特提斯洋进入俯冲消减阶段,伴随着洋壳的俯冲消减,在昆南和昆北地块形成了一系列与俯冲作用有关的弧岩浆岩,前人研究已发现可可沙石英闪长岩(515±4 Ma,李怀坤等,2003)、清水泉麻粒岩(508±8 Ma,张亚峰等,2010)、旺尕秀辉长杂岩(468±2 Ma,朱小辉等,2010)以及具有岛弧特征的香日德南变质闪长岩(446.5±9.1 Ma,陈能松等,2000)、祁漫塔格闪长岩(480±3 Ma,崔美慧等,2011)等均为与俯冲作用有关的岛弧岩浆岩,支撑了东昆仑原特提斯洋在寒武到奥陶纪发生的俯冲消减作用。志留纪东昆仑造山带构造环境总体处于碰撞构造环境。泥盆纪受牦牛山组伸展型磨拉石建造时限(423±2~406±3 Ma,据张耀玲等,2010;陆露等,2010)的限制,东昆仑地区的构造环境由碰撞挤压转向后碰撞伸展阶段。虽然总体认识一致,但对于东昆仑地区晚奥陶世到早志留世的俯冲作用主要发生在昆中洋还是昆南洋也存在还有不同的认识,如陈加杰等(2016)认为东昆南构造带内发育的早古生代岛弧花岗岩为昆中洋双向俯冲的结果,王晓霞等(2012)将出露于昆中和昆南断裂之间的早古生代万宝沟高钾钙碱性黑云母二长花岗岩(441±5 Ma)判定为碰撞晚期或者后碰撞构造环境的产物,认为“昆南阿尼玛卿带是三叠纪的俯冲带,从构造空间位置配置来看,万宝沟花岗岩不具有弧花岗岩的地质背景”,即认为昆南洋未发生向北的俯冲,只有昆中洋发生过俯冲作用。

近年来,在东昆南地区开展了系列研究工作,取得了新认识。刘战庆等(2011)、裴先治等(2018)等认为东昆南构造带经历了原特提斯洋和古特提斯洋两期洋—陆构造转换的复杂演化,并且东特提斯洋(布青山洋)自新元古代以来,从晚寒武世—中三叠世长期、持续存在向北的洋壳消减及俯冲增生过程,即早古生代除了昆中洋发生过向北俯冲以外,昆南洋也发生过向北的俯冲碰撞。Xiong Fuhao 等(2015)在东昆仑造山带东段报道的与俯冲碰撞有关的阿尼玛卿地区富角闪质深成岩(466 Ma)以及祁生胜(2015)在东昆南构造报道的早志留世GG花岗岩组合,进一步表明了原特提斯洋在昆南断裂发生过向北的俯冲碰撞。本文报道的克其克孜苏花岗岩能够为原特提斯洋沿昆南断裂向北俯冲碰撞以及确定东昆仑早古生代洋壳俯冲与碰撞造山的转换时间、探讨东昆仑地区晚奥陶世—早志留世时期的构造演化史等提供重要的岩石学证据。

克其克孜苏岩石样品相对于原始地幔富集大离子亲石元素(LILE∶Rb、Ba、Th、U等)和轻稀土,明显亏损高场强元素(HFSE∶Ba、Nb、Sr、Ti、Zr),指示其可能与俯冲作用有关。在Harris等(1986)的构造判别图解中,本次数据落入火山弧内(图11a),在R1—R2判别图解中数据落入同碰撞区域内(图11b),在Pearce等(1984)的判别图中(图12),数据均落入火山弧内。表明克其克孜苏花岗岩的构造环境与俯冲碰撞作用有关。

图11 东昆仑造山带克其克孜苏二长花岗岩Hf—Rb/30—3Ta判别图解(据 Harris et al.,1986)及R1—R2投影判别图(据 Batchelor and Bowden,1985)Fig. 11 Rock Hf—Rb/30—3Ta discrimination diagram (after Harris et al.,1986) and R1—R2 projection discriminant diagram(after Batchelor and Bowden,1985) of the monzogranite in Keqikezisu area, Eastern Kunlun Orogen Belt

图12 东昆仑造山带克其克孜苏二长花岗岩构造判别图解(底图据Pearce et al.,1984)Fig. 12 Discrimination diagram of granite tectonic of the monzogranite in Keqikezisu area, Eastern Kunlun Orogen Belt (base on Pearce et al.,1984)WPG—板内花岗岩;VAG—火山弧花岗岩;ORG—洋脊花岗岩;syn-COLG—同碰撞花岗岩

