磷素后移对药隔期倒春寒小麦旗叶光合及抗氧化系统的影响*

2023-02-02 02:12孙东岳刘倩倩吴兆晨魏凤珍李金才
中国农业气象 2023年2期
关键词:旗叶开花期磷肥

孙东岳,许 辉,刘倩倩,许 波,吴兆晨,魏凤珍,陈 翔**,李金才,2**

磷素后移对药隔期倒春寒小麦旗叶光合及抗氧化系统的影响*

孙东岳1,许 辉1,刘倩倩1,许 波1,吴兆晨1,魏凤珍1,陈 翔1**,李金才1,2**

(1.安徽农业大学农学院/农业农村部华东地区作物栽培科学观测站,合肥 230036;2.江苏省现代作物生产协同创新中心,南京 210095)

以抗倒春寒能力强的小麦品种“烟农19”(YN19)和抗倒春寒能力弱的小麦品种“新麦26”(XM26)为供试材料,利用人工气候箱开展盆栽低温模拟实验。实验设置对照(日均气温15℃,夜间最低温度11℃,CK)和低温(−4℃,LT)两个温度处理,设置常规施磷(基肥:拔节肥为10:0,R1)和磷肥后移(基肥:拔节肥为5:5,R2)两种施磷肥模式,低温处理时长为4h·d−1。测定小麦开花期和灌浆期旗叶光合、抗氧化生理指标及成熟期产量并进行分析,以探明磷素后移对药隔期倒春寒下小麦旗叶生长的缓解机理。结果表明:(1)LT处理较CK处理,供试两品种旗叶叶绿素相对含量(SPAD值)、净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)均显著下降(P<0.05),胞间CO2浓度(Ci)显著上升。(2)LT处理与CK比较,供试两品种旗叶抗氧化酶(SOD、CAT)活性显著下降,丙二醛(MDA)含量显著增加。(3)本实验条件下,LT处理使供试两品种穗粒数、千粒重及单茎产量较CK显著降低。(4)LTR2与LTR1比较,XM26开花期和YN19灌浆期旗叶SPAD值分别显著提高了7.3%和10.1%;XM26和YN19旗叶开花期的Pn显著提高8.5%和16.2%,灌浆期显著提高8.0%和8.7%,Gs、Tr和Ci影响差异不显著。(5)LTR2与LTR1比较,XM26旗叶开花期和灌浆期SOD活性显著提高9.0%和5.7%,CAT活性显著提高12.4%和30.9%,MDA含量显著降低7.9%和7.3%;YN19旗叶开花期和灌浆期SOD活性显著提高7.7%和8.2%,CAT活性显著提高20.8%和25.5%,MDA含量显著降低6.8%和7.0%。(6)R2较R1显著提高LT处理XM26的穗粒数8.4%,对两品种千粒重无显著影响,XM26和YN19单茎产量挽回率可达8.9%和9.9%。综上所述,磷素后移可有效增强小麦旗叶细胞抗氧化能力,降低细胞膜脂过氧化程度,提高小麦旗叶的光合能力。通过抗氧化及光合能力两方面协同缓解药隔期倒春寒下小麦生育中后期旗叶生长状况,增加主茎穗粒数和千粒重,保“源”增“库”,达到无灾稳产增产、有灾减损止损的效果。

倒春寒;磷素;小麦;光合;抗氧化系统

IPCC第六次报告指出,2011−2020年全球地表平均温度较19世纪下半叶增长了1.09℃,预计21世纪末全球升温幅度将超过1.5~2.0℃[1]。全球气候变暖不仅导致极端低温灾害事件频发重发[2−4],而且缩短了冬小麦越冬期,加速其生育进程[5−7],使其在遭遇春季低温(倒春寒)时更易受到伤害[8]。小麦倒春寒(Late Spring Coldness in Wheat, LSCW)是指拔节−孕穗期遭遇突然低温天气,造成幼穗受伤或死亡,部分小穗不结实甚至全穗不结实,从而导致小麦减产的一种农业气象灾害[9]。黄淮麦区作为中国小麦主产区之一,3月中旬−4月上旬极易发生倒春寒,此时小麦幼穗处于雌雄蕊分化−药隔形成期,是幼穗发育的低温敏感期[10−11]。据报道,黄淮麦区倒春寒发生的年际频率高达40%[12−13],灾害严重年份受灾面积可达小麦播种面积的41.8%,产量损失可达50%以上。因此,研究倒春寒对黄淮麦区小麦生产的可持续高质量发展具有重要意义。

关于小麦倒春寒灾害的致灾机理,前人从光合特性[14−16]、ROS代谢[10,17−18]、生物量积累[19−20]、蔗糖代谢[21]等方面进行了大量研究。目前普遍认为倒春寒灾害通过影响小麦源−库器官的生长发育,进而导致小麦减产[12]。在生产中应用抗倒春寒品种、氮肥运筹、化控制剂是防控小麦倒春寒的有效措施,但通过磷肥运筹来防控小麦倒春寒的研究鲜有报道。磷素作为植物生长发育必需的大量元素之一,是植物体内多种化合物诸如核酸、磷脂、ATP等的组成成分,同时承担着植物体内各种代谢和物质运输,比如碳水化合物的转运与分配等[22]。合理施磷可缓解逆境胁迫给作物带来的伤害,增强作物对逆境胁迫的抗性[23]。研究表明,适宜的磷肥施用量可提高叶片质膜透性以及抗氧化能力来减缓低温胁迫对叶片光合性能的影响,进而增强植株的抗寒能力,缓解低温对植株的伤害[24−25]。张政文等研究表明,在保证施磷总量的条件下,基肥和苗肥分施磷肥可提高油菜苗期的抗寒性,显著增加产量[26]。尽管磷肥在不同作物低温胁迫的调节中具有重要作用,但目前基于磷肥后移对药隔期低温下小麦叶片生长的调控机理尚不明确。

