荧光探针在涂层中的应用及机理研究进展

2023-11-06 07:35杜娟魏士钧石玉超刘礼平汪鸿宇宋海鹏
表面技术 2023年10期
关键词:热障防伪机理

杜娟,魏士钧,石玉超,刘礼平,汪鸿宇,宋海鹏*

荧光探针在涂层中的应用及机理研究进展

杜娟1,魏士钧1,石玉超2,刘礼平1,汪鸿宇1,宋海鹏1*

(1.中国民航大学,天津 300300;2.北京机械设备研究所,北京 100854)

随着现代科技的发展,对涂层性能提出了越来越高的要求,其应用环境也越来越苛刻,如腐蚀、高温和特殊识别等环境。在涂层中引入荧光探针是解决上述问题的重要途径。概括了荧光探针在涂层中的研究进展,并重点介绍了荧光探针在防腐涂层、热障涂层和防伪加密涂层中的应用和机理。将荧光探针用于防腐涂层,可赋予涂层特殊功能,可针对腐蚀起到自预警作用,重点介绍了pH响应型荧光探针、腐蚀离子响应型荧光探针、机械触发响应型荧光探针等在防腐涂层领域的作用机理;将荧光探针用于热障涂层,主要用于监测和分析高温环境,在紫外/可见光源激发下,通过测量磷光层发出的与温度相关的磷光信号来监测热障涂层的温度;将荧光探针用于防伪加密涂层,使得防伪加密涂层在特定条件下可以响应并发出荧光,可用于信息的加密存储、贵重物品的防伪识别等。重点介绍了热敏变色防伪涂层、光敏变色防伪涂层、湿敏变色防伪涂层、压敏变色防伪涂层的机理。指出了目前基于荧光探针的涂层仍存在的问题,并对未来的发展方向进行了展望。

荧光探针;涂层;机理;腐蚀;自预警

荧光探针[1-3]一般由3个部分构成:具有识别作用的识别基团;具有信息传递作用的荧光基团;具有连接以上两者作用的连接基团。当被测物与荧光分子接触后,其光学物理性质会发生改变,通过连接基团把信息传递给荧光基团,荧光基团获得响应,使得荧光信号发生变化[4-5]。将荧光探针负载到涂层中,可赋予涂层特殊的荧光响应性能,它在金属腐蚀、金属高温监测和防伪加密等领域均有广泛应用。在金属腐蚀预警领域,美国腐蚀工程协会的研究结果表明:金属腐蚀在全球范围内每年造成的直接经济损失高达2.2万亿美元[6]。虽然金属腐蚀的发生无法避免,但可以做到早期的金属腐蚀预警和金属防护工作。基于金属的腐蚀机理,将荧光探针负载到涂层中可用于金属防腐,达到腐蚀自预警的目的[7]。在金属高温监测领域,随着航空发动机的不断发展,航空发动机的进气温度不断提高,其涡轮进口温度达到1 400 K,叶片的表面温度远远高于基底合金材料的极限温度。航空发动机的高温检测方法大多采用热电偶、示温片、铂电阻等方式[8],存在价格高昂、对高转速运转叶片测温困难、受环境影响大、无法多次使用、不能长期在高温条件下服役等弊端。热障涂层(The Thermal Barrier Coating,TBC)技术作为先进航空发动机和地面燃气轮机的关键技术,由隔热性能优良的陶瓷层和起缓冲作用的金属黏结层构成,避免高温燃气与高温合金基体直接接触,并以稀土元素为荧光探针,测量合金基体的温度,降低和监控高温合金的工作温度,对基体形成有效保护,达到延长发动机工作寿命、提高热机效率的目的。在防伪加密领域,利用荧光物质对温度的多种响应模式进行温度测量,对远程测温技术的发展意义重大。在大数据时代背景下,国家、企业之间的竞争日益多元化,信息的防伪加密显得愈加重要。特别是最近十几年来,学者们研究了标记、等离子体标签[9]、磁性标签[10]、全息图[11]、荧光[12]等技术,并用于防伪和加密领域。其中,荧光信息防伪加密技术具有可见性高、颜色种类多、通量高和设计成本低等诸多优势。将基于碳点、半导体点、金属有机框架、稀土元素和有机染料的荧光探针用于制备防伪加密涂层,使得涂层在特定条件下做出响应,并发出荧光,从而赋予涂层荧光防伪能力,在贵重物品的防伪识别、加密领域具有重要作用。综上可知,将荧光探针应用于涂层领域,可实现涂层的自预警、测温和防伪加密等功能,具有十分重要的研究和应用价值[13-15]。

