长江流域濒危兰科植物的空间分布

2022-08-18 10:49张一林李功权
浙江农林大学学报 2022年4期
关键词:莫兰长江流域密度

张一林,李功权,刘 颖

(长江大学 地球科学学院,湖北 武汉 430100)

长江流域发源于唐古拉山脉,自西向东流经青藏高原、横断山区、云贵高原、四川盆地、江南丘陵和长江中下游平原,注入东海[1]。地域辽阔,横跨中国东部、中部和西部地区,包括19个省(直辖市和自治区)。长江流域地形复杂,地势西高东低呈阶梯状分布。气候类型复杂,除青藏高原为高原山地气候、西南热带季风气候外,主要为亚热带季风气候[2]。夏季高温多雨,冬季温和少雨,四季分明,年降水量在1 000 mm以上,这为生物提供了良好的栖息环境,成为生物多样性极为丰富的地区。长江流域种子植物约占全国种子植物的50%,珍稀濒危植物和国家重点保护植物共占全国珍稀濒危保护植物的39.7%。

兰科Orchidaceae植物因花期长、花朵造型奇异和色彩绚丽,具有极高的观赏价值[3];入药具有清热解毒、滋阴润肺等功效,药用价值也较高[4]。兰科植物对环境的依赖性比较强[5],易受到人类活动的影响。全世界所有的野生兰科植物均被列为《野生动植物濒危物种国际贸易公约》(CITES)的保护范围,为野生植物保护的旗舰类群[6]。目前,对兰科植物分布格局的研究主要有垂直分析和水平分析2种方法。在垂直尺度上,将区域性的山地海拔高度分段,分析兰科植物的分布格局以及区系特征,如藏东南[7]、滇西北[8]、西藏南迦巴瓦[9]、西双版纳[10]等。通过计算兰科植物属和种的丰富度,分析兰科植物丰富度的分布中心和变化趋势,进而研究水平意义上的分布格局,如滇西北[11]和全国兰科植物[12]的分布格局。也有学者采用地理信息系统(GIS)空间分析方法分析地区多物种的分布范围[13]和空间分布特征[14],揭示物种空间分布规律,达到维护当地生物多样性的稳定[15-16]和预防外来物种入侵的目的[17-18]。

总的来看,关于长江流域兰科植物的空间分布格局研究较少,且根据濒危程度进行长时序分析还不多见。基于此,本研究采用核密度、空间自相关和热点分析等GIS空间分析方法,分析了长江流域代表性濒危兰科植物的空间分布格局,为更有效地保护兰科植物提供理论依据。

1 材料与方法

1.1 数据来源

全球生物多样性信息资讯机构(GBIF)是由世界各国政府资助的国际资讯机构(https://www.gbif.org/)。该网站收集了兰科植物的分布地区、物种名称、物种出现时间、物种经纬度坐标等信息。根据《中国物种红色名录》[19]的物种濒危等级,以及1981—2019年在长江流域分布的物种,选取了130个(10种)兰科植物空间分布点(表1),所选取的代表性10种兰科植物均有观赏和药用价值。

表1 代表性兰科植物的分布Table 1 Distribution of representative orchids

1.2 研究方法

将兰科植物按照《中国物种红色名录》[19]标准,根据极危、濒危、易危、近危、无危的濒危等级,分别赋值为5、4、3、2、1,濒危程度越严重,赋值越大。对代表性兰科植物根据全球气候变暖速度划分为2个时段进行研究:1981—1997年为变暖加速期,1998—2019年为变暖暂缓期[20-22]。采用ArcGIS软件的核密度方法定性分析2个时间段内兰科植物聚集分布特征。采用空间自相关分析对2个时间段的兰科植物濒危等级进行全局莫兰指数(Moran’sI)计算。采用Open Geoda软件对代表性兰科植物计算局部莫兰指数,以标准化的濒危属性值作为横轴,相邻濒危属性值的加权平均值作为纵轴,分别绘制1981—1997年和1998—2019年的莫兰指数散点图。使用Open Geoda软件的热点分析值(),分析兰科植物濒危等级的热点分析,得出1981—1997年(置信度95%)和1998—2019年(置信度99%)的热点分布表[23],并将分析结果进行可视化显示。

1.2.1 核密度分析 核密度函数值可反映兰科植物在长江流域的空间聚集和分散特征,函数值越高,说明兰科植物聚集程度越高,且值随中心辐射距离的增大而逐渐变小[24]。计算表达式如下:

式(1)中:fn(y)为兰科植物n个空间分布点的核密度测算值,n=130;k为核密度常数;h为核密度测算带宽的平滑参数; (y-yb)为兰科植物估计值y与分布点b样本值yb之间的空间距离。参考相关研究成果的基础上[25],得出兰科植物的密度空间分布特征。

1.2.2 全局空间自相关分析 全局莫兰指数表示地理对象属性值在全部空间范围内的聚集程度[26],是对属性在整个空间分布区域的特征刻画。计算表达式如下:

式(2)中:I为濒危兰科植物的全局莫兰指数值;m为空间单元数量;xi、xj分别为第i个空间单元和第j个空间单元兰科植物的濒危等级值;为濒危等级均值;wij为空间单元i、j的空间权重矩阵。

标准化Z值检验全局莫兰指数自相关水平,当Z>1.96或Z<-1.96 (α=0.05)时,说明濒危兰科植物在空间上存在显著的空间自相关水平。

1.2.3 局部空间自相关分析 局部空间自相关可以检测局部区域是否存在变量聚集的现象[26],进一步明确相邻兰科植物生存状况的分布关系,弥补全局空间自相关不能确定具体聚集区域的不足。热点分析可以进一步分析兰科植物局部空间自相关关系。经过反复试验,莫兰指数散点图采用“Queen’s”原则,判断是否邻接。计算表达式如下:

2 结果与分析

2.1 兰科植物的核密度分布

通过核密度分析结果可知:1981—2019年,兰科植物的空间分布整体上呈“多核破碎化”,但1998年后,破碎化程度有所减弱。在四川分布的代表性兰科植物北移,数量减少。318国道的建设经过康定县和泸定县,这些地区早期发现有大量兰科植物分布,如今兰科植物减少,这在一定程度上说明兰科植物受到国道建设的影响(表2),国道建设加剧了人类活动,缩减了兰科植物的生存空间。

表2 1981—2019 年四川代表性兰科植物的空间分布Table 2 Spatial distribution of representative Orchidaceae plants in Sichuan from 1981 to 2019

从兰科植物分布密度来看,中密度分布在湖北中部、湖南中部、重庆中部、贵州东部和北部、四川中部和北部、云南北部、甘肃南部;高密度分布在湖南西部、湖北西南部、广西东北部、重庆东南部和贵州东北部。中密度分布省份(直辖市和自治区)数量未减少,且分布面积增加了1 969 m2(2.9%);高密度分布省份(直辖市和自治区)数量减少,少了广西和贵州,且分布面积减少了222 m2(0.32%)。高密度栖息地数量和面积减少,兰科植物生存受到威胁。研究发现:南岭地区存在村民采挖和贩卖观赏兰花的现象,并且南岭地区修建了大量水电站[27],改变了兰科植物的生长环境,这对环境要求严格的兰科植物来说,无疑产生了重要影响(表3)。贵州兰科植物主要分布在铜仁地区的松桃、桐梓、印江、石阡,该地区矿产资源丰富,大量的矿产开发会铲除覆盖地表植被,破坏兰科植物生长环境,再加上村民采挖兰属和虾脊兰属植物,导致兰科植物在贵州的分布发生明显变化(表3)。

表3 1981—2019 年贵州和广西代表性兰科植物的空间分布Table 3 Spatial distribution of representative Orchidaceae plants in Guizhou and Guangxi from 1981 to 2019

气温是影响植物生长的自然因素之一,气温与植物的光合作用、呼吸作用和代谢作用密不可分[28]。经研究发现:1981—1997年和1998—2019年兰科植物中、高密度区存在较明显的变化,这与1998年之后全球变暖速度进入“停滞”相吻合[21-22],说明长江流域兰科植物分布位置和数量变化也可能与全球变暖有关。

2.2 兰科植物的全局空间自相关分析

全局莫兰指数可以表示要素的空间自相关性,当Z>1.96时,说明莫兰指数值具有明显的聚类特征。从表4看出:1981—1997年濒危兰科植物全局莫兰指数为0.241,1998—2019年为0.805,通过了显著性水平α=0.05的检验(Z>1.96)。说明这2个时段的濒危兰科植物在空间上呈正相关,具有明显的空间集聚特征。1998—2019年的莫兰指数大于1981—1997年,且更趋向于1,表明1998—2019年濒危兰科植物的空间自相关性水平显著增强,生存空间急剧缩减,抱团分布的现象更加明显。

表4 1981—2019 年兰科植物濒危等级的全局莫兰指数Table 4 Global Moran’s I index of the endangered species of representative Orchidaceae plants from 1981 to 2019