因此,本研究以两种抗倒春寒能力强弱不同的小麦品种为实验材料,设置磷肥全部基施和磷肥后移两个施肥方式,通过人工气候箱模拟大田倒春寒灾害,从旗叶光合特性及抗氧化特性方面进行研究,以期明确磷肥后移对药隔期倒春寒后小麦叶片生长的缓解作用,为黄淮麦区小麦倒春寒的防控提供理论依据。

1 材料与方法

1.1 实验设计

实验于2020年11月−2021年5月在安徽农业大学农萃园(31°86′N,117°26′E)进行。选用抗倒春寒能力强的小麦品种烟农19(YN19)和抗倒春寒能力弱的小麦品种新麦26(XM26)为供试材料。播种日期为2020年11月1日,采用盆栽种植,盆栽土壤取自农萃园大田土壤0−20cm耕作层,土壤有机质含量16.3g·kg−1,速效氮112.2mg·kg−1,速效磷23.0mg·kg−1,速效钾161.6mg·kg−1。盆钵直径为26cm,高度为35cm,每盆装土8kg。每个处理12盆,每盆播种18粒,三叶期定苗,每盆定苗9株。全生育期每盆小麦施1.8g 尿素(基肥1.2g,拔节肥0.6g)、1.7g 硫酸钾(基肥全施)。

实验设置两种磷肥施用方式:常规施磷(R1:每盆基肥施5g过磷酸钙)和磷肥后移(R2:基肥和拔节肥每盆各施2.5g过磷酸钙),设置两个温度水平:对照(CK)为大田常温处理(处理当日平均气温为15℃,夜间最低温度为11℃)和低温(LT)处理(DWGZ-1008型超低温光照培养箱,−4℃)。以常温下常规施磷为对照(即CKR1),其它分别为常温下磷肥后移(即CKR2)、低温下常规施磷(即LTR1)和低温下磷肥后移(即LTR2)。通过显微镜观察小麦幼穗分化时期,于药隔期(2021年3月15日)1:00−5:00,每处理取10盆植株长势基本一致的盆栽移入超低温光照培养箱中进行低温处理,常温处理均放在大田,当日低温处理结束后将盆栽原位埋回大田生长至成熟。小麦生育期田间管理同一般大田。

1.2 项目测定

1.2.1 叶片叶绿素相对含量(SPAD)

采用日本产SPAD-502型叶绿素计,于开花期(2021年4月13日)和灌浆期(2021年4月29日)每个处理随机选取3株长势一致的小麦标记每株旗叶,测定叶片最宽处的SPAD值,求平均值作为该处理的叶片SPAD值。

1.2.2 叶片光合作用指标

于开花期(2021年4月13日)和灌浆期(2021年4月29日),在晴天9:00−11:00,采用美国产CIRAS-3便携式光合作用测定仪测定已标记小麦旗叶的净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、胞间CO2浓度(Ci)等光合指标,每个处理测定3张叶片。

1.2.3 叶片抗氧化系统指标

于开花期(2021年4月13日)和灌浆期(2021年4月29日)各处理取3株长势基本一致的小麦植株,取旗叶从叶片根部剪下,用液氮保存,带回实验室−80℃冰箱保存,用于生理生化指标测定。超氧化物歧化酶(SOD)活性采用氮蓝四唑法测定[27]。采用紫外吸收法测定过氧化氢酶(CAT)活性[27]。丙二醛(MDA)含量测定采用硫代巴比妥酸法[27]。

1.2.4 产量及其构成因素

成熟期各处理选取3株长势基本一致的小麦,测定穗粒数、单茎(主茎)产量以及千粒重。计算产量损失率及产量挽回率。

产量损失率计算式为

式中,RYL表示产量损失率(%),YT表示CKR2、LTR1和LTR2三个处理的单茎产量(g),YCK表示CKR1处理的单茎产量(g)。

产量挽回率计算式为

式中,RYR表示产量挽回率(%),YLTR1表示LTR1处理的单茎产量(g),YLTR2表示LTR2处理的单茎产量(g),YCK表示CKR1处理的单茎产量(g)。

1.3 数据处理

用Microsoft Excel 2019和OriginPro 2022进行数据整理和作图,用SPSS 26.0软件进行数据方差分析。

2 结果与分析

2.1 磷素后移对药隔期倒春寒条件下小麦旗叶叶绿素相对含量的影响

由图1可见,药隔期倒春寒导致供试两品种开花期和灌浆期旗叶叶绿素相对含量(SPAD)显著减小,YN19品种R1和R2处理开花期分别下降7.8%和5.5%,灌浆期分别下降15.6%和 10.6%;XM26品种R1和R2处理开花期分别下降15.2%和9.2%,灌浆期分别下降29.1%和25.8%,可见抗倒春寒能力强的YN19下降幅度小于抗倒春寒能力弱的XM26。磷肥后移则显著提高了XM26开花期和YN19灌浆期叶片的SPAD,分别增加7.3%和10.1%,对XM26灌浆期和YN19开花期的SPAD作用不显著。结果表明磷肥后移有利于提高药隔期遭遇倒春寒的抗倒春寒能力弱小麦品种(XM26)开花期和抗倒春寒能力强品种(YN19)灌浆期旗叶的叶绿素相对含量(SPAD)。