自然界中具有荧光效应的放射性元素是荧光探针的前身,1916年意大利军火商沛纳海根据军方要求,制造了一种以镭为基础的发光材质,用作仪器和表盘上的夜光涂剂,命名为“RADIOMIR”,成为世界上最早的荧光涂层[16]。经过数十年的发展,各国学者对荧光物质进行了深入研究,设计并制备出更多功能强大、性能优异的荧光物质,使得荧光探针的应用更加多元化[17-19]。除了传统的荧光物质外,还开发了多响应、多受体的荧光探针,多种受体得以可视化[20-22]。在金属腐蚀领域,Dujols等[23]在1997年设计并合成了罗丹明衍生物的荧光探针,该荧光探针具有特异性识别并螯合Fe3+发出荧光的特性,对钢材具有早期腐蚀预警效果。Li等[24]以苯氟酮(PF)为荧光探针,制备了一种用于监测铝合金腐蚀的丙烯酸荧光传感涂层,实验结果表明腐蚀区域在光学显微镜和扫描电子显微镜下均可被观测。Fan等[25]合成了基于罗丹明B的铝离子荧光探针,并以MOF为纳米容器,可自动检测和区分环氧涂层下基材铝的损伤和腐蚀。2009年,吴松林等[26]将8-羟基喹啉(8-HQ)作为荧光探针,并将其混入环氧涂层,涂敷在LY12铝合金表面,实验结果证明,8-HQ与铝离子(Al3+)发生螯合反应后会发出绿色荧光,表明该荧光监测方法在预测铝合金早期腐蚀方面具有明显效果。Wang等[27]将罗丹明衍生物(RHS)作为荧光探针,并以金属有机骨架(ZIF-8)为纳米容器,将其混入环氧树脂中,在白铜表面制备防腐涂层。实验结果表明,该荧光探针可在腐蚀微区与铜离子发生反应,发出玫瑰红色荧光,能起到腐蚀预警作用。荧光探针在金属高温监测领域也得到了广泛应用,在20世纪末,Amano等[28]和Choy等[29]提出,可通过添加少量稀土元素来改变热障涂层的组成,使得热障涂层具有磷光性质,这种带有磷光性质的热障涂层被称为“热障传感涂层”(Sensor TBC)。Zhao等[30]以铕离子(Eu3+)为荧光探针,并混入钇稳定二氧化锆(YSZ)热障涂层,制成了荧光热障涂层YSZ:Eu。结果表明,Eu3+的荧光特性可用于高温合金的非接触测量。荧光探针在防伪加密领域的信息加密存储、防伪识别等方面也具有巨大作用。郭凌华等[31]将稀土铕配合物Eu(L)3作为荧光探针,并混入改性油墨,制成防伪涂层。结果表明,该防伪涂层在紫外线照射下会发出红色荧光。张为等[32]以稀土元素铽(Tb)为荧光探针,并混入甲基丙烯酸正丁酯制成防伪涂层。结果表明,该防伪涂层在日光下无色,在红外线照射下会发出绿色荧光。虽然已有较多的荧光探针应用研究报道,但系统综述荧光探针应用于涂层的研究仍较少。这里以国内外相关文献为参考,归纳总结了荧光探针在涂层中的应用、机理等方面的研究进展(如图1所示),并提出有待进一步研究的问题,还对未来的发展趋势进行了展望。

1 荧光探针在涂层中的应用

1.1 防腐涂层

将荧光探针应用于防腐涂层,可赋予涂层特殊功能,针对腐蚀具有预警作用。加入荧光探针的防腐涂层可对pH、金属离子等作出选择性响应,响应发生时产生的颜色或荧光变化能够在金属基底严重损坏前发出警示。

在金属表面涂层中引入对pH或金属离子敏感的荧光传感器,以预测金属的早期腐蚀。Exbrayat等[33]以罗丹明B衍生物为荧光探针,并嵌入介孔二氧化硅纳米胶囊,再将其溶于聚乙烯醇缩丁醛(PVB)中,制成了荧光探针/聚合物复合涂层,并以304不锈钢为基底进行测试,结果如图2所示。铁离子(Fe3+)通过多孔的二氧化硅胶囊外壳扩散进入核心,并与罗丹明B衍生物发生螯合反应,从而发出亮黄色荧光,可以起到腐蚀预警作用,进而快速预测不锈钢的早期腐蚀。

Su等[34]利用4-(1,2,2-三苯基乙烯基)苯甲醛(TBA)和1H-吲唑-3-胺(DA)进行碱缩合反应,合成了一种聚集诱导发光物质(TPM)的荧光探针,将此荧光探针混入环氧树脂后,制备出TPM质量分数为0.5%的环氧涂层,并以Q235钢为基底进行了测试。结果表明,该涂层在酸性环境中存在显著的荧光“开启”现象,该涂层在日光和紫外线灯照射下的照片如图3所示。

Lv等[35]将罗丹明B酰基肼(RBA)作为荧光探针,将其负载到层状双氢氧化物(LDHs)中,在碳钢表面制备了RBA/LDHs/环氧涂层。结果表明,与将RBA直接添加到涂层中相比,将其负载到LDHS中所制备的涂层具有更好的荧光预警效果,对比结果如图4所示。

Augustyniak等[36]以罗丹明基衍生物(FD1)为荧光探针,将其混入环氧涂层中,并以1052铝合金为基体进行了测试。如图5所示,当腐蚀发生时,腐蚀区域在紫外线照射下会发出亮黄色荧光,在自然光下呈淡红色。

1.2 热障涂层

热障涂层能在很大程度上拓展了高温合金的温度使用范围。将荧光探针用于热障涂层,主要用于监测和分析高温环境。该技术通过测量与温度相关的荧光信号特征,例如光谱特征、强度和寿命,来测量温度[37-38]。

图1 荧光探针在涂层中的应用及机理

图2 涂有荧光探针/聚合物复合涂层的304不锈钢基底上的腐蚀部位荧光检测照片[33]

Feist等[39]将稀土掺杂离子Eu(铕)作为荧光探针,混入钇稳定二氧化锆(YSZ)热障涂层,制备了YSZ:Eu热障传感涂层,如图6所示。将YSZ:Eu荧光强度与800 ℃黑体辐射强度进行对比发现,YSZ:Eu的最低荧光强度仍高于800 ℃黑体辐射的强度。说明在高温状态下,荧光信号仍可被检测,证明可利用YSZ:Eu的热致发光性测量温度。Yu等[40]将稀土掺杂离子镝(Dy)作为荧光探针,混入钇铝石榴石(YAG)热障涂层,制备了YAG:Dy热障传感涂层。结果表明,YAG:Dy热障传感涂层可监测的温度区间为300~1 300 K。如图7所示,实线和虚线分别为燃烧前后热障传感涂层荧光发射率随温度的变化曲线,表明在燃烧的低氧环境中,YAG:Dy热障传感涂层的温度发射光谱基本不受氧猝灭的影响。

