基于RothC模型的红壤旱地有机碳库对稻秆和猪粪添加的响应

2022-08-31 01:39李欢郑奕廖添怀周亦靖王艳玲
南京信息工程大学学报 2022年4期
关键词:稻秆碳库红壤

李欢 郑奕 廖添怀 周亦靖 王艳玲

1 南京信息工程大学 应用气象学院,南京,210044

0 引言

土壤有机碳是评价土壤质量的关键指标之一,其组成与含量在土壤团聚结构形成与稳定、土壤肥力调控与作物产量提高及减缓土壤质量退化与地力提升等方面起着重要的作用[1-2].为更好地表征与预测土壤有机碳库对气候变化、土地利用方式转换及农业生产管理的响应,世纪模型(Century)、脱氮-分解作用模型(DNDC)等生态系统土壤有机碳库周转模型相应地被提出与建立[3].其中洛桑模型(Rothamsted Carbon Model,RothC)以英国洛桑试验站长期定位试验数据为基础建立发展而来,能较好地模拟农田表层(0~23 cm)土壤有机碳含量的长期变化[4].该模型参数简单易获取,且有“正向”和“逆向”两种模式,不仅能动态模拟农业生产管理和植物投入量对有机碳的影响,还能推算出土壤有机碳库处于相对稳定时维持平衡所需的碳输入[4-5].杨学明等[4]模拟不同施肥处理下土壤有机碳动态演变特征,模型预测值与实测值有较好的吻合.可见,建立与明确土壤中可测量碳组分与RothC模型中概念碳库的相关关系,是运用RothC模型准确模拟与预测土壤有机碳库变化的关键因子[6-7].

明确不同类型外源有机物质输入对土壤有机碳库组成的影响,是农业生态系统可持续发展的重要基础.稻秆与猪粪是我国农业生产中常用的有机肥[8],而土壤有机碳库对稻秆与猪粪还田的响应过程是影响农田生态系统碳周转与平衡的重要环节[9-12].许多研究表明,稻秆及猪粪投入均能有效提高土壤总有机碳和各组分有机碳含量,且提升效果显著优于常规施肥[13-14],但基于有机碳库周转模型预测有机物料添加对土壤碳库影响的研究较少.因此本研究以红壤旱地为材料,基于等碳量添加稻秆及猪粪的室内培养实验,采用物理-化学联合分组法将土壤样品分为溶解性有机碳(DOC)、颗粒有机碳(POM)、物理保护态的砂粒-团聚体内有机碳(S+A)、粉粒和黏粒结合的有机碳(s+c-rSOC)以及化学结构稳定的惰性碳(rSOC)共5个组分,分析各组分有机碳变化,再结合RothC模型将上述各组分有机碳进一步划分为易分解植物残体碳(DPM)、难分解植物残体碳(RPM)、腐殖质碳(HUM)、微生物生物量碳(BIO)及惰性有机质(IOM),并将直接分组获得的有机碳组分与RothC模型碳库各组分进行关联,探讨等碳量添加稻秆与猪粪对红壤旱地有机碳库组分的影响,分析RothC模型对红壤旱地有机碳库变化的模拟效果与适应性,研究结果可以为红壤旱地有机碳库管理及农业的可持续发展提供参考数据.

1 材料与方法

1.1 土壤及有机物料样品的采集与制备

2018年10月,在距中国科学院红壤生态实验站(116°41′~117°09′E,28°04′~28°37′N)约4 km的红壤关键带孙家小流域观测站内选取地势较为平坦的花生旱地,在200 m×200 m的样方内,按“S形”采样法采集表层(0~15 cm)土壤样品20点,混匀后带回室内,在通风处自然风干、除去肉眼可见的石砾及植物残体后磨细再过2 mm筛,保存备用.供试土壤主要由第四纪红黏土发育形成,土壤pH=5.8,TN、TC的质量分数分别为1.33、0.73 g·kg-1,碳氮比为 0.57.稻秆采自于旱地附近的稻田、猪粪取自流域附近的养猪场,经堆肥发酵后与稻秆自然风干并磨细过2 mm筛备用.风干稻秆的TN、TC的质量分数分别为13.8、315.3 g·kg-1,碳氮比为 22.8;风干猪粪TN、TC的质量分数分别为71.9、38.3 g·kg-1,碳氮比为0.53.