2.2 磷素后移对药隔期倒春寒条件下小麦旗叶光合参数的影响

药隔期倒春寒显著影响供试两品种旗叶在开花期和灌浆期的光合参数,其中Pn、Gs、Tr显著下降,Ci显著增加。磷肥后移显著影响小麦旗叶Pn、Gs、Tr和Ci光合参数(图2)。开花期LTR2处理与LTR1相比较,品种XM26的Pn显著增加16.2%,对Gs、Tr和Ci影响差异不显著;YN19的Pn、Tr分别显著增加8.5%和18.7%,Ci显著降低6.3%。灌浆期LTR2处理与LTR1相比较,品种XM26和YN19的Pn分别显著增加8.0%和8.7%,对Gs、Tr和Ci影响差异不显著。由此可见,磷肥后移可增加小麦生育中后期旗叶净光合速率,缓解药隔期倒春寒导致的光合能力下降,提高旗叶合成光合同化物的能力。

图1 两品种药隔期倒春寒条件下不同磷肥处理开花期和灌浆期小麦旗叶SPAD的比较

注:小写字母表示处理间在0.05水平上的差异显著性。CKR1为大田常温常规施磷处理,CKR2为大田常温磷肥后移处理,LTR1为低温下常规施磷处理,LTR2为低温下磷肥后移处理。短线表示标准误。下同。

Note: Lowercase letter indicates the difference significance among treatments at 0.05 leve. CKR1: conventional phosphorus fertilizer application under controlled temperature treatment; CKR2: phosphorus fertilizer postpone under controlled temperature treatment; LTR1: conventional phosphorus fertilizer application under low temperature treatment; LTR2: phosphorus fertilizer postpone under low temperature treatment. The bar is standard error. The same as below.

2.3 磷素后移对药隔期倒春寒条件下小麦旗叶抗氧化酶活性和MDA含量的影响

由图3可见,药隔期倒春寒显著降低供试两品种开花期和灌浆期旗叶SOD和CAT活性。在两温度处理下,与R1相比,R2处理均能显著增加两个供试品种旗叶的SOD和CAT 活性。开花期LTR2处理与LTR1处理相比,品种XM26的SOD活性和CAT活性分别增加9.0%和12.4%,YN19的SOD活性和CAT活性分别增加7.7%和20.8%。灌浆期LTR2处理与LTR1处理相比较,品种XM26的SOD活性和CAT活性分别增加5.7%和30.9%,YN19的SOD活性和CAT活性分别增加8.2%和25.5%。可见,磷肥后移可提高小麦生育中后期旗叶的SOD和CAT活性,增强其清除活性氧的能力,降低了药隔期倒春寒对旗叶造成的不利影响。

图2 两品种药隔期倒春寒条件下不同磷肥处理开花期和灌浆期小麦旗叶光合参数的比较

图3 两品种药隔期倒春寒条件下不同磷肥处理处理开花期和灌浆期小麦旗叶抗氧化酶活性的比较

由图4可见,药隔期倒春寒显著增加供试两品种开花期和灌浆期旗叶MDA含量,且MDA含量均表现为R2处理显著低于R1处理。CKR2处理与CKR1处理相比较,品种XM26在开花期和灌浆期MDA含量分别减少6.8%和10.4%;品种YN19在开花期和灌浆期MDA含量分别减少7.0%和9.2%。LTR2处理与LTR1处理相比较,品种XM26开花期和灌浆期MDA含量分别减少7.9%和7.3%;YN19开花期和灌浆期MDA含量分别减少6.8%和7.0%。结果表明,磷肥后移可显著降低旗叶MDA含量,缓解药隔期倒春寒导致的细胞膜脂过氧化损伤,维持旗叶的持绿性,延缓旗叶衰老进程。

图4 两品种药隔期倒春寒条件下不同磷肥处理开花期和灌浆期小麦旗叶MDA含量的比较

Fig. 4 Comparison of MDA content in flag leaves of two wheat varieties at flowering and filling stages under late spring coldness at connectivun stage with different phosphorus fertilizer treatments

2.4 磷素后移对药隔期倒春寒条件下小麦产量及其构成因素的影响

由表1可见,与CK相比,药隔期倒春寒显著降低两个供试品种穗粒数、千粒重和单茎产量。其中,品种XM26在R1和R2处理下产量损失率分别为52.79%和48.07%,YN19在R1和R2处理下产量损失率分别为44.30%和39.91%。与CKR1相比,CKR2处理下XM26和YN19的穗粒数分别增加3.5%和3.7%,千粒重分别增加4.3%和0.4%。LTR2处理与LTR1处理相比较,品种XM26和YN19的穗粒数分别增加8.4%和2.0%,千粒重分别增加1.8%和7.0%。磷肥后移有利于提高产量挽回率,品种XM26和YN19的产量挽回率分别为8.94%和9.90%。实验结果表明,磷肥后移有利于提高小麦穗粒数和千粒重,从而缓解药隔期倒春寒对小麦产量造成的损失。