图3 Q235不锈钢表面掺杂质量分数0.5%TPM的环氧涂层在质量分数3.5%的氯化钠中浸泡不同时间的图片[34]

图4 RBA/LDHs/环氧涂层和RBA/环氧涂层的腐蚀检测性能荧光显微和普通光学照片[35]

图5 1052铝合金暴露于质量分数3.5%的氯化钠溶液中的图片[36]

杨丽霞[41]以Eu和Dy为荧光探针,将其分别掺杂到YSZ热障涂层中,并对其荧光性能进行比较,其荧光光学照片如图8所示。其中,YSZ:Eu荧光层为红色发射光,而YSZ:Dy荧光层为橙黄色发射光。结果表明,YSZ:Eu可以测量的温度范围为400~800 ℃;YSZ:Dy可以测量的温度范围为500~900 ℃,两者均表现出良好的温度敏感性,且YSZ:Dy的测温上限高于YSZ:Eu。

图6 在591 nm的背景波长观测下荧光信号的强度与800 ℃温度下的黑体辐射强度的对比[39]

图7 燃烧前后YAG:Dy热障传感涂层荧光发射率随温度的变化[40]

Skinner等[42]将Dy作为稀土掺杂离子,混入YSZ/YAG复合热障涂层,制备了YSZ/YAG:Dy复合热障荧光涂层。实验结果表明,该种新型复合热障荧光涂层的温度测量上限为1 423 K,高于使用单一材料的热障涂层(在同一测试条件下,YSZ:Dy热障涂层的温度测量上限为1 273 K)。证明该涂层的高温测量能力比使用单一材料的效果更好。在性能方面,寿命衰减曲线表明YSZ/YAG:Dy复合热障荧光涂层的性能优于单一材料的YSZ:Dy热障涂层。Kissel等[43]以Eu3+为稀土掺杂离子,分别混入YAG和铝酸钇(YAP)热障涂层,制备了YAG:Eu和YAP:Eu热障荧光涂层。结果表明,YAG:Eu和YAP:Eu的温度敏感范围分别为1 000~1 470 K、850~1 300 K,用于对比的热障荧光涂层Y2O3:Eu的温度敏感范围为770~ 1 470 K,且YAG:Eu和YAP:Eu对氧浓度的敏感性更低。说明这2种涂层比Y2O3:Eu更适合在发动机燃烧的低氧环境中使用。

图8 荧光热障涂层横截面的荧光光学图[41]

1.3 防伪加密涂层

将荧光探针与树脂黏合剂、助剂等结合在一起,得到防伪加密涂层,使得防伪加密涂层在特定条件下会作出响应,发出荧光。由此可见,防伪加密涂层可用于信息的加密存储、贵重物品的防伪识别等方面,并展现出巨大的应用前景[44]。

魏俊青等[45]以铕离子(Eu3+)为中心,以苯甲酰丙酮(BZA)、邻菲咯啉(Phen)为配体,在无水乙醇中合成了荧光探针Eu(BZA)3Phen,并将其混入TN243树脂油,制备了防伪荧光涂层。实验结果表明,该涂层在可见光下为无色,在紫外灯下呈红色,可用于防伪包装印刷。Zhai等[46]以高荧光的掺杂碳量子点(CQDs)为荧光探针,制备了水溶性防伪荧光涂层。结果表明,CQDs在可见光下为无色,在紫外灯下会发出青色荧光,结果如图9所示。

图9 以CQDs溶液书写的汉字“光”在日光(a)和365 nm紫外线下(b)的数码照片[46]

Talebnia等[47]以香豆素为荧光探针,将其混入醇酸聚酯树脂,制备了防伪荧光涂层,结果如图10所示。在日光下涂层呈黄色,在紫外灯照射下涂层发出亮绿色荧光。Liang等[48]以高水溶性LuVO4:Eu纳米颗粒为荧光探针,并以水为溶剂,制备了荧光油墨。结果表明,该荧光油墨在紫外灯下呈红色,满足防伪要求。Zhang等[49]以氟碳量子点(F-CDs)为荧光探针,设计并合成了聚氟烷基侧链(F-WPU)水性聚氨酯,将F-CDs和F-WPU混入明胶中制成防伪荧光涂层,并在涤纶树脂(PET)上进行印刷实验,结果如图11所示。该防伪荧光涂层在紫外灯下会发出蓝色荧光,且经多次荧光涂层牢固程度实验后,其荧光强度基本不变。

图10 荧光涂层在日光(a)和365 nm紫外光下(b)的显色图像[47]

综上所述,对荧光探针在防腐涂层、热障涂层和防伪加密涂层这3个领域的实际应用进行了总结和归纳,如表1所示。

图11 PET薄膜上印刷图案的牢固度测试图像[49]

表1 荧光探针在3种类型涂层中的应用总结

Tab.1 Summary for use of fluorescent probes in three types of coatings

2 荧光探针用于涂层的机理

2.1 防腐涂层

在发生腐蚀时伴随着防腐涂层内部物质结构或环境的变化,从防腐机理的角度出发,将防腐涂层的荧光探针分为3种:pH响应型荧光探针、腐蚀离子响应型荧光探针、机械触发响应型荧光探针[50-52]。下面分别介绍这3种荧光探针在涂层中的作用机理。

2.1.1 pH响应型荧光探针

pH响应型荧光探针的机理:主要采用对pH变化敏感的物质,如酚酞(phph)、香豆素等物质,与腐蚀微区阴极产生的氢离子或氢氧根离子发生作用,并发出荧光,从而对金属材料的早期腐蚀作出预警。