1.2 有机物料添加培养试验

称取200 g过2 mm筛的风干土壤于600 mL圆柱状培养瓶内,按每千克土中分别加入有机物料总碳量0.285 g(C1)、0.570 g(C2)及1.140 g(C3)的量分别向培养瓶内添加风干猪粪(PM)及稻秆(RS),即按土质量的0%(CK)、0.75%(C1PM)、1.50%(C2PM)、3.0%(C3PM)添加风干猪粪,及土质量的0.09%(C1RS)、0.18%(C2RS)与0.36%(C3RS)添加风干稻秆,每个处理设置3个重复.将风干稻秆、猪粪与土壤混合均匀后,用去离子水以喷雾状均匀润湿土壤的同时轻轻混合让水分分布均匀,使土壤含水量调节至田间持水量的65%.放置在25 ℃(相对湿度为50%)培养箱中恒温培养,每7 d采用重量法调节水分含量至初始状态.并在在培养的第20、50、100、165及235 天进行破坏性采样,将供试土壤风干、磨细过2 mm筛后用于土壤有机碳组分的测定.

1.3 土壤有机碳分组

鉴于土壤有机碳的物理化学异质性[15],Zimmermann等[6]将土壤有机碳库分为溶解性有机碳(DOC)、颗粒有机碳(POM)和物理保护态的砂粒-团聚体内有机碳(S+A)、粉粒和黏粒结合的有机碳(s+c-rSOC)以及化学结构稳定的惰性碳(rSOC)等5个组分,并把这5个组分进一步归为活性碳库(DOC与POM)、缓效性碳库(S+A与s+c-rSOC)和惰性碳库(rSOC),进而为模型赋值提供基础数据[15].本研究在Zimmermann等[6]的方法上略作修改,具体操作步骤如下:

1)称取20.0 g过2 mm筛的风干土样于250 mL振荡瓶中,加入200 mL超纯水浸泡12 h后再振荡2 h(270 r·min-1),取部分上清液过0.45 μm滤膜,并测定滤液中有机碳含量,即得到溶解性有机碳(DOC)含量.

2)将步骤1)的土壤分散液全部转移至DX-100团聚体分析仪中孔径为63 μm的筛子上,加水淹没至筛上土壤2 cm处,以20次/min的频率上下筛动30 min后,将残留在筛子上的土壤样品冲洗并转置到已知质量的铝盒中,放于60 ℃烘箱内烘干至恒重并称重,即得到粒径> 63 μm的粗成分颗粒(S+A+POM).

3)将筛下的土壤溶液用已知质量的0.45 μm滤膜抽滤干净,然后将有残留土壤样品的滤膜放入60 ℃烘箱中烘至恒重后称重,即获得粒径为0.45~63 μm的细成分颗粒(s+c).

4)称取2.00 g粗成分颗粒(S+A+POM)于已知重量的50 mL塑料离心管中,加入密度为1.78 g·mL-1的碘化钠溶液(NaI)20 mL,在平行式复振荡机上振荡30 min,离心15 min(5 000 r·min-1)后,用已知质量的干燥滤纸将含有轻组部分的NaI溶液过滤,并用超纯水反复冲洗滤纸,使滤纸上的NaI溶液冲洗干净,然后将滤纸在60 ℃下烘至恒重后称重,滤纸上残渣即为颗粒有机组分(Particulate Organic Matter,POM).

5)超纯水反复冲洗离心管内残留土壤样品2~3次后,烘干即可得到重组有机碳组分(sand and stable aggregates,S+A).

6)称取2.00 g的细成分土壤样品(s+c)于50 mL塑料离心管中,加入质量分数为6%的次氯酸钠溶液(NaClO,pH=8.0)25 mL,静置氧化18 h(25 ℃)后,振荡10 min(270 r·min-1),离心15 min(5 000 r·min-1),倒掉上清液,加入25 mL次氯酸钠溶液,重复一次上述氧化过程后,将离心管中的土壤残渣冲洗转置到已知质量的干燥铝盒中,放入60 ℃烘箱中烘至恒重并称重,即获得惰性有机碳组分(resistant organic matter,rSOC).具体操作流程如图1所示.

图1 基于Zimmermann等[6]方法修改的土壤有机碳的分组流程

7)结合RothC模型将上述筛分获得的各组分有机碳,根据对应的转化系数进一步划分为易分解的植物残体碳(DPM)、难分解的植物残体碳(RPM)、微生物生物量碳(BIO)、腐殖质碳(HUM)以及惰性有机碳(IOM)等5个碳库,划分方法如图2所示.

图2 土壤有机碳组分与RothC模型碳库间的关系[15]

8)结果计算.某组分有机碳占土壤总有机碳的比例(%)=[某组分有机碳质量分数(g·kg-1)×该组分有机碳所结合颗粒的质量分数(%)]/土壤有机碳总量(g·kg-1).