2.3 兰科植物的局部空间自相关分析

2.3.1 莫兰指数散点图 图1表明:2个时段的局部莫兰指数均大于0,与全局莫兰指数结果相符。趋势线主要分布在第1和第3象限,说明兰科植物的濒危等级值在2个时段都存在高—高值聚集和低—低值聚集。图1A中,落入第1象限的兰科植物濒危等级值有22个,占总点数的25.0%,落入第3象限的有48个,占总点数的54.6%。图1B中,落入第1象限的兰科植物濒危等级值有21个,占总点数的50.0%,落入第3象限的有16个,占总点数的38.1%。可见,兰科植物在1981—1997年表现出明显的低—低聚集,1998—2019年表现出明显的高—高聚集,说明兰科植物局部空间异质性增强,且处于高风险区的兰科植物数量明显增加。在莫兰散点图趋势线以下,图1A数据点的数量为55个,占总点数的62.5%,图1B数据点的数量为18个,占总点数的42.9%。1998—2019年与1981—1997年相比,数据点的数量明显减少。兰科植物濒危等级值的“核”效应明显减弱,“多核破碎化”的态势也在弱化,这与核密度分析结果相吻合。

图1 兰科植物的莫兰指数散点图Figure 1 Moran scatter diagram of typical orchids

2.3.2 热点分析 热点分析是根据统计学方法,识别具有统计显著性的热点和冷点。由表5可以看出:1981—1997年兰科植物处在高—高聚集模式下的省份只有贵州和湖北,说明这2个省份兰科植物的生存状况面临威胁。1998—2019年兰科植物在湖北的热点值更高,濒危程度进一步加重。由此可知:1998—2019年与1981—1997年相比,湖北空间分布的代表性兰科植物濒危程度更集中。代表性兰科植物濒危热点分布地区发生变化,即高危险区发生变化。其中需要重点保护的兰科植物是蕙兰、小舌唇兰、钩距虾脊兰、反瓣虾脊兰和金兰。湖北应该成为长江流域兰科植物监控、管理、保护的重点省份。虽然蕙兰在江浙地区分布整体处于冷点区域,但由于人为采挖,蕙兰的生存状况在江浙一带也须引起重视。

表5 1981—2019 兰科植物濒危等级热点值分布Table 5 Distribution of endangered hot spot values of Orchidaceae plants from 1981 to 2019

3 讨论与结论

温度和降水的变化可能是影响兰科植物生长的自然因素。从空间格局来看,1998—2019年与1981—1997年相比,长江流域代表性兰科植物多核破碎化趋势有所减弱,濒危值和空间位置表现出高度的空间自相关,兰科植物更趋向于集中分布。从长江流域关注重点地区来说,四川、贵州和广西是代表性兰科植物密度分布发生变化的省份,湖北是现阶段濒危等级值较高的省份,即热点省份。可能是因为适宜兰科植物生长的区域受到气候变化和人为因素的双重影响。在1998年以后,全球变暖进入停滞化阶段[29],20世纪90年代中后期长江流域气温产生明显变化[30],增长速度有所减缓[20-22]。气候变化给兰科植物的生长带来了较大影响。LIU等[31]研究认为:在气候变化的大背景下,兰科植物15%的种类和25%的属存在数量减少或局部灭绝的高风险,这与本研究提出的全球变暖会影响兰科植物生存发展的结论相符。

1998—2019年兰科植物的密度高值区减少,分布在广西、贵州的兰科植物消失。兰科植物的密度中值区由四川中部向四川北部迁移。濒危等级值和空间位置的正相关水平显著增强,聚集特征更加明显。高危险区数量由贵州和湖北2个省份减少为湖北1个省份。高危险区濒危水平增长,热点值更高,兰科植物的生存处境更加严峻,湖北将成为重点关注的地区。

修建基础设施虽然带给人们极大便利,但也影响了兰科植物的生境,导致兰科植物数量减少、分布范围改变。道路修建会破坏地表植被,增加车流量,排放有害气体,从而影响兰科植物的生长。水利设施的修建改变了小气候,也影响了兰科植物的生长。此外,国家对兰科植物的保护较弱,监管部门的责任不到位,导致采挖和线上线下销售现象严重。人们对森林资源的过度采伐,使附生兰和地生兰生存的场所受到影响,这也极不利于兰科植物的生长和繁殖。

猜你喜欢
莫兰长江流域密度
2020年主汛期长江流域短时强降水时空分布特征
《反思欧洲》的书评
总有斜阳照晚树
黄帝战蚩尤
“密度”练习
密度的应用趣谈
密度的不变性与可变性
论法国哲学家埃德加.莫兰的“复杂思想”