前人在东昆仑地区已发现了年龄在515~436 Ma之间具岛弧岩浆岩特征以闪长岩、玄武岩、安山岩、辉长岩为主代表原特提斯洋俯冲作用的岩浆岩和年龄在430~391 Ma之间具岛弧岩浆岩特征以闪长岩、玄武岩、安山岩、辉长岩为主代表后碰撞伸展演化的岩浆岩(图13)。此外,本次工作在昆南断裂南北两侧还新发现(山东省地质矿产勘查开发局第七地质大队❸):结晶年龄为489±10 Ma(位于昆南断裂以南混杂岩带中)形成于洋中脊环境代表寒武末原特提斯洋洋盆打开的蚀变玄武岩岩块、结晶年龄为481.2±8.3 Ma(位于昆南及昆北断裂间)具俯冲作用背景下火山弧环境的蚀变安山岩—英安岩组合以及年龄为444 Ma(位于昆南及昆北断裂间)形成于岛弧构造环境的角闪辉长岩岩块。这些新发现的岩浆记录与区域上前人发现的岩浆记录一致(图13),它们共同支撑了东昆仑地区早古生代的岩浆构造演化,也为晚奥陶世—早志留世沿昆南洋发生的向北俯冲提供了证据。

图13 东昆仑造山带早古生代岩浆—变质—构造演化序列图(据刘彬等,2013,修改)Fig. 13 Summary of Early Paleozoic magmatic, metamorphic and tectonic evolution of East Kunlun Orogenic belt (modified from Liu Bin et al.,2013&)

综上,本文认为,克其克孜苏花岗岩应为晚奥陶世原特提斯洋沿昆南断裂向北俯冲消减增生的产物,俯冲板块将大量与沉积物有关的熔融物带入耗散的地幔源,形成一个热的系统,并受地幔交代和熔融作用的影响,伴随岩浆的上侵,形成本区出露的黑云二长花岗岩。克其克孜苏花岗岩为东昆仑造山带西段原特提斯洋沿昆南断裂发生向北的俯冲碰撞提供了证据,表明了东昆仑造山带自中寒武世开始的俯冲作用的持续,东昆仑地区西段在晚奥陶世—早志留世(442.3±4.4 Ma)时期还未进入碰撞造山阶段。

6 结论

通过对克其克孜苏花岗岩开展详细的锆石U-Pb年代学、岩石地球化学研究,同时与区域研究成果对比,获得以下结论:

(1)利用锆石LA-ICP-MS U-Pb定年方法,获得克其克孜苏花岗岩的结晶年龄为442.3±4.4 Ma(MSWD=2.7)。

(2)克其克孜苏花岗岩为区域上新解体出的早古生代晚奥陶世—早志留世花岗岩,是东昆仑造山带西段岩浆活动的记录。

(3)克其克孜苏花岗岩与俯冲构造环境有关,可能代表了东昆仑地区晚奥陶世—早志留世沿昆南洋发生的北向俯冲碰撞作用。

致谢:野外地质调查得到山东省地质矿产勘查开发局第七地质大队刘同、葛跃进、邓俊、王凯凯、许俸源等高级工程师的帮助,样品处理得到西安地质调查中心汪双双研究员的帮助与指导,长安大学李佐臣教授审阅文稿提出了许多宝贵的意见,在此一并致以衷心的感谢。

注 释/Notes

❶ 青海省地质调查院.2014. 布伦台幅J46C004002 1∶25万区域地质调查报告.

❷ 青海省区调综合地质大队.1992. 塔鹤托坂日幅J-46-32可可西里湖幅I-46-2 1∶20万区域地质调查报告:地质部分.

❸ 山东省地质矿产勘查开发局第七地质大队,山东省物化探勘查院. 2017. 青海省格尔木市分水岭北地区1∶5万J46E022006、J46E022007、J46E023006、J46E023007四幅区域地质矿产调查报告.

(The literature whose publishing year followed by a “&” is in Chinese with English abstract; The literature whose publishing year followed by a “#” is in Chinese without English abstract)

陈加杰,付乐兵,魏俊浩,田宁,熊乐,赵玉京,张玉洁,祁月清.2016.东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约.地球科学,41(11):1863~1882.

陈能松,孙敏,张克信,朱云海.2000.东昆仑变闪长岩体的40Ar-39Ar和U-Pb年龄:角闪石过剩Ar和东昆仑早古生代岩浆岩带证据.科学通报,45(21):2337~2342.

陈有炘,裴先治,李瑞保,李佐臣,裴磊,陈国超,刘成军,李小兵,杨杰.2013.东昆仑东段纳赤台岩群变火山岩锆石U-Pb年龄、地球化学特征及其构造意义.地学前缘,20(6):240~254.

崔美慧,孟繁聪,吴祥珂.2011.东昆仑祁漫塔格早奥陶世岛弧:中基性火成岩地球化学、Sm-Nd同位素及年代学证据.岩石学报,27(11):3365~3379.

邓晋福,冯艳芳,狄永军,刘翠,肖庆辉,苏尚国,赵国春,孟斐,马帅,姚图.2015a.岩浆弧火成岩构造组合与洋陆转换.地质论评,61(3):473~484.