1.4 测试指标及方法

土壤pH采用电位法测定,液土比为2.5∶1;土壤全氮(TN)、全碳(TC)、碳氮比(C/N)采用CN元素分析仪(Vario EL cube,Elementar,德国)测定;游离态氧化铁(f-Fe2O3)、氧化铝(f-Al2O3)采用DCB(连二亚硫酸钠-柠檬酸钠-重碳酸氢钠)法提取,非晶质氧化铁(a-Fe2O3)、氧化铝(a-Al2O3)采用0.2 mol·L-1草酸铵缓冲液(pH=3.2)提取,提取液中的铁铝浓度均采用电感耦合等离子光谱发生仪(ICP-OES仪)测定.上述测定方法具体步骤详见文献[6,15-16].

1.5 数据处理分析

数据统计分析采用IBM SPSS Statistics 20软件,绘图采用Origin 2021软件.

2 结果与分析

2.1 等碳量添加稻秆与猪粪对红壤旱地总碳(TC)的影响

等碳量添加稻秆与猪粪均可显著增加红壤旱地的总碳(TC)含量,且随添加量的增加,TC增加越显著,但添加稻秆的效果显著高于猪粪;随着培养时间延长,TC含量先显著增加后显著下降,最后逐渐趋于平缓(图3).培养20 d时,与CK处理相比,C1RS、C2RS及C3RS处理土壤TC分别显著增加了0.22、0.44、1.07倍,而C1PM、C2PM及C3PM处理土壤TC则分别显著增加了0.14、0.26、0.55倍;随培养时间延长,到235 d时红壤旱地TC含量呈平缓下降趋势,与培养20 d相比,培养235 d的CK、C3RS、C1PM处理分别显著下降20.2%、20.0%、15.2%(图3).

图3 等碳量添加稻秆与猪粪对红壤旱地总碳(TC)的影响

2.2 等碳量添加稻秆和猪粪对旱地红壤中RothC模型碳库组分的影响

等碳量添加稻秆与猪粪均可显著增加红壤旱地RothC模型中各组分碳含量,但添加稻秆比添加猪粪对易分解植物残体碳(DPM)、难分解植物残体碳(RPM)及惰性有机质(IOM)的影响更显著,且添加量越大影响效果越显著(图4);而添加猪粪对微生物生物量碳(BIO)和腐殖质碳(HUM)的影响显著高于稻秆,且与添加量呈显著正相关关系(图4c、4d).随培养时间的延长,DPM、RPM的含量先显著增加后下降并趋于稳定状态,BIO和HUM含量呈显著下降趋势,且下降趋势随培养时间延长逐渐变缓,IOM则与之相反,培养初期外源添加的植物残体碳含量较大随后逐渐被分解转化为稳定的化学保护态碳.培养50 d时,与CK处理相比,C2RS、C3RS及C3PM处理中DPM与RPM分别显著增加17.3、21.8、15.1与17.3、21.8、15.1倍;50 d后各处理中DPM与RPM含量则呈显著下降趋势,并逐渐趋于稳定状态(图4a、4b).随着培养时间延长,微生物生物量碳(BIO)和腐殖质碳(HUM)均呈显著下降趋势,与培养20 d相比,在235 d时各处理间BIO和HUM含量分别显著下降76.4%~149.7%和43.3%~59.9%(图4c、4d);而惰性有机质(IOM)含量在50 d时显著增加25.1%~66.0%,而后至165 d趋于稳定状态,235 d时又比165 d显著上升了52.3%~97.2%,其中C3RS处理IOM质量分数高达4.5 g·kg-1(图4e).

图4 等碳量添加稻秆与猪粪对红壤旱地中RothC模型碳库组分的影响

2.3 等碳量添加稻秆与猪粪对红壤旱地中各组分有机碳比例的影响

等碳量添加稻秆与猪粪后红壤旱地中DOC占总碳的比例在100 d时高达11.7%~17.5%,而后逐渐下降并趋于稳定状态,添加猪粪对DOC占比的影响比稻秆更显著,235 d时添加猪粪与稻秆的处理DOC占比分别高达11.6%~15.2%、9.8%~12.4%(图5).DPM及RPM的占比在20 d到50 d显著增大,并在50 d时达到最大值分别为0.43、42.2,而后随培养时间延长逐渐趋于稳定状态,且添加稻秆比猪粪的影响更显著,到235 d时添加稻秆及猪粪的3个组分处理的占比分别为0.16%~0.36%及0.18%~0.25%、15.8%~35.4%及17.7%~24.5%(图5).等碳量添加稻秆和猪粪后BIO和HUM占比呈显著下降趋势,且添加猪粪比稻秆的影响更显著,235 d时添加稻秆及猪粪影响下BIO、HUM的占比分别为0.79%~0.94%及1.05%~1.12%、29.0%~34.7%及38.6%~41.2%(图5).IOM的占比随培养时间延长逐渐增加,且添加稻秆对IOM占比的影响比猪粪显著,235 d时分别为32.0%~48.4%及35.6%~41.7%(图5).