Galvão等[53]以二氧化硅为纳米容器负载酚酞作为荧光探针,将该荧光探针混入丙烯酸聚氨酯,制备荧光涂层,并以2024铝合金为基底,该荧光响应机理如图12所示。结果表明,金属腐蚀产生的氢氧根阴离子会进入二氧化硅纳米容器中,并与酚酞发生显色反应,其颜色从无色变为粉红色,从而具有早期腐蚀预警功能。

Maia等[54]将pH指示剂酚酞封装在二氧化硅纳米容器中作为荧光探针,将该荧光探针混入环氧树脂,制备出荧光涂层,并以铝和镁合金作为金属基底进行水浸泡实验,其荧光响应机理如图13所示。在涂层表面划痕处,氧气与水发生了还原反应,并生成了氢氧根阴离子,在缺陷处形成了碱性环境,随后氢氧根阴离子与固定在二氧化硅纳米容器中的酚酞发生反应,其缺陷处从无色变成粉红色。

图12 SiNC-PhPh荧光探针在AA2024铝合金基体上的响应机理[53]

Wang等[55]以酚酞和香豆素为荧光物质,将其分别负载于具有“核–壳”结构的微球中,然后将微球混入丙烯酸树脂涂层中,并以碳钢为基底进行实验,其荧光响应机理如图14所示。在未发生腐蚀时,微球的羟基基团和羰基基团被氢键吸引,使得荧光指示剂不会泄漏。在碱性条件下,羟基基团中的H被OH−剥夺,在静电排斥作用下,微球中的微孔变大,酚酞或香豆素被释放。结果表明,香豆素在pH>9时会发出亮绿色荧光,酚酞与香豆素均可作为荧光探针用于丙烯酸涂层的早期腐蚀检测。Sousa等[56]将颜色指示剂(即溴甲酚绿、甲酚红和酚酞)分别负载于壳聚糖中作为荧光探针,并以AA2024为基底进行早期腐蚀预警实验。利用壳聚糖外壳只在低pH下溶解的性质,使荧光探针负载的指示剂在酸性腐蚀条件下得到释放。结果表明,溴甲酚绿和甲酚红的颜色在腐蚀微区分别发生了从红到紫和从蓝到绿的变化,而酚酞的颜色在腐蚀微区未发生变化。

图13 酚酞荧光指示剂响应机理[54]

图14 pH响应微球指示剂释放机理[55]

可直观地从pH响应型荧光探针的颜色变化情况预测腐蚀的发生,但也会受限于pH敏感型物质(如酚酞等)的pH响应区间,因此对于不同种类的pH响应型荧光探针,需要根据pH对应的不同显色范围应用于不同环境。

2.1.2 腐蚀离子响应型荧光探针

腐蚀离子响应型荧光探针的机理主要是荧光探针与腐蚀微区阳极产生的金属离子(如Fe2+、Fe3+、Al3+等)发生作用并产生荧光,从而预测金属的早期腐蚀。

高立新等[57]以喹啉-2-甲醛为荧光探针,以AA5052铝合金为基体,制备了自预警涂层。当腐蚀发生时,喹啉-2-甲醛与Al3+在腐蚀微区处会形成螯合物,从而发出绿色荧光。Zhang等[58]以罗丹明基化合物(RB1)为荧光探针,以耐高温钢为基底,并在质量分数3%的NaCl溶液中进行腐蚀实验。当腐蚀发生时,RB1会与Fe3+发生螯合反应,并发出红色荧光。孟宇等[59]将罗丹明B与水合肼反应,制备了罗丹明酰肼(RHBH)荧光探针,并以酸性介质中的20钢为基底进行实验。结果表明,RHBH在酸性介质中不会发出荧光,而当腐蚀发生,产生了Fe3+后,RHBH会与Fe3+发生反应,并出现荧光效应。Mohammadloo等[60]以8-羟基喹啉(8-HQ)为荧光探针,并负载于脲醛基微胶囊,用亚麻籽油进行填充,混入环氧树脂,制成荧光涂层,以钢为基底进行实验。结果表明,将8-羟基喹啉作为荧光指示剂,可与Fe2+反应,发出淡蓝色荧光,从而起到荧光预警效果。

Liu等[61]将1,10-菲咯啉(Phen)作为荧光探针嵌入聚合物骨架(PTMG)中,并混入聚氨酯涂层制备了荧光涂层,以不锈钢为基底进行实验,其作用机理如图15所示。在未发生腐蚀时,PTMG骨架在紫外线照射下呈现绿色荧光,通过肉眼未观察到荧光。当发生腐蚀时,负载于PTMG骨架上的荧光探针Phen会与Fe2+发生螯合反应,并发出肉眼可见的橙红色荧光。

Lv等[35]以罗丹明B酰基肼(RBA)为荧光探针,并负载到层状双氢氧化物(LDHs)中,在碳钢表面制备了RBA/LDHs/环氧涂层,其作用机理如图16所示。RBA分子是基于螺旋内酰胺的结构,无荧光活性。在RBA分子与铁离子络合后,螺旋内酰胺结构转化为具有荧光活性的开环酰胺结构,并发出亮红色荧光,从而对碳钢表面腐蚀进行早期预警。

Exbrayat等[33]将罗丹明B衍生物嵌入介孔二氧化硅纳米胶囊中,将此胶囊溶于聚乙烯醇缩丁醛(PVB)中,制成了聚合物/荧光探针复合涂层,并以304不锈钢为基底进行测试,其作用机理如图17所示。当腐蚀发生时,Fe3+通过多孔的二氧化硅胶囊外壳扩散进入核心,并与罗丹明B衍生物发生螯合反应,从而起到腐蚀预警作用。

图15 荧光涂层中腐蚀可视化示意图[61]