邓晋福,刘翠,冯艳芳,肖庆辉,狄永军,苏尚国,赵国春,段培新,戴蒙.2015b.关于火成岩常用国解的正确使用:讨论与建议.地质论评,61(4):717~734.

郭正府,邓晋福,许志琴,莫宣学,罗照华.1998.青藏东昆仑晚古生代末—中生代中酸性火成岩与陆内造山过程.现代地质,12(3):51~59.

郝娜娜,袁万明,张爱奎,曹建辉,陈小宁,冯云磊,李希.2014.东昆仑祁漫塔格晚志留世—早泥盆世花岗岩: 年代学、地球化学及形成环境.地质论评,60(1):201~215.

菅坤坤,朱云海,王利伟,高峰,刘向东,何元方,袁璋,陈继平,高维强.2017.东昆仑中灶火地区中三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因及构造意义.地质论评,63(3):659~676.

姜春发,杨经绥,冯秉贵,朱志直,赵民.1992.昆仑开合构造.北京:地质出版社.

李怀坤,陆松年,王惠初,相振群,郑建康.2003.青海柴北缘新元古代超大陆裂解的地质记录——全吉群.地质调查与研究,26(1):27~37.

李荣社,计文化,杨永成,于浦生,赵振明,陈守建,孟勇,潘晓平,史秉德,张维吉,李行,洛长义.2008.昆仑山及邻区地质.北京:地质出版社.

李佐臣,李瑞保,裴磊,陈有炘,刘成军,裴先治,刘战庆,陈国超,李小兵.2018.东昆仑东段原特提斯洋俯冲的岩浆响应:来自晚震旦世锆石U-Pb年龄的证据.地球科学,43(12):4536~4550.

刘彬,马昌前,张金阳,熊富浩,黄坚,蒋红安.2012.东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示.岩石学报,28(6):1785~1807.

刘彬,马昌前,蒋红安,郭盼,张金阳,熊富浩.2013.东昆仑早古生代洋壳俯冲与碰撞造山作用的转换:来自胡晓钦镁铁质岩石的证据.岩石学报,29(06):2093~2106.

刘战庆,裴先治,李瑞保,李佐臣,陈有炘,高景民,刘成军,王学良,魏方辉,张刚,杨忠智.2011.东昆仑南缘布青山构造混杂岩带的地质特征及大地构造意义.地质通报,30(08):1182~1195.

鲁浩,刘欢,万鹏,薄军委,李金涛,孙景耀.2021.新疆东昆仑木孜塔格地区碎石沟花岗岩锆石 U-Pb年龄、岩石地球化学特征及地质意义.地质论评,67(6):1679~1696.

陆露,吴珍汉,胡道功, Barosh P J,郝爽,周春景.2010.东昆仑牦牛山组流纹岩锆石U-Pb年龄及构造意义.岩石学报,26(4):1150~1158.

陆松年.2002.青藏高原北部前寒武纪地质初探.北京:地质出版社.

莫宣学,罗照华,邓晋福,喻学惠,刘成东,谌宏伟,袁万明,刘云华.2007.东昆仑造山带花岗岩及地壳生长.高校地质学报,13(3):403~414.

潘桂棠,李兴振,王立全,丁俊,陈智粱.2002.青藏高原及邻区大地构造单元初步划分.地质通报,21(11):701~707.

潘桂棠,肖庆辉,陆松年,邓晋福,冯益民,张克信,张智勇,王方国,邢光福,郝国杰,冯艳芳.2009.中国大地构造单元划分.中国地质,36(1):1~16+255+17~28.

裴先治,李瑞保,李佐臣,刘成军,陈有炘,裴磊,刘战庆,陈国超,李小兵,王盟.2018.东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程.地球科学,43(12):4498~4520.

祁生胜.2015.青海省东昆仑造山带火成岩岩石构造组合与构造演化.导师:邓晋福.北京:中国地质大学(北京)博士学位论文:1~343.

任军虎,柳益群,冯乔,韩文中,高辉,周鼎武.2009.东昆仑清水泉辉绿岩脉地球化学及LA-ICP-MS锆石U-Pb定年.岩石学报,25(5):1135~1145.

施彬,刘力.2014.东昆仑灶火沟早志留世花岗岩岩石学、地球化学特征及地质意义.世界地质,33(4):758~767.

史连昌,才航加,许海全,徐博,魏有宁,赵明福.2017.东昆仑南坡俯冲增生杂岩楔中纳赤台群物质组成特征.地质通报,36(2~3):251~257.

王秉璋,陈静,罗照华,陈发彬,王涛,郭贵恩.2014.东昆仑祁漫塔格东段晚二叠世—早侏罗世侵入岩岩石组合时空分布、构造环境的讨论.岩石学报,30(11):3213~3228.