图5 等碳量添加稻秆和猪粪对红壤旱地有机碳分布比例的影响

2.4 相关分析

表1相关分析表明:随f-Fe2O3含量增加,红壤旱地中DOC含量显著增加(P<0.05);随a-Fe2O3含量的增加,DOC含量显著降低,而IOM含量显著增加(P<0.05);随a-Al2O3含量的增加,POM显著增加(P<0.05),BIO、HUM则极显著增加,而DOC极显著降低(P<0.01)(表1).随土壤pH值增加,s+c-rSOC、BIO、HUM含量显著增加(P<0.05);随TC含量增加POM、S+A、s+c-rSOC、DPM、RPM、BIO、HUM含量均极显著在增加(P<0.01);随DOC含量增加,s+c-rSOC、HUM含量显著降低,IOM含量则显著增加(P<0.05);而随POM和S+A含量增加,DPM、RPM、BIO及HUM含量均极显著增加(P<0.01);随DPM含量增加RPM、IOM、HUM含量极显著增加(P<0.01),随BIO含量增加HUM含量极显著增加,而IOM含量极显著降低(P<0.01).

表1 铁铝氧化物与土壤有机碳组分及总碳量间相关系数

3 讨论

等碳量添加不同比例的稻秆与猪粪均能显著提高红壤旱地总碳(TC)含量(图3),有机物料本身含有较高的有机碳,施入土壤后会在微生物的作用与土壤颗粒相结合[8],从而增加土壤总碳含量[17-19].而等碳量添加条件下,添加稻秆比添加猪粪对土壤总碳的影响更显著,且添加量越大土壤TC增加越显著(图3),这可能是因为稻秆对土壤结构影响更大,更易于促进土壤微生物快速繁殖,有利于加快有机碳的分解转化[20].但随培养时间延长,红壤旱地TC含量呈下降趋势,其中培养50~100 d最显著,而后下降趋势减缓(图3),这是由于有机物料在土壤中呈现出明显的先“快速分解”后“缓慢分解”的趋势[20-23].有机物料添加初始阶段分解速度最快,以后逐渐进入缓慢分解阶段,可能是有机物料的输入刺激了土壤细菌、真菌以及多糖的产生[24],使土壤颗粒间的凝聚力增强,土壤结构改善,进而促进微生物的生存繁殖,加速有机物料的降解[8].而在等碳量添加的处理中,添加稻秆比添加猪粪的处理TC含量下降更显著,可能是稻秆中含有较多易分解利用的组分[25-26],其快速分解导致土壤TC含量的明显下降,但随着培养时间的延长易分解的有机物含量逐渐减少,剩下的则是木质素、单宁和蜡质等一些较难分解的物质,这些难分解物质的存在使稻秆腐解速率逐渐变慢直至几乎停下来[20,27-31],因此添加稻秆的处理TC含量下降幅度减慢;而另一种原因可能是稻秆的碳氮比较大,等碳量添加条件下,添加稻秆的处理氮含量低,土壤中缺乏足量可供给的氮而限制了微生物活性,进而阻碍有机质分解,减弱添加稻秆对有机碳含量的增加作用[32-33].可见,等碳量添加猪粪且无外源氮素添加条件下,一段时间后更有利于增加土壤碳库总量,这与殷丹等的研究结果一致[3].

等碳量添加稻秆与猪粪均能显著增加红壤旱地中RothC模型碳库组分,但添加稻秆比添加猪粪对易分解植物残体碳(DPM)、难分解植物残体碳(RPM)及惰性有机质(IOM)的影响更显著(图4);而添加猪粪对微生物生物量碳(BIO)和腐殖质碳(HUM)的影响则显著高于稻秆,且与猪粪添加量呈显著正相关关系(图4).研究表明稻秆的腐解速率通常情况下大于猪粪,主要是稻秆易分解碳库含量较高,即易分解碳库中多糖、有机酸、氨基酸等有机化合物可被微生物优先分解,且碳源和养分充足可刺激微生物活性和数量,进而促进有机物料腐解[34-35],而惰性组分的腐殖质碳(HUM)在土壤碳库中较为稳定,因此等碳量添加条件下,短时间内猪粪比稻秆更有利于土壤培肥.另一方面稻秆易分解碳库含量本来就比较高,但短期内又不能很快腐解,从而增加土壤活性碳库含量及比例;同时也可显著提高土壤酶及微生物的活性[35].猪粪对土壤脲酶活性的增加作用优于作物秸秆,而脲酶活性与有机碳含量和微生物生物量呈正相关关系(P<0.05)[36],且猪粪能显著改善土壤理化性质,为土壤提供更多、更丰富的底物,发挥底物诱导效应,诱导更多酶的产生[37],这使得大量的碳以砂粒和稳定的团聚体碳和惰性碳组分的形式储存于HUM、BIO及IOM的物理和化学性保护碳库中.