图16 RBA的铁离子敏感荧光开关机理[35]

图17 罗丹明衍生物荧光开启机理[33]

腐蚀离子响应型荧光探针与pH响应型荧光探针相比,具有更好的特异识别性,可针对某种特定的腐蚀进行预测。根据目前的研究成果,尽管早期金属腐蚀预警研究取得了一定进展,但是预测腐蚀的发生还不够,还需兼顾其他功能(如自修复功能等)。

2.1.3 机械损伤响应型荧光探针

机械损伤响应型荧光探针指在机械损伤作用下,荧光探针或颜色指示剂可从破裂的胶囊中释放出来,并直接与涂层成分发生反应,以指示涂层的损坏[62–66],为金属腐蚀的早期预警提供了可能。

Li等[67]将含有2′,7′-二氯霉素(酸性形式的DCF)的微胶囊溶解在乙酸苯乙酯(EPA)中,制成了含有荧光探针的纳米容器,并将其分散在胺固化的环氧涂层中制成荧光涂层,其荧光响应机理如图18所示。涂层划损后导致微胶囊破裂,并释放荧光探针,DCF溶剂会与环氧涂层中的胺发生反应,DCF分子演化为碱性形式,并因溶解度的急剧下降而从EPA溶液中沉淀出来,使得机械损伤区的颜色从浅黄色变为亮红色。

Robb等[68]基于聚合诱导发射(AIE)机理,将1,1,2,2-四苯乙烯(TPE)溶解在乙酸乙酯溶剂中,并置于核−壳结构微胶囊中制成含有荧光探针的纳米容器,将其混入环氧树脂中制成荧光涂层,其荧光响应机理如图19所示。涂层的划损使得微胶囊发生破裂,并释放出TPE溶剂(TPE是一种具有振动/旋转模式的分子,它在溶液中溶解时能够吸收光子的能量),随后溶剂蒸发,导致固体荧光探针沉积在损伤区域,固化沉积限制了这种分子内运动,使得损伤区发出蓝色荧光。

图19 TPE荧光探针机械损伤响应机理[68]

此外,结晶紫内酯(CVL)作为另一种颜色指示剂,具有强烈且快速的显色能力。当遇到含羟基的氧化物(如SiO2、Al2O3、CaO、MgO)时,无色CVL的内酯环会被打开,将其从无色转化为具有明显蓝色的三苯甲烷形式(CVL+)[69-71]。Hu等[72]以CVL为荧光探针,并负载于甲基丙烯酸甲酯(PMMA)微胶囊,微胶囊外部还黏附着作为显色剂开关的SiO2颗粒。如图20所示,当涂层外部受到机械损伤后,CVL会与SiO2发生反应,其内酯环被打开,从无色的CVL转化为具有明显蓝色的三苯基甲烷形式(CVL+)。

图20 CVL荧光探针机械损伤响应机理[72]

机械损伤响应性荧光探针通常被储存在含溶剂的微囊中,当其受到机械损伤后,它会从破裂的微囊中流出,与周围物质发生反应。3种机械损伤型荧光探针的溶剂,如DCF的溶剂(乙酸乙酯、甲基丙烯酸缩水甘油酯)、AIEgens的溶剂(乙酸己酯、苯乙烯)和CVL的溶剂(乙酸苯酯),是否会影响防腐涂层的阻隔性能仍有待探索。为了延长含微胶囊涂层的保存时间,用于储存指示剂的理想溶剂应具有低挥发性,且对涂料基质阻隔性能的影响最小。

2.2 荧光探针用于热障传感涂层的机理

热障涂层一般由镧系稀土离子(如Eu3+、Dy3+和Er3+等)和热障涂层陶瓷层(如YSZ、Gd2Zr2O7和La2Zr2O7等)组成[73-74],涂层一般由黏结层、磷光层和陶瓷层组成,如图21所示[75]。在紫外/可见光源的激发下,磷光层会发出与温度相关的磷光信号,如磷光光谱、强度和寿命,通过测量磷光信号,可获得磷光层所在位置的温度信息。利用此特点,使得测量热障涂层陶瓷层表面、内部和陶瓷基/黏结层界面的温度成为可能,且不影响热障涂层的寿命。

Pin等[76]以钐离子(Sm3+)为荧光探针,将其掺杂进YSZ热障涂层,制备了YSZ:Sm热障荧光涂层,其荧光机理如图22所示。在不同波长的刺激下,YSZ:Sm热障荧光涂层会被激发出不同波长的荧光信号,通过得到的荧光光谱、强度等信息,计算出高温合金的温度。结果表明,YSZ:Sm热障荧光涂层可测量的最高温度为700 ℃。

图21 含磷光层的热障涂层系统示意图[75]

Rabhiou等[77]以铽离子(Tb3+)为荧光探针,并将其混入Y2SiO5热障涂层,制备了Y2SiO5:Tb热障荧光涂层,其响应机理如图23所示。Tb3+在不同能级有着不同的激发波长,在不同波长的激发下,Y2SiO5:Tb热障荧光涂层会发出不同波长的荧光信号,通过荧光光谱、强度等信息,可计算出高温合金的温度。结果表明,Y2SiO5:Tb热障荧光涂层可用于测量的温度范围为700~1 200 ℃。

2.3 荧光探针用于防伪涂层的机理

具有防伪功能的涂层被称为防伪加密涂层,即通过在涂层中加入防伪材料,并经过一些特定工艺制成的涂层,它主要由色料、连接料和油墨助剂等部分组成。将荧光探针或显色剂作用于该涂层,可使其具有荧光效果或显色效果,从而具有防伪功能。油墨中的色料、连接料赋予了防伪涂层的防伪功能,根据其防伪功能,该涂层主要包含4种类型:热敏变色防伪涂层、光敏变色防伪涂层、湿敏变色防伪涂层和压敏变色防伪涂层。涂层对应的作用机理也有所不同,下面逐一介绍。