3 结论与讨论

3.1 讨论

低温胁迫会诱导植物细胞产生大量的活性氧自由基(ROS),ROS过量积累与脂质发生过氧化反应产生膜脂过氧化产物丙二醛(MDA),其含量间接反映细胞膜脂过氧化程度[28−29]。ROS可通过抗氧化酶系统来清除,SOD是清除OH−的重要酶之一,反应生成的部分H2O2由CAT分解最终生成H2O和O2,使膜系统免受过氧化伤害[30]。前人研究表明,低温胁迫可提高拔节期小麦功能叶抗氧化酶活性,但仍会增加MDA含量[31]。以往研究大多集中在低温处理后叶片即时的响应机制,对低温后小麦生育中后期旗叶的生长状况研究甚少。本实验结果显示,药隔期低温处理导致供试两品种开花期和灌浆期旗叶SOD和CAT活性显著低于对照处理,MDA含量显著高于对照处理,表明药隔期低温抑制了小麦生育中后期旗叶的抗氧化酶系统活性,导致大量MDA积累,使膜系统受损。同时,XM26旗叶MDA含量在两生育时期明显高于YN19,表明XM26 旗叶膜系统受损程度高于YN19,说明抗倒春寒能力强的小麦品种在生育中后期旗叶生长状况优于抗倒春寒能力弱的品种。

表1 两品种药隔期倒春寒条件下不同磷肥处理小麦产量及其构成因素的比较

注:表中数据为平均值±标准差(n=3)。小写字母表示处理间在0.05水平上的差异显著性。

Note: Data are mean±standard deviation (n=3). Lowercase indicates the difference significance among treatments at 0.05 level. TGW is thousand grains weight, SSY is single stem yield, YLR is yield loss rate, YRR is yield recovery rate.

有学者指出,低温条件下施磷可显著提高植物叶片抗氧化酶活性[32],显著减少MDA含量[33]。以往研究发现,基肥和苗肥施用充足的磷肥可有效增加油菜苗期叶片的CAT活性,提高苗期油菜的抗冻能力[26]。本研究结果与前人结果基本一致,无论常温还是低温,磷肥后移均可显著提高供试两品种旗叶SOD和CAT活性,降低其MDA含量。表明磷肥后移可有效提高药隔期低温处理后小麦生育中后期旗叶的抗氧化酶活性,增强ROS清除能力,从而有效降低旗叶细胞膜脂过氧化程度,缓解低温胁迫带来的生长损伤,从而保证小麦“源”器官的生理活性。

旗叶作为小麦生育中后期最重要的功能叶,其光合作用是小麦籽粒灌浆的碳同化来源主要途径以及小麦产量形成的依赖因素[34],但光合作用对温度变化的响应非常敏感[35−36]。王瑞霞等研究表明,春季低温胁迫导致小麦叶片叶绿素含量、Pn、Tr和Gs均呈降低趋势,Ci则较大幅度升高[15]。本实验结果显示,药隔期低温处理后,供试两品种旗叶在开花期和灌浆期的SPAD值显著降低,其中灌浆期降幅大于开花期,抗倒春寒能力弱的品种XM26降幅大于抗倒春寒能力强的品种YN19。这说明前期低温处理影响了小麦生育中后期旗叶的持绿性,对抗倒春寒能力弱的品种损伤更加严重。药隔期低温处理后,供试两品种旗叶在开花期和灌浆期Pn、Gs、Tr均显著减小,Ci显著增加,这与前人研究结果相似[15,18]。Pn和Gs下降的同时,Ci显著增加,表明光合速率的下降是非气孔因素导致的[37]。以上结果的原因可能是药隔期低温处理减弱了小麦旗叶的生理活性,抗氧化酶活性的下降和MDA的积累导致叶肉细胞膜组织破坏,叶绿体结构受损,从而导致旗叶叶绿素含量减少,光合性能下降。

作为光合作用主要媒介之一,充足的磷可以增加植物叶片叶绿素含量,提高叶片Pn[25]。本实验结果显示,磷肥后移仅显著提高了CK处理下YN19开花期和LT处理下XM26开花期、YN19灌浆期旗叶的SPAD,这可能是由于品种特性不同导致磷肥后移作用时期不同。本实验还表明,药隔期低温处理后,磷肥后移显著提高供试两品种旗叶开花期和灌浆期的Pn,对Gs、Tr和Ci无显著影响,说明磷肥后移主要通过缓解非气孔因素来提高小麦旗叶光合速率。因此,磷肥后移可增加小麦生育中后期旗叶叶绿素含量,提高净光合速率,从而增强旗叶光合能力,为穗部干物质积累、转运及分配提供“源”动力。

药隔期低温主要通过减少叶片向穗部的干物质转运,使穗部发育受阻,结实率下降,最终导致产量下降[11]。张金恩等研究表明,低温胁迫解除后水稻由于光合产物运输受阻,产量显著下降[38]。柯媛媛等研究指出,低温胁迫严重影响小麦干物质的积累、转运及分配,抑制了小麦上部小穗的生长发育,导致产量降低[11,39]。还有研究表明,低温条件下小麦产量下降的原因主要是穗粒数的减少[40−41]。本实验条件下,药隔期低温处理导致小麦主茎穗粒数、千粒重和产量显著减少,这与岳俊芹等的研究结果相似[42]。此外,YN19的产量损失率低于XM26,表明药隔期低温后小麦减产程度与品种抗倒春寒能力强弱相关。