王秉璋,潘彤,任海东,王涛,赵志逸,封建平,张金明.2021.东昆仑祁漫塔格寒武纪岛弧:来自拉陵高里河地区玻安岩型高镁安山岩/闪长岩锆石U-Pb年代学、地球化学和Hf同位素证据.地学前缘,28(1):318~333.

王国灿,张天平,梁斌,陈能松,朱云海,朱杰,拜永山.1999.东昆仑造山带东段昆中复合蛇绿混杂岩带及“东昆中断裂带”地质涵义.地球科学,24(2):129~138.

王涛,李彬,陈静,王进寿,李五福,金婷婷.2016.东昆仑五龙沟地区早志留世花岗岩锆石年代学、地球化学特征及其地质意义.矿物岩石, 36(2):62~70.

王晓霞,胡能高,王涛,孙延贵,巨生成,卢欣祥,李舢,齐秋菊.2012.柴达木盆地南缘晚奥陶世万宝沟花岗岩:锆石SHRIMP U-Pb年龄、Hf同位素和元素地球化学.岩石学报,28(9):2950~2962.

王艺龙,李艳军,魏俊浩,李欢,韩玉,周红智,黄啸坤,柯坤家.2018.东昆仑五龙沟地区晚志留世A型花岗岩成因:U-Pb年代学、地球化学、Nd及Hf同位素制约.地球科学,43(4):1219~1236.

吴福元,李献华,杨进辉,郑永飞.2007.花岗岩成因研究的若干问题.岩石学报,23(6):1217~1238.

吴元保,郑永飞.2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报,49(16):1589~1604.

徐博,李玉龙,史连昌,张晖青,马德庆,任鑫,王成勇.2020a.祁漫塔格东段晚三叠世花岗岩与流纹岩岩浆同源性:年代学、地球化学及Nd、Pb同位素制约.地质论评,66(3):686~698.

徐博,刘建栋,王成勇,岳涛,杨映春,魏有宁,史连昌,柴云.2020b.东昆仑乌兰拜兴南中三叠世花岗岩成因探讨——LA-MC-ICP-MS锆石U-Pb年龄、元素地球化学及Sr—Nd—Pb同位素证据.地质论评,66(6):1516~1529

许志琴,杨经绥,李海兵,姚建新.2006.中央造山带早古生代地体构架与高压/超高压变质带的形成.地质学报,80(12):1793~1806.

许志琴.2007.造山的高原—青藏高原地体拼合、碰撞造山及隆升机制.北京:地质出版社.

杨经绥,许志琴,马昌前,吴才来,张建新,王宗起,王国灿,张宏飞,董云鹏,赖绍聪.2010.复合造山作用和中国中央造山带的科学问题.中国地质,37(1):1~11.

殷鸿福,张克信.1997.东昆仑造山带的一些特点.地球科学,22(4):3~6.

殷鸿福,张克信.2003.中华人民共和国区域地质调查报告:1∶25万冬给措纳湖幅(I47C001002).武汉:中国地质大学出版社.

袁万明,莫宣学,喻学惠,罗照华.2000.东昆仑印支期区域构造背景的花岗岩记录.地质论评, 46(2):203~211.

张雪亭,杨生德,杨站君.2007.青海省板块构造研究—1∶100万青海省大地构造图说明书.北京:地质出版社.

张亚峰,裴先治,丁仨平,李瑞保,冯建赟,孙雨,李佐臣,陈有炘.2010.东昆仑都兰县可可沙地区加里东期石英闪长岩锆石LA-ICP-MS U-Pb年龄及其意义.地质通报,29(1):79~85.

张耀玲,胡道功,石玉若,陆露.2010.东昆仑造山带牦牛山组火山岩SHRIMP锆石U-Pb年龄及其构造意义.地质通报,29(11),1614~1618.

朱小辉,陈丹玲,刘良,李涤.2010.柴达木盆地北缘都兰地区旺尕秀辉长杂岩的锆石LA-ICP-MS U-Pb年龄及地质意义.地质通报,29(Z1):227~236.

朱云海,张克信, Pan Yuanming,陈能松,王国灿,侯光久.1999.东昆仑造山带不同蛇绿岩带的厘定及其构造意义.地球科学,24(2):134~138.

Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48:43~55.

Boynton W V. 1984. Geochemistry of the rare earth elements: meteorite studies. In: Henderson P. ed. Rare Earth Element Geochemistry. Amsterdam: Elsevier: 63~114.

Champion D C , Chappell B W. 1992. Petrogenesis of felsic I-type granites; an example from northem Queensland. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1~2):115~126.

Chappell B W. 1999. Aluminum saturation in I- and S-type granites and the characterization of fractionated hapogranites. Lithos, 46(3):535~551.

Chappel B W, White A J R.1974.Two constrasting granite types. Pacific Geology, 8: 173~174.