图22 YSZ:Sm热障荧光涂层响应机理[76]

图23 Y2SiO5:Tb热障荧光涂层响应机理[77]

2.3.1 热敏变色防伪涂层

热敏变色防伪涂层的原理是在涂层中加入颜色随温度变化的荧光探针。俞胡斐等[78]将N-羟基邻苯二甲酰亚胺(N-Hydroxyphthalimide,NHPI)与隐性结晶紫(Leucocrystal Violet,LCV)相结合作为荧光探针,并混入水性聚氨酯等制备了防伪荧光涂层,其防伪机理如图24所示。LCV是一种典型的三芳甲烷苯酞型隐色染料[79],此类染料可作为电子供体,与电子受体结合时会发生显色反应。当与质子或金属阳离子接触时,LCV的内脂环被打开,SP3杂化的碳原子形成了具有平面结构的SP2碳离子,LCV会发生由无色变为紫色的变化。

图24 LCV显色机理[78]

2.3.2 光敏变色防伪涂层

光敏变色防伪涂层的原理是在涂层中加入光致变色物质或光激活化合物。由于光敏材料的内部结构不稳定,在紫外线照射下其化学结构会发生变化,如图25所示[80]。在紫外灯照射下,光敏涂层的C—O结构断开,同时该变化具有可逆性,将该涂层置于日光下或365 nm紫外灯下,可迅速显色,撤掉日光或紫外光线后显色消失。

图25 紫外灯下光敏油墨结构变化[80]

2.3.3 湿敏变色防伪涂层

湿敏变色防伪涂层的原理是在涂层中加入颜色随湿度变化的物质。任健旭[81]以碘化镍(NiI2)、NiI2/(CH3)4NI材料为研究对象,分析了NiI2材料的变色机理,如图26所示。NiI2在吸收水分后会转变为NiI2·6H2O,且随着湿度的变化,它会发生可逆的黑色−透明的变色行为。

图26 NiI2结构随湿度变化的示意图[81]

2.3.4 压敏变色防伪涂层

压敏变色防伪涂层的原理是在涂层中加入压力致变色的化合物或微胶囊。Sagara等[82]以1,3,6,8-四苯基芘衍生物1为荧光探针,如图27所示。由于氢键和π-π堆积的竞争效应,1,3,6,8-四苯基芘衍生物1形成了2种不同的堆积形式。新制备的白色粉末为蓝光发射(B型),在外力研磨下氢键被破坏,发射中心形成了更紧密的堆积结构,材料为蓝绿光发射(G型)。在外力刺激诱导下形成的G型处于亚稳态,且分子以较紧密的形式堆积。

图27 1,3,6,8-四苯基芘衍生物1在研磨前后的光致发光颜色及分子组装变化[82]

3 结语

综述了涂层因应用环境(如腐蚀、高温和特殊识别等)而导致的性能下降问题,以及为解决此问题将荧光探针加入涂层中的相关研究。金属材料的早期腐蚀监测,过热工况下运行的部件或材料的监测,信息加密和存储,贵重物品的防伪识别等,都可通过将荧光探针应用于涂层来实现。可见对于荧光探针在涂层中的研究更加迫切,重点介绍了荧光探针在防腐涂层、热障涂层和防伪涂层中的应用和机理。

1)将荧光探针用于防腐涂层,可赋予涂层特殊功能,在腐蚀发生时起到自预警作用;将荧光探针用于热障涂层,主要用于监测和分析高温环境;将荧光探针用于防伪涂层,主要用于防伪加密存储、贵重物品防伪识别等。

2)用于防腐涂层的荧光探针主要分为3种类型:pH响应型荧光探针、腐蚀离子响应型荧光探针和机械损伤响应型荧光探针。pH响应型荧光探针的机理主要是使用对pH值变化敏感的物质,与腐蚀微区阴极处的氢离子或氢氧根离子发生反应后产生荧光,从而对金属材料的早期腐蚀作出预警。腐蚀离子响应型荧光探针的机理主要是荧光探针与腐蚀微区阳极产生的金属离子发生作用后产生荧光,从而预测金属早期腐蚀。机械损伤响应型荧光探针的机理主要是荧光探针在机械损伤作用下,微胶囊发生破损后释放的荧光探针会发生化学变化而改变颜色,从而指示早期腐蚀的发生。

3)将荧光探针用于热障涂层的机理主要是在紫外/可见光源的激发下,磷光层会发出特征与温度相关的磷光信号,通过测量磷光信号获得磷光层所在位置的温度信息,从而测量热障涂层陶瓷层表面、内部和陶瓷基/黏结层界面的温度。

4)防伪涂层分为4种类型。热敏变色防伪涂层的机理是在涂层中加入颜色随温度变化的物质。光敏变色防伪涂层的机理是在涂层中加入光致变色或光激活化合物。湿敏变色防伪涂层的机理是在涂层中加入颜色随湿度变化的物质。压敏变色防伪涂层的机理是在涂层中加入压力致变色的化合物或微胶囊。

根据目前的研究成果,将荧光探针应用于涂层领域仍面临以下问题。在防腐涂层领域,单一功能的预警或自修复涂层已不能满足现阶段的使用需求。在预警的同时对涂层进行修复,可以大大提高涂层的使用效率。未来的研究重点应侧重于自预警和自修复功能一体化,制备出具有“自预警/自修复”双功能的复合涂层。在热障涂层领域,对于荧光测温的上限仍需拓宽;测温稳定性仍需进一步提高;确保涂层结构在服役环境下的力学性能稳定。在防伪加密涂层领域,需进一步探索“过早荧光现象”,同时应对多变的刺激条件,以提高防伪加密涂层的实际应用性。

[1] 贾婷. 罗丹明修饰的高分子材料及其金属离子响应性能研究[D]. 福州: 福建师范大学, 2020: 1-13. JIA Ting. Study on Rhodamine Modified Polymer Materials and Their Metal Ion Response Properties[D]. Fuzhou: Fujian Normal University, 2020: 1-13.