磷素可直接参与小麦光合同化,促进干物质积累与转运,有利于籽粒建成,增加产量[43]。本实验结果显示,磷肥后移主要通过增加XM26穗粒数和YN19千粒重来减少产量损失。表明磷肥后移主要通过提高穗部结实性来缓解药隔期低温对抗倒春寒能力弱的品种产量的影响,而对于抗倒春寒能力强的品种则主要提高其粒重来缓解产量损失。

限于盆栽实验条件等因素的影响,无法基于大田小麦苗情及土壤墒情研究倒春寒。且目前针对磷肥后移对小麦生长的缓解作用机理仅限于叶片和表层生理的研究,未来还需对小麦其他生长部位并朝着分子生物学方向进行深度考究,从而更系统、更有深度地阐明磷肥后移缓解小麦药隔期倒春寒危害的机理,为磷肥后移防控小麦倒春寒提供坚实的理论支撑。

3.2 结论

(1)药隔期倒春寒会减弱小麦开花期和灌浆期旗叶的生理活性,减少叶绿素含量,降低净光合速率,最终减少主茎的穗粒数和千粒重,导致产量损失严重。

(2)磷肥后移可提高小麦旗叶抗氧化酶活性,减少MDA积累,降低细胞膜脂过氧化程度,从而维持ROS平衡,提高叶片生理活性;进而提高旗叶的SPAD和Pn,维持较高的光合能力,以此提高穗部穗粒数和千粒重,减少产量损失。

(3)与常规“一炮轰”施磷方式相比,磷肥后移增加抗倒春寒能力强的品种YN19的粒重,缓解药隔期倒春寒导致的产量损失;对于倒春寒能力弱的品种XM26则通过提高其穗部结实率,可挽回一定产量损失。因此,磷肥后移可作为黄淮麦区小麦生产中防控倒春寒灾害的有效措施。

[1] IPCC.Climate Change 2021:the physical science basis. Contribution of working group Ⅰ to the Sixth assessment report of the intergovernmental panel on climate change[R].Cambridge:Cambridge University Press,2021.

[2] Hassan M A,Xiang C,Farooq M,et al.Cold stress in wheat: plant acclimation responses and management strategies[J]. Frontiers in Plant Science,2021,12:676884.

[3] Osman R,Zhu Y,Ma W,et al.Comparison of wheat simulation models for impacts of extreme temperature stress on grain quality[J].Agricultural and Forest Meteorology, 2020,288:107995.

[4] Xiao L,Liu L,Asseng S,et al.Estimating spring frost and its impact on yield across winter wheat in China[J]. Agricultural and Forest Meteorology,2018,260:154-164.

[5] Chen C Q,Lu W T,Sun X S,et al.Regional differences of winter wheat phenophase and grain yields response to global warming in the Huang-Huai-Hai plain in China since 1980s[J].International Journal of Plant Production, 2018,12(1):33-41.

[6] Xiao D,Bai H,Liu D L.Impact of future climate change on wheat production:a simulated case for China's wheat system[J].Sustainability,2018,10(4):1277.

[7] Hao Z,Geng X,Wang F,et al.Impacts of climate change on agrometeorological indices at winter wheat overwintering stage in northern China during 2021-2050[J].International Journal of Climatology,2018,38(15):5576-5588.

[8] 王永华,李金才,魏凤珍,等.小麦冻害类型、诊断特征及其预防对策与补救措施[J].中国农学通报,2006(4):345-348.

Wang Y H,Li J C,Wei F Z,et al.Types of freeze injury and diagnostic characteristics of winter wheat and prevention measure and salvage measure[J].Chinese Agricultural Science Bulletin,2006(4):345-348.(in Chinese)

[9] 李金才,陈翔,刘惠惠,等.安徽省地方标准《DB34/T 3736- 2020》:小麦倒春寒综合防控技术规程[S].安徽省市场监督管理局,2020.

Li J C,Chen X,Liu H H,et al.Local standards of Anhui province(DB34/T 3736-2020):technical regulation for comprehensive prevention and control of late spring coldness in wheat[S].Anhui Market Supervision and Administration Bureau,2020.(in Chinese)

[10] 李春燕,徐雯,刘立伟,等.低温条件下拔节期小麦叶片内源激素含量和抗氧化酶活性的变化[J].应用生态学报, 2015,26(7):2015-2022.

Li C Y,Xu W,Liu L W,et al.Changes of endogenous hormone contents and antioxidative enzyme activities in wheat leaves under low temperature stress at jointing stage[J].Chinese Journal of Applied Ecology,2015,26(7): 2015-2022.(in Chinese)

[11] 柯媛媛,陈翔,张乐乐,等.药隔期低温胁迫对小麦干物质积累、转运和分配及产量的影响[J].安徽农业大学学报, 2021,48(5):701-706.

Ke Y Y,Chen X,Zhang L L,et al.Effects of low temperature stress at anther connective stage on dry matter accumulation,translocation and distribution and grain yield of wheat[J].Journal of Anhui Agricultural University,2021, 48(5):701-706.(in Chinese)

[12] 陈翔,于敏,蔡洪梅,等.小麦倒春寒研究现状与进展[J].应用生态学报,2021,32(8):2999-3009.