随培养时间延长,红壤旱地中DOC、POM含量及比例先显著增加后逐渐减小至稳定状态,S+A、IOM(rSOC)的含量及比例均显著增加,而s+c-rSOC的含量及比例显著下降.RothC碳库模型的活性碳库中DPM、RPM的含量及比例均显著下降(图4、5),这与微生物活性增强有关,有机物料进一步分解转化产生更多活性有机碳,而由S+A、s+c-rSOC模拟的RothC碳库模型中物理性保护碳库(HUM和BIO)有机碳含量及比例显著下降,是因为砂粒和稳定团聚体碳结合或存储于团聚体中而受物理性保护的有机碳在微生物作用下进一步腐解矿化[3].本试验中,等碳量添加稻秆与猪粪100 d后红壤旱地中各组分有机碳含量的变异逐渐减小(图3—5),这也意味着随培养时间延长红壤旱地中各组分碳库也逐渐趋于稳定状态;而RothC模型对土壤碳库的模拟程度,受模型运行时间影响,量化值较模拟值更能准确地反映真实的环境条件,且随着时间延长,用量化值和模拟值预测的土壤有机碳变化趋势的差异也逐渐减小[38-39].殷丹等[3]长期配施秸秆与猪粪的红壤旱地试验中,土壤有机碳库主要以HUM和IOM为主要组分,而在本试验培养235 d有机碳库中,主要以RPM和IOM为主要组分(图5),且RothC模型各碳库含量和比例大小依次为:IOM> RPM> HUM> BIO> DPM(图5),其中IOM含量显著增加,可能是难分解植物残体碳短期内无法完全分解,而长期施肥碳库中完全分解,各碳库含量及比例更稳定.

铁铝氧化物的存在有助于维持良好的土壤物理性质,在红壤等酸性土壤中,有机碳与铁铝氧化物等无机矿物之间的吸附作用对维持有机碳稳定、抵抗微生物分解有重要的调控作用[40-41].添加有机物料虽然能促进碳含量增加,但有机碳会抑制铁铝氧化物的晶质化过程,与游离态铁、铝氧化物相比,非晶质铁、铝氧化物可通过离子或配位交换与有机碳形成稳定的复合体,胶结能力更强,而铁比铝的电负性大,故氧化铝的吸附能力可能强于氧化铁,这与氧化铝在土壤中的形态和电荷密度有关[12].本研究发现,a-Fe2O3、a-Al2O3含量与DOC含量呈显著负相关,BIO和HUM与a-Al2O3含量极显著正相关,而f-Fe2O3与DOC显著正相关,这说明红壤旱地中非晶质铁、铝氧化物与对BIO和HUM组分具有稳定作用,且土壤有机碳的稳定性是由非晶质铁、铝氧化物通过配位体置换决定的[37].

4 结论

添加稻秆和猪粪均可增加红壤旱地总碳含量,但短期内等碳量添加稻秆的效果更显著;添加稻秆对红壤旱地中易分解的植物残体碳(DPM)、难分解的植物残体碳(RPM)、惰性有机质(IOM)含量影响更显著,而添加猪粪对微生物生物量碳(BIO)、腐殖质碳(HUM)的含量影响更显著.随着培养周期延长,等碳量添加稻秆与猪粪后红壤旱地中活性碳库和化学性保护碳库呈显著上升趋势,而物理性保护碳库呈显著下降趋势.

猜你喜欢
稻秆碳库红壤
硅基膜材缓控释肥在红壤中的氮素释放特征研究
初探热脱附技术在有机污染红壤修复的应用
长期定位试验下砒砂岩与沙复配土的碳库管理指数
磷酸改性稻秆和稻叶对Pb2+的静态吸附研究
金黄的稻秆
稻秆与圆捆机钢辊间滑动摩擦特性试验
高效稻秆降解菌的分离鉴定
秸秆还田对农田土壤碳库和温室气体排放的影响研究进展
大气氮沉降对森林土壤碳库的影响
长期施肥下红壤旱地土壤CO2排放及碳平衡特征