Chen Jiajie, Fu Lebing, Wei Junhao, Tian Ning, Xiong Le, Zhao Yujing, Zhang Yujie, Qi Yueqing. 2016&. Geochemical characteristics of late Ordovician granodiorite in Gouli area, Eastern Kunlun Orogenic Belt, Qinghai Province: Implications on the evolution of Proto-Tethys Ocean. Earth Science, 41(11): 1863~1882.

Chen Nengsong, Sun min, Zhang Kexin, Zhu Yunhai.2000#.40Ar-39Ar and U-Pb ages of metadiorite from the East Kunlun Orogenic Belt: Evidence for Early-Paleozoic magmatic zone and excess argon in amphibole minerals. Cinese Science Bulletin, 45(21) : 2337~2342.

Chen Youxin, Pei Xianzhi, Li Ruibao, Li Zuochen, Pei Lei, Chen Guochao, Liu Chengjun, Li Xiaobing, Yang Jie. 2013&. Zircon U-Pb Age, Geochemical characteristics and tectonic significance of metavolcanic rocks from Naij Tal Group, east section of East Kunlun.Earth Science Frontiers, 20(6): 240~254.

Clemens J D. 2003. S-type granitic magmas—petrogenetic issues, models and evidence. Earth-Science Reviews, 61(1~2):1~18.

Cui Meihui, Meng Fancong and Wu Xiangke.2011&. Early Ordovician island arc of Qimantag Mountain, eastern Kunlun: Evidences from geochemistry, Sm-Nd isotope and geochronology of intermediate—basic igneous rocks. Acta Petrologica Sinica,27(11):3365~3379.

Deng Jinfu , Liu Cui, Feng Yanfang, Xiao Qinghui, Di Yongjun, Su Shanguo, Zhao Guochun, Duan Peixin, Dai Meng. 2015a&. On the correct application in the common igneous petrological diagrams: discussion and suggestion. Geological Review, 61(4):717~734.

Deng Jinfu, Feng Yanfang, Di Yongjun, Liu Cui, Xiao Qinghui, Su Shangguo, Zhao Guochun, Meng Fei, Ma Shuai, Yao Tu.2015b&.Magmatic arc and ocean—continent transition: Discussion. Geological Review,61(3):473~484.

Dong Yunpeng, He Dengfeng, Sun Shengsi, Liu Xiaoming, Zhou Xiaohu, Zhang Feifei, Yang Zhao, Cheng Bin, Zhao Guochun, Li Jianhua.2017. Subduction and accretionary tectonics of the east kunlun orogen, western segment of the central china orogenic system. Earth-Science Reviews,186:231~261.

Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J, Frost C D. 2001. A geochemical classification for granitic rocks. Journal of Petrology 42:2033~2048.

Guo Zhengfu, Deng Jinfu, Xu Zhiqin, Mo Xuanxue, Luo Zhaohua.1998&.Late Palaeozoic—Mesozoic intracontinental Orogenic process and intermedate—acidic igneous rocks from the Eastern Kunlun Mountains of northwestern China. Geoscience, 12(3):51~59.

Hao Nana, Yuan Wanming, Zhang Aikui, Cao Jianhui, Chen Xiaoning, Feng Yunlei, Li Xi. 2014&.Late Silurian to Early Devonian granitoids in the Qimantage area,East Kunlun Mountains: LA-ICP-MS zircon U-Pb ages,geochemical features and geological setting. Geological Review,60(1):201~215.

Harris N B W, Pearce J A, Tindle A G.1986. Geochemical characteristics of collision- zone magmatism. In: Coward M P, Ries A C. eds. Collision Tectonics. Geological Society London Special Publications, 19:67~81.

Hermann J, Rubatto D, Korsakov A, Shatsky V S. 2001. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan).Contributions to Mineralogy and Petrology, 141(1): 66~82.

Jian Kunkun, Zhu Yunhai, Wang Liwei, Gao Feng, Liu Xiangdong, He Yuanfang, Yuan Zhang, Chen Jiping, Gao Weiqiang.2017&.Zircon LA-ICP-MS age dating, petrogenesis and tectonic implications of the Middle Triassic granites from the Zhongzaohuo area, East Kunlun. Geological Review,63(3):659~676.

Jiang Chunfa, Yang Jingsui, Feng Binggui, Zhu Zhizhi, Zhao Min. 1992#. Opening—closing Tectonics of Kunlun Mountain. Beijing:Geological Publishing House.

Laurent O, Martin H, Moyen J F, Doucelance R. 2014. The diversity and evolution of late-Archean granitoids: Evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga. Lithos, 205:208~235.

Li Huaikun, Lu Songnian, Wang Huichu, Xiang Zhenqun, Zheng Jiankang.2003#. Geological records of the Neoproterozoic supercontinent cracking in the northern margin of Chai, Qinghai—Quanji Group. Geological Survey and Research,26(1):27~37.