Chen X,Yu M,Cai H M,et al.Current status and research advances of late spring coldness in wheat[J].Chinese Journal of Applied Ecology,2021,32(8):2999-3009.(in Chinese)

[13] 张乐乐,陈翔,柯媛媛,等.冬小麦抗倒春寒性能鉴定方法和指标的比较[J].中国农业气象,2021,42(2):146-157.

Zhang L L,Chen X,Ke Y Y,et al.An inclusive comparison of identification methods and indices of winter wheat tolerance against late spring coldness[J].Chinese Journal of Agrometeorology,2021,42(2):146-157.(in Chinese)

[14] Zhang W J,Huang Z L,Wang Q,et al.Effects of low temperature on leaf anatomy and photosynthetic performance in different genotypes of wheat following a rice crop[J].International Journal of Agriculture and Biology, 2015,17(6):1165-1171.

[15] 王瑞霞,闫长生,张秀英,等.春季低温对小麦产量和光合特性的影响[J].作物学报,2018,44(2):288-296.

Wang R X,Yan C S,Zhang X Y,et al.Effect of low temperature in spring on yield and photosynthetic characteristics of wheat[J].Acta Agronomica Sinica,2018, 44(2):288-296.(in Chinese)

[16] 刘蕾蕾,纪洪亭,刘兵,等.拔节期和孕穗期低温处理对小麦叶片光合及叶绿素荧光特性的影响[J].中国农业科学,2018,51(23):4434-4448.

Liu L L,Ji H T,Liu B,et al.Effects of jointing and booting low temperature treatments on photosynthetic and chlorophyⅡ fluorescence characteristics in wheat leaf[J]. Scientia Agricultura Sinica,2018,51(23):4434-4448.(in Chinese)

[17] 张军,鲁敏,孙树贵,等.拔节期低温胁迫对小麦生理生化特性和产量的影响[J].西北农业学报,2014,23(2):73-79.

Zhang J,Lu M,Sun S G,et al.Changes of physiological and biochemical parameters and grain yield at jointing stage of wheat under low temperature stress[J].Acta Agriculturae Boreali-occidentalis Sinica,2014,23(2):73-79.(in Chinese)

[18] 葛君,姜晓君,任德超,等.低温胁迫对拔节期小麦抗氧化系统及光合能力的影响[J].天津农业科学,2021,27(9):5-9.

Ge J,Jiang X J,Ren D C,et al.Effects of low temperature stress on antioxidant system and photosynthetic capacity of wheat at jointing stage[J].Tianjin Agricultural Sciences, 2021,27(9):5-9.(in Chinese)

[19] Liu L,Ji H,An J,et al.Response of biomass accumulation in wheat to low-temperature stress at jointing and booting stages[J].Environmental and Experimental Botany,2019, 157:46-57.

[20] Zhang W,Zhao Y,Li L,et al.The effects of short-term exposure to low temperatures during the booting stage on starch synthesis and yields in wheat grain[J].Frontiers in Plant Science,2021,12:684784.

[21] Zhang W,Wang J,Huang Z,et al.Effects of low temperature at booting stage on sucrose metabolism and endogenous hormone contents in winter wheat spikelet[J].Frontiers in Plant Science,2019,10:498.

[22] Alewell C,Ringeval B,Ballabio C,et al.Global phosphorus shortage will be aggravated by soil erosion[J].Nature Communications,2020,11(1):4546.

[23] 田志杰,李景鹏,杨福.非生物胁迫下作物磷素利用研究进展[J].生态学杂志,2017,36(8):2336-2342.

Tian Z J,Li J P,Yang F.Progress in crop phosphorus utilization under abiotic stresses[J].Chinese Journal of Ecology,2017,36(8):2336-2342.(in Chinese)

[24] 侯立刚,陈温福,马巍,等.低温胁迫下不同磷营养对水稻叶片质膜透性及抗氧化酶活性的影响[J].华北农学报,2012,27(1):118-123.

Hou L G,Chen W F,Ma W,et al.Effects of different phosphate fertilizer application on permeability of membrane and antioxidative enzymes in rice under low temperature stress[J].Acta Agriculturae Boreali-sinica, 2012,27(1):118-123.(in Chinese)

[25] 侯立刚,马巍,齐春艳,等.低温条件下磷肥对水稻幼苗耐冷性及相关生理特性的影响[J].东北农业大学学报,2013, 44(7):39-45.

Hou L G,Ma W,Qi C Y,et al.Effect of phosphate fertilizer application on cold tolerance and its related physiological paremeters in rice under low temperature stress[J].Journal of Northeast Agricultural University,2013,44(7):39-45.(in Chinese)

[26] 张政文,胡乃娟,顾泽海,等.肥料运筹对苗期油菜抗冻性的影响[J].南京农业大学学报,2015,38(1):1-7.

Zhang Z W,Hu N J,Gu Z H,et al.Effects of fertilizer application patterns on the seeding rape freezing resistance[J].Journal of Nanjing Agricultural University, 2015,38(1):1-7.(in Chinese)

[27] 李合生.植物生理生化实验原理与技术[M].北京:高等教育出版社,2000.

Li H S.The principle and technology of plant physiology and biochemistry experiment[M].Beijing:Higher Education Press,2000.(in Chinese)

[28] Hossain M A,Bhattacharjee S,Armin S,et al.Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging[J]. Frontiers in Plant Science,2015(6):420.