[2] CHEN Yin, LONG Zhi-qing, WANG Cheng-cheng, et al. A Lysosome-Targeted Near-Infrared Fluorescent Probe for Cell Imaging of Cu2+[J]. Dyes and Pigments, 2022, 204: 110472.

[3] FENG Zhong-jiao, WU Jia-sheng, JIANG Mei-yu, et al. A Rhodamine Derivative-Based Fluorescent Probe for Visual Monitoring of pH Changes in the Golgi Apparatus[J]. Sensors and Actuators B: Chemical, 2022, 366: 131963.

[4] 刘蔚, 刘斌, 徐大伟, 等. 荧光探针技术在金属初期腐蚀检测中的研究进展[J]. 腐蚀与防护, 2021, 42(5): 47-53. LIU Wei, LIU Bin, XU Da-wei, et al. Research Progress of Fluorescent Probes in Initial Corrosion Detection of Metals[J]. Corrosion & Protection, 2021, 42(5): 47-53.

[5] HOU Ji-ting, KWON N, WANG Shan, et al. Sulfur-Based Fluorescent Probes for HOCl: Mechanisms, Design, and Applications[J]. Coordination Chemistry Reviews, 2022, 450: 214232.

[6] 顾林, 丁纪恒, 余海斌. 石墨烯用于金属腐蚀防护的研究[J]. 化学进展, 2016, 28(5): 737-743. GU Lin, DING Ji-heng, YU Hai-bin. Research in Graphene-Based Anticorrosion Coatings[J]. Progress in Chemistry, 2016, 28(5): 737-743.

[7] 王军鹏. 智能自预警与自修复涂层材料的制备及性能研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2018: 19-30. WANG Jun-peng. Synthesis and Characterization of Smart Self-Reporting and Self-Healing Coatings [D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2018: 19-30.

[8] 郭小波. 飞机发动机测温方法的探究与实践[J]. 航空科学技术, 2011, 22(1): 39-42. GUO Xiao-bo. Exploration and Practice of Aero-Engine Temperature Measuring Method[J]. Aeronautical Science & Technology, 2011, 22(1): 39-42.

[9] LIN Fang, JIA Mo-chen, SUN Zhen, et al. Highly Sensitive Self-Referencing Thermometry Probe and Advanced Anti-Counterfeiting Based on the CDs/YVO4: Eu3+Composite Materials[J]. Scripta Materialia, 2020, 186: 298-303.

[10] WANG Chuan-long, JIN Ya-hong, YUAN Li-fang, et al. A Spatial/Temporal Dual-Mode Optical Thermometry Platform Based on Synergetic Luminescence of Ti4+-Eu3+Embedded Flexible 3D Micro-Rod Arrays: High- Sensitive Temperature Sensing and Multi-Dimensional High-Level Secure Anti-Counterfeiting[J]. Chemical Engineering Journal, 2019, 374: 992-1004.

[11] ZHANG Yu-chong, LE Xiao-xia, JIAN Yu-kun, et al. 3D Fluorescent Hydrogel Origami for Multistage Data Security Protection[J]. Advanced Functional Materials, 2019, 29(46): 1905514.

[12] ANDRES J, HERSCH R D, MOSER J E, et al. Invisible Inks: A New Anti-Counterfeiting Feature Relying on Invisible Luminescent Full Color Images Printed with Lanthanide-Based Inks[J]. Advanced Functional Mater­ials, 2014, 24(32): 5028.

[13] LIU Xin-jie, SPIKES H, WONG J S S.pH Responsive Fluorescent Probing of Localized Iron Corrosion[J]. Corrosion Science, 2014, 87: 118-126.

[14] TIAN Hao-liang, WANG Chang-liang, GUO Meng-qiu, et al. Microstructure and Luminescence Properties of YSZ-Based Thermal Barrier Coatings Modified by Eu2O3[J]. Ceramics International, 2020, 46(4): 4444- 4453.

[15] R S B, SUNIL D, SHETTY P, et al. Water-Based Flexo­graphic Ink Using Chalcones Exhibiting Aggregation- Induced Enhanced Emission for Anti-Counterfeit Applications[J]. Journal of Molecular Liquids, 2021, 344: 117974.

[16] GILLMORE G K, CROCKETT R, DENMAN T, et al. Radium Dial Watches, a Potentially Hazardous Legacy[J]. Environment International, 2012, 45: 91-98.

[17] CHAN J, DODANI S C, CHANG C J. Reaction-Based Small-Molecule Fluorescent Probes for Chemoselective Bioimaging[J]. Nature Chemistry, 2012, 4(12): 973-984.

[18] CHEN Yun-cong, BAI Yang, HAN Zhong, et al. Photoluminescence Imaging of Zn2+in Living Systems[J]. Chemical Society Reviews, 2015, 44(14): 4517-4546.

[19] VENDRELL M, ZHAI Duan-ting, ER Jun cheng, et al. Combinatorial Strategies in Fluorescent Probe Develo­pment[J]. Chemical Reviews, 2012, 112(8): 4391-4420.

[20] ZHANG Hong-yi, LUO Jia-jie, QIAO Zhen, et al. An Activatable Fluorescence Probe for Visualization of DAGL Activity in Hippocampal Tissue of Brain-Injured Mice[J]. Sensors and Actuators B: Chemical, 2022, 367: 132047.