Li Rongshe, Ji Wenhua, Yang Yongcheng, Yu Fusheng, Zhao Zhenming, Chen Shoujian, Meng Yong, Pan Xiaoping, Shi Bingde, Zhang Weiji, Li Xing, Luo Changyi. 2007#. Geology of Kunlun Mountain and its adjacent area. Beijing:Geological Publishing House.

Li Zuochen, Li Ruibao, Pei Lei, Chen Youxin, Liu Chengjun, Pei Xianzhi, Liu Zhanqing, Chen Guochao, Li Xiaobing. 2018&. Magmatic response to Proto-Tethyan ocean subduction in east section of East Kunlun: Evidence from zircon U-Pb dating of Late Sinian Dundeshaerguole hornblende monzonite. Earth Science, 43(12): 4536~4550.

Liu Bin, Ma Changqian, Zhang Jinyang, Xiong Fuhao, Huang Jian and Jiang Hong’an. 2012&. Petrogenesis of Early Devonian intrusive rocks in the east part of Eastern Kunlun orogen and implication for Early Palaeozoic orogenic processes. Acta Petrologica Sinica,28(6):1785~1807.

Liu Bin, Ma Changqian, Jiang Hongan, Guo Pan, Zhang Jinyang, Xiong Fuhao. 2013&. Early Paleozoic tectonic transition from ocean subduction to collisional orogeny in the Eastern Kunlun region: Evidence from Huxiaoqin mafic rocks. Acta Petrologica Sinica, 29(6): 2093~2106.

Liu Yongsheng , Hu Zhaochu , Zong Keqing.2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15):1535~1546.

Liu Zhanqing, Pei Xianzhi, Liu Ruibao, Li Zuochen, Chen Youxin, Gao Jingmin, Liu Chengjun, Wang Xueliang, Wei Fanghui, Zhang Gang, Yang Zhongzhi.2011&. Geological characteristics of the Buqingshan tectonic melange belt in the southern margin of East Kunlun and its tectonic implications. Geological Bulletin of China, 30(8):1182~1195.

Lu Hao, Liu Huan, Wan Peng, Bo Junwei, Li Jintao, Sun Jingyao.2021&.LA-MC-ICP-MS Zircon U-Pb age, petrogeochemical features of Suishigou granitic pluton in Muztag area, east Kunlun, Xinjiang, and their geological implications. Geological Review,67(6):1679~1696.

Lu Lu, Wu Zhenhan, Hu Daogong, Barosh PJ, Hao Shuang And Zhou Chunjing.2010&. Zircon U-Pb age for rhyolite of the Maoniushan Formation and its tectonic significance in the East Kunlun Mountains. Acta Petrologica Sinica,26(4):1150~1158

Lu Songnian. 2002#. A preliminary study on the Precambrian geology of the northern Qinghai—Tibet Plateau. Beijing: Geological Publishing House.

Ludwig K R. 2008. “Using Manual for Isoplot/EX, version 3.70”. A geochronological toolkit for Microsoft Excel. Berkeley: Berkeley Geochronological Center Special Publication No. 4:1~76.

Miller C F.1985. Are strongly peraluminous magmas derived from pelitie sedimentary sources? The Journal of Geology,93(6):673~689.

Mo Xuanxue,Luo Zhaohua, Deng Jinfu, Yu Xuehui, Liu Chengdong, Chen Hongwei, Yuan Wanming, Liu Yunhua. 2007&.Granitoids and crustal growth in the East Kunlun Orogenic Belt. Geological Journal of China Universities,13(3):403~414.

Pan Guitang, Li Xingzhen, Wang Liquan, Ding Jun, Chen Zhiliang.2002&.Preliminary division of tectonic units of the Qinghai—Tibet Plateau and its adjacent regions. Geological Bulletin of China, 21(11):701~707.

Pan Guitang, Xiao Qinghui,Lu Songnian, Den Jinfu, Feng Yimin , Zhang Kexin, Zhang Zhiyong, Wang Fangguo, Xing Guangfu, Hao Guojie, Feng Yanfang.2009&.Subdivision of tectonic units in China. Geology in China, 36(1):1~16; 255; 17~28.

Pearce J A, Harris N W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology,25:956~983.

Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58:63~81.

Pei Xianzhi, Li Ruibao, Li Zuochen, Liu Chengjun, Chen Youxin, Pei Lei, Liu Zhanqing, Chen Guochao, Li Xiaobing, Wang Meng. 2018&. Composition feature and formation process of Buqingshan Composite Accretionary Mélange Belt in southern margin of East Kunlun orogen. Earth Science, 43(12): 4498~4520.

Qi Shengsheng.2015&.Petrotectonic assemblages and tectonic evolution of the East Kunlun orogenic belt in Qinghai Province. Dissertation Supervisor: Deng Jinfu. Beijing: A Dissertation Submitted to China University of Geosciences for Doctoral Degree:1~343.