[29] 柯媛媛,陈翔,倪芊芊,等.低温逆境胁迫下小麦ROS代谢及调控机制研究进展[J].大麦与谷类科学,2021,38(1):1-6.

Ke Y Y,Chen X,Ni Q Q,et al.Research progress of the metabolism of reactive oxygen species and its regulation mechanisms in wheat under low temperature stress[J]. Barley and Cereal Sciences,2021,38(1):1-6.(in Chinese)

[30] Huang H,Ullah F,Zhou D,et al.Mechanisms of ROS regulation of plant development and stress responses[J]. Frontiers in Plant Science.2019,10:800.

[31] 姜丽娜,张黛静,宋飞,等.不同品种小麦叶片对拔节期低温的生理响应及抗寒性评价[J].生态学报,2014,34(15): 4251-4261.

Jiang L N,Zhang D J,Song F,et al.Evaluation of cold resistance of different wheat varieties based on physiological responses of leaves to low temperature at the jointing stage[J].Acta Ecologica Sinica,2014,34(15):4251-4261.(in Chinese)

[32] 王天,宋佳承,闫士朋,等.低温胁迫下磷肥施用量对油橄榄生长发育的影响[J].植物营养与肥料学报,2020,26(5): 879-890.

Wang T,Song J C,Yan S P,et al.Growth and development of olive under low temperature stress influenced by phosphate fertilizer application[J].Journal of Plant Nutrition and Fertilizers,2020,26(5):879-890.(in Chinese)

[33] 陈卫东,张玉霞,丛百明,等.磷肥对冷冻胁迫下紫花苜蓿根颈抗氧化特性的影响[J].西北农林科技大学学报(自然科学版),2021,49(12):58-66.

Chen W D,Zhang W X,Cong B M,et al.Physiological and antioxidant activities of phosphate fertilizers on alfalfa roots under freezing stress[J].Journal of Northwest A&F University(Nat.Sci.Ed.),2021,49(12):58-66.(in Chinese)

[34] 李义博,陶福禄.提高小麦光能利用效率机理的研究进展[J].中国农业气象,2022,43(2):93-111.

Li Y B,Tao F L.Research progress on the mechanism of high light use efficiency in wheat[J].Chinese Journal of Agrometeorology,2022,43(2):93-111.(in Chinese)

[35] Zhang Z,Wu P,Zhang W,et al.Calcium is involved in exogenous NO-induced enhancement of photosynthesis in cucumber (L.) seedlings under low temperature[J].Scientia Horticulturae.2020,261:108953.

[36] 常翠翠,张东升,郝兴宇,等.CO2浓度与温度升高对冬小麦叶片光合与快速叶绿素荧光特征的影响[J].植物生理学报,2021,57(4):919-928.

Chang C C,Chen D S,Hao X Y,et al.Effects of elevated CO2concentration and increased temperature on the photosynthesis and fast chlorophyⅡ fluorescence of winter wheat leaves[J].Plant Physiology Journal,2021, 57(4):919-928.(in Chinese)

[37] 陈思思,李春燕,杨景,等.拔节期低温冻害对扬麦16光合特性及产量形成的影响[J].扬州大学学报(农业与生命科学版),2014,35(3):59-64.

Chen S S,Li C Y,Yang J,et al.Effect of low temperature at jointing stage on photosynthetic characteristics and yield in wheat cultivar Yangmai 16[J].Journal of Yangzhou University(Agricultural and Life Science Edition),2014, 35(3):59-64.(in Chinese)

[38] 张金恩,聂秋生,李迎春,等.颖花分化期低温处理对早稻叶片光合能力和产量的影响[J].中国农业气象,2014,35 (4):410-416.

Zhang J E,Nie Q S,Li Y C,et al.Effects of low temperature stress on the photosynthetic capacity and yield components of early rice at spikelet differentiation stage[J].Chinese Journal of Agrometeorology,2014,35(4):410-416.(in Chinese)

[39] Zhang Y,Liu L,Chen X,et al.Effects of low-temperature stress during the anther differentiation period on winter wheat photosynthetic performance and spike-setting characteristics[J].Plants(Basel, Switzerland),2022,11(3):389.

[40] Ji H,Xiao L,Xia Y,et al.Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat[J].Agricultural and Forest Meteorology,2017, 243:33-42.

[41] Liu L,Xia Y,Liu B,et al.Individual and combined effects of jointing and booting low-temperature stress on wheat yield[J].European Journal of Agronomy,2020,113:125989.

[42] 岳俊芹,张素瑜,李向东,等.低温胁迫对小麦叶绿素荧光参数及产量的响应[J].麦类作物学报,2021,41(1):105-110.

Yue J Q,Zhang S Y,Li X D,et al.Effect of low temperature stress on chlorophyⅡ fluorescence parameters and yiled of wheat[J].Journal of Triticeae Crops,2021,41(1):105- 110.(in Chinese)

[43] 郑有飞,李萍,吴芳芳,等.太阳辐射减弱和O3增加对冬小麦植株磷含量、分配和转运的影响[J].中国农业气象, 2012,33(3):402-411.