Ren Junhu, Liu Yiqun, Feng Qiao, Han Wenzhong, Gao Hhui, Zhou Dingwu.2009&. LA-ICP-MS U-Pb zircon dating and geochemical characteristics of diabase-dykes from the Qingshuiquan area, eastern Kunlun orogenic belt. Acta Petrologica Sinica,25(5):1135~1145.

Shand S J. 1943. Eruptive Rocks. Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite. New York: John Wiley and Sons.

Shi Bin, Liu Li. 2014&. Petrological and geochemical characteristics of Early Silurian granites in Zaohuogou of eastern Kunlun and their geological significance. Global Geology, 33(4):758~767.

Shi Lianchang, Cai Hangjia, Xu Haiquan, Xu Bo, Wei Youning, Zhao Mingfu.2017&. Material composition characteristics of Naijtal Group in subduction accretion complex on the southern slope of East Kunlun Mountains. Geological Bulletin of China, 36(2~3):251~257.

Sun S S, McDonough W F.1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D and Norry M J. eds. Magmatism in the Ocean Basins. London: Geological Society Special Publications, 42(1):313~345.

Wang Bingzhang, Chen Jing, Luo Zhaohua, Chen Fabin, Wang Tao, Guo Guien. 2014&. Spatial and temporal distribution of Late Permian—Early Jurassic intrusion assemblages in eastern Qimantag, East Kunlun, and their tectonic settings. Acta Petrologica Sinica,30(11): 3213~3228.

Wang Bingzhang, Pan Tong,Ren Haidong, Wang Tao, Zhao Zhiyi, Feng Jianping, Zhang Jinming.2021&.Cambrian Qimantagh island arc in the East Kunlun orogen: Evidences from zircon U-Pb ages, lithogeochemistry and Hf isotopes of high-Mg andesite/diorite from the Lalinggaolihe area. Earth Science Frontiers,28(1):318~333.

Wang Guocan, Zhang Tianping, Liang Bin, Chen Nengsong, Zhu Yunhai, Zhu Jie.1999&. Composite ophiolitic melange zone in central part of eastern section of eastern kunlun orogenic zone and geological significance of “fault belt in central part of eastern section of eastern Kunlun Orogenic Zone”. Earth Science, 24(2): 129~138.

Wang Tao, Li Bin ,Chen Jing, Wang Jinshoul Li Wufu, Jin Tingting.2016&.Characteristics of chronology and geochemistry of the Early Silurian monzagranite in the Wulonggou area, East Kunlun and its geological significance. Journal of Mineralogy and Petrology,36(2):62~70.

Wang Xiaoxia, Hu Nenggao, Wang Tao, Sun Yangui, Ju Shengcheng, Lu Xinxiang, Li Shan ,Qi Qiuju. 2012&. Late Ordovician Wanbaogou granitoid pluton from the southern margin of the Qaidam basin: Zircon SHRIMP U-Pb age, Hf isotope and geochemistry. Acta Petrologica Sinica, 28(9): 2950~2962.

Wang Yilong, Li Yanjun, Wei Junhao, Li Huan, Han Yu, Zhou Hongzhi, Huang Xiaokun, Ke Kunjia, 2018&. Origin of Late Silurian A-Type Granite in Wulonggou Area, East Kunlun Orogen: Zircon U-Pb Age, Geochemistry, Nd and Hf Isotopic Constraints. Earth Science, 43(4): 1219~1236.

Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95:407~419.

Wiedenbeck M, Alle P, Corfu F, Griffin W, Meier M, Oberli F, Von Quadt A, Roddick J C, Spiegel W.1995. Three Natural Zircon Standards for U—Th—Pb, Lu—Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(1):1~23.

Wilde S A, Valley J W, Peck W H, Graham C M. 2001. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409:175~178.

Wu Fuyuan, Li Xianhua, Yang Jinhui , Zheng Yongfei. 2007&. Discussions on the petrogenesis of granites. Acta Petrologica Sinica,23(6):1217~1238.

Wu Yuanbao, Zheng Yongfei.2004#. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin,23(6):1217~1238.

Xia Rui, Wang Changming, Qing Min, Deng Jun, John M Carranza, Emmanule , Li Wenliang ,Guo Xiaodong, Ge Liangsheng, Yu Wanqiang. 2015. Molybdenite Re-Os, zircon U-Pb dating and Hf isotopic analysis of the Shuangqing Fe-Pb-Zn-Cu skarn deposit, East Kunlun Mountains, Qinghai Province, China. Ore Geology Reviews,66:114~131.

Xiong Fuhao, Ma Changqian, Wu Liang, Jiang Hong’an, Liu Bin.2015. Geochemistry, zircon U-Pb ages and Sr—Nd—Hf isotopes of an ordovician appinitic pluton in the east Kunlun orogen: New evidence for Proto-Tethyan subduction. Journal of Asian Earth Sciences, 111(1):681~697.