Zheng Y F,Li P,Wu F F,et al.Effects of reduced solar irradiance and enhanced O3on phosphorus concentration, distribution and translocation of winter wheat plant[J]. Chinese Journal of Agrometeorology, 2012,33(3):402- 411.(in Chinese)

Effects of Phosphorus Fertilizer Postpone on Photosynthesis and Antioxidant System of Wheat Flag Leaves under Late Spring Coldness at Connectivum Stage

SUN Dong-yue1, XU Hui1, LIU Qian-qian1, XU Bo1, WU Zhao-chen1, WEI Feng-zhen1, CHEN Xiang1, LI Jin-cai1,2

(1. College of Agronomy, Anhui Agricultural University/Crop cultivation Science Observatory in East China of the Ministry of Agriculture and Rural Affairs,Hefei 230036, China;2.Collaborative Innovation Center of Modern Crop Production in Jiangsu, Nanjing 210095)

In order to explore the alleviating mechanism of phosphorus fertilizer postpone on the growth of wheat flag leaves under late spring coldness at connectivum stage, the low temperature simulation experiment of pot was carried out by using the artificial climate chamber with the wheat variety "Yannong 19" (YN19, strong resistance to reversed late spring coldness) and the wheat variety "Xinmai 26" (XM26 weak resistance to reversed late spring coldness) as experimental materials. In the experiment, two temperature treatments were set at connectivum stage of wheat: control(average daily temperature 15℃, minimum night temperature 11℃, CK) and low temperature(−4℃, LT), and two phosphorus fertilizer application modes: conventional phosphorus fertilizer application which all of phosphorus fertilizer was applied as base fertilizer and phosphorus fertilizer postpone which half of phosphorus fertilizer was applied as jointing fertilizer. The low temperature treatment lasted for 4h·d−1. Photosynthetic and antioxidant physiological indices of flag leaves at flowering and grain filling stage and yield were analyzed. The results showed as follows: (1) compared with CK, the relative chlorophyll content (SPAD value), net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) of flag leaves in LT treatment significantly decreased(P<0.05), while the intercellular CO2concentration (Ci) significantly increased. (2) Compared with CK, LT treatment significantly decreased the activities of SOD and CAT, and significantly increased the content of malondialdehyde (MDA). (3) Under the experimental conditions, LT treatment significantly reduced the number of grains per spike, 1000 grains weight and single stem yield of the two varieties compared with CK treatment. (4) Compared with LTR1, the SPAD value of XM26 flag leaves at flowering stage and YN19 flag leaves at grain filling stage under LTR2 treatment were significantly increased by 7.3% and 10.1%, respectively. Pn of XM26 and YN19 flag leaves was significantly increased by 8.5% and 19.0% at flowering stage, 8.0% and 8.7% at grain filling stage, and there was no significant difference in Gs, Tr and Ci. (5) Compared with LTR1, SOD activity, CAT activity and MDA content of XM26 flag leaves at flowering and grain filling stages of LTR2 in were significantly increased by 9.0% and 5.7%, 12.4% and 30.9%, and 7.9% and 7.3%, respectively; SOD activity, CAT activity and MDA content of YN19 flag leaves at flowering and grain filling stages of LTR2 were significantly increased by 7.7% and 8.2%, 20.8% and 25.5%, and 6.8% and 7.0%, respectively. (6) Compared with R1, R2 significantly increased the grain number per spike of XM26 by 8.4% after LT treatment, but had no significant effect on the 1000 grains weight of the two cultivars. The yield recovery rates of XM26 and YN19 per stem could reach 8.9% and 9.9%. In conclusion, delayed phosphorus transfer can effectively enhance the antioxidant capacity of wheat flag leaf cells, reduce the degree of membrane lipid peroxidation, and improve the photosynthetic capacity of wheat flag leaf cells. Through the synergistic alleviation of antioxidant and photosynthetic capacity, the growth of flag leaves in the middle and late stage of wheat growth under reversed late spring coldness at connectivum stage, the number of grains per spike and 1000 grains weight of main stem were increased, the "source" was maintained and the "reservoir" was increased, and the effects of disaster free, stable and increased yield, disaster reduction and loss stopping were achieved.

Late spring coldness; Phosphate; Wheat; Photosynthetic; Antioxidant system

10.3969/j.issn.1000-6362.2023.02.004

孙东岳,许辉,刘倩倩,等.磷素后移对药隔期倒春寒小麦旗叶光合及抗氧化系统的影响[J].中国农业气象,2023,44(2):123-132

收稿日期:2022−03−10

安徽省自然科学基金(2008085QC122);安徽省重大科技专项(202003b06020021);淮北市重大科技专项(HK2021013);“十四五”安徽省现代农业产业技术体系建设专项资金;安徽省大学生创新创业训练计划(S202110364291)

通讯作者:李金才,教授,博士生导师,研究方向为作物生理生态,E-mail:ljc5122423@126.com;陈翔,讲师,硕士生导师,研究方向为作物生理生态,E-mail:cxagricultural@163.com

孙东岳,E-mail: ahausdy@stu.ahau.edu.cn

猜你喜欢
旗叶开花期磷肥
高寒草原针茅牧草花期物候变化特征及其影响因子分析
不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应
印度磷肥需求提升
印度磷肥采购量增加
水分亏缺对小麦芒和旗叶光合特性及蔗糖、淀粉合成的影响
旗叶衰老产量差异 可作小麦优选依据
全球磷肥价格上涨
抽穗后不同时期去除旗叶对不同穗型小麦产量的影响
印度磷肥需求提升
初春气象条件对苹果开花期的影响分析