Xu Bo, Li Yulong, Shi Lianchang, Zhang Huiqing, Ma Deqing, Ren Xin, Wang Chengyong.2020a&.Magmatic consanguinity of the Late Triassic granites and rhyolites in eastern Qimantage: Constraints from geochronology, geochemistry and Nd—Pb isotopes.Geological Review,66(3):686~698.

Xu Bo, Liu Jiandong, Wang Chengyong, Yue Tao, Yang Yingchun, Wei Youning, Shi Lianchang, Chai Yun.2020b&.Genesis of the Middle Triassic granites in southern Wulanbaixing, Eastern Kunlun:Constraints from LA-MC-ICP-MS zircon U-Pb ages, element geochemical and Sr—Nd—Pb isotopic evidences.Geological Review,66(6):1516~1529.

Xu Zhiqin, Yang Jingsui, Li Haibing, Yao Jianxin.2006&.The Early Palaeozoic Terrene Framework and the formation of the High-Pressure (HP) and Ultra-High Pressure (UHP) Metamorphic Belts at the Central Orogenic Belt (COB). Acta Geologica Sinica,80(12):1793~1806.

Xu Zhiqin.2007#. Orogenic plateau: the mechanism of terrane amalgamation, collisional orogeny and uplift in Qinghai—Tibet plateau. Beijing :Geological Publishing House,2007:1~458.

Yang Jingsui , Robinson P T , Jiang Chunfa , Xu Zhiqin. 1996. Ophiolites of the Kunlun Mountains, China and their tectonic implications. Tectonophysics, 258(1~4):215~231.

Yang Jingsui, Xu Zhiqin, Ma Changqian, Wu Cailai, Zhang Jianxin, Wang Zongqi, Wang Guocan, Zhang Hongfei, Dong Yunpeng, Lai Shaocong.2010&.Compound orogeny and scientific problems concerning the Central Orogenic Belt of China. Geology in China, 37(01):1~11.

Yin Hongfu, Zhang Kexin.1997&. Characteristics of the Eastern Kunlun Orogenic belt.Earth Science, 22(04):3~6.

Yin Hongfu, Zhang Kexin.2003#. Regional geological survey report of the people's Republic of China: Dongjicuona Lake Sheet (I47C001002,scale 1:250000).Wuhan: China University of Geosciences Press.

Yuan Wanming, Mo Xuanxue, Yu Xuehui, Luo Zhaohua .2000&.The record of Indosinian tectonic setting from the granotoid of Eastern Kunlun Mountains. Geological Review,46(2):203~211.

Zhang Jinyang, Ma Changqian, Xiong Fuhao, Liu Bin, Li Jianwei, Pan Yuanming.2014. Early Paleozoic high-Mg diorite—granodiorite in the eastern Kunlun Orogen, western China: Response to continental collision and slab break-off. Lithos,210~211:129~146.

Zhang Xueting, Yang Shengde, Yang Zhanjun.2007&.The plate tectonics of Qinghai province——A guide to the geotectonic map of Qinghai Province. Beijing: Geological Publishing House.

Zhang Yafeng, Pei Xianzhi, Ding Sanping, Li Ruibao, Feng Jianyun, Sun Yu, Li Zuochen, Chen Youxin. 2010&.LA-ICP-MS zircon U-Pb age of quartz diorite at the Kekesha area of Dulan County, eastern section of the East Kunlun orogenic belt, China and its significance. Geological Bulletin of China, 29(1):79~85.

Zhang Yaoling, Hu Daogong, Shi Yuruo, Lu Lu.2010&.SHRIMP zircon U-Pb ages and tectonic significance of Maoniushan Formation volcanic rocks in East Kunlun orogenic belt, China. Geological Bulletin of China, 29(11): 1614~1618.

Zhu Xiaohui, Chen Danling, Liu Liang, Li Di.2010&. Zicon LA-ICP-MS U-Pb dating of the Wanggaxiu gabbro complex in the Dulan area, northern margin of Qaidam Basin, China and its geological significance.Geological Bulletin of China, 29(Z1):227~236.

Zhu Yunhai, Zheng Kexin, Pan Yuanming, Chen Nengsong, Wang Guocan, Hou Jiuguang.1999&. Determination of different ophiolitic belts in Eastern Kunlun orogenic zone and their tectonic significance. Earth Science, 24(2):134~138.

猜你喜欢
造山锆石昆仑
黑龙江省造山带研究:关于洋壳俯冲造山和陆壳碰撞造山磨拉石的认识*
我在南昌 你在哪
锆石的成因类型及其地质应用
金从何来?太古代造山型金矿床中的金来源于变质沉积岩
昆仑润滑油
跨越昆仑
柴达木盆地北缘造山型金矿成矿条件及找矿潜力
俄成功试射“锆石”高超音速巡航导弹
锆石 谁说我是假宝石
昆仑