[21] ZHANG Ling, YAN Jin-long, WANG Yuan, et al. A Novel Indene-Chalcone-Based Fluorescence Probe with Lysosome-Targeting for Detection of Endogenous Carb­oxylesterases and Bioimaging[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 278: 121329.

[22] DU Lei, XIE Yi-qiu, QIAN Hui, et al. A New Coumarin- Based "Turn-on" Fluorescence Probe with High Sensitivity and Specificity for Detecting Hypochlorite Ion[J]. Dyes and Pigments, 2022, 200: 110137.

[23] DUJOLS V, FORD F, CZARNIK A W. A Long- Wavelength Fluorescent Chemodosimeter Selective for Cu(Ⅱ) Ion in Water[J]. Journal of the American Chemical Society, 1997, 119(31): 7386-7387.

[24] LI Song-mei, ZHANG Hong-rui, LIU Jian-hua. Preparation and Performance of Fluorescent Sensing Coating for Monitoring Corrosion of Al Alloy 2024[J]. Transactions of Nonferrous Metals Society of China, 2006, 16: s159-s164.

[25] FAN De-hong, LIU Xiao-bang, QI Kai, et al. A Smart- Sensing Coating Based on Dual-Emission Fluorescent Zr-MOF Composite for Autonomous Warning of Coating Damage and Aluminum Corrosion[J]. Progress in Organic Coatings, 2022, 172: 107150.

[26] 吴松林, 于美, 李松梅, 等. 基于8-羟基喹啉荧光敏感化合物的铝合金腐蚀监测技术[J]. 北京科技大学学报, 2009, 31(8): 1013-1018. WU Song-lin, YU Mei, LI Song-mei, et al. Fluorescent Technology for Corrosion Prediction of Aluminum Alloys Based on 8-Hydroxy-Quinoline[J]. Journal of University of Science and Technology Beijing, 2009, 31(8): 1013- 1018.

[27] WANG Huai, FAN Yong, TIAN Li-mei, et al. Colorimetric/Fluorescent Dual Channel Sensitive Coating for Early Detection of Copper Alloy Corrosion[J]. Materials Letters, 2020, 265: 127419.

[28] AMANO K, TAKEDA H, SUZUKI T, et al. Thermal Barriercoating Patent: US, 4774150[P]. 1988-09-27.

[29] CHOY K L, FEIST J P, HEYES A L. Thermal Barrier Coating with Thermoluminescent Indicator Material Embedded Thereins: US, 6974641[P]. 2005-12-13.

[30] ZHAO Su-mei, ZHAO Yu, ZOU Bing-lin, et al. Effect of High Temperature Aging on Luminescence Properties of5D0→7F2Transition of 8YSZ: Eu Powder and Coating[J]. Journal of Alloys and Compounds, 2014, 601: 57-62.

[31] 郭凌华, 龙浩, 姜慧娥, 等. 一种胶版防伪油墨稀土发光材料制备的研究及应用[J]. 包装工程, 2019, 40(13): 137-142. GUO Ling-hua, LONG Hao, JIANG Hui-e, et al. Preparation and Application of Rare Earth Luminescent Material for Printing Anti-Counterfeiting[J]. Packaging Engineering, 2019, 40(13): 137-142.

[32] 张为, 凌晓, 赵冰清, 等. 铽荧光油墨树脂的合成及发光性能研究[J]. 湖南师范大学学报(医学版), 2007, 4(4): 30-33. ZHANG Wei, LING Xiao, ZHAO Bing-qing, et al. Synthesis and Prooerties of Ternary Complexes of Fluorescent Ink Resin[J]. Journal of Hunan Normal University (Medical Sciences), 2007, 4(4): 30-33.

[33] EXBRAYAT L, SALALUK S, UEBEL M, et al. Nano­sensors for Monitoring Early Stages of Metallic Corrosion[J]. ACS Applied Nano Materials, 2019, 2(2): 812-818.

[34] SU Fei-fei, DU Xian-chao, SHEN Ting, et al. Aggre­gation-Induced Emission Luminogens Sensors: Sensitive Fluorescence 'Turn-on' Response for pH and Visually Chemosensoring on Early Detection of Metal Corro­sion[J]. Progress in Organic Coatings, 2021, 153: 106122.

[35] LV Jing, YUE Qing-xian, DING Rui, et al. Intelligent Anti-Corrosion and Corrosion Detection Coatings Based on Layered Supramolecules Intercalated by Fluorescent Off-on Probes[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 118: 309-324.

[36] AUGUSTYNIAK A, MING Wei-hua. Early Detection of Aluminum Corrosion via "Turn-on" Fluorescence in Smart Coatings[J]. Progress in Organic Coatings, 2011, 71(4): 406-412.

[37] ZHAO Peng-sen, ZHENG Hai-zhong, LI Gui-fa, et al. Mechanical Properties, Thermophysical Properties and Electronic Structure of Yb3+or Ce4+-Doped La2Zr2O7- Based TBCS[J]. Journal of Rare Earths, 2023, 41(4): 588-598.

[38] PILGRIM C, FEIST J, BISWAS S, et al. Temperature Memory Coatings for Short and Long Term Applications in Gas Turbines[C]// The Future of Gas Turbine Technology 7th International Gas Turbine Conference. Brussels: Belgium, 2014:14-15.

[39] FEIST J P, HEYES A L. Europium-Doped Yttria- Stabilized Zirconia for High-Temperature Phosphor Thermometry[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2000, 214(1): 7-12.

[40] YU M, SÄRNER G, LUIJTEN C M, et al. Survivability of Thermographic Phosphors (YAG:Dy) in a Combustion Environment[J]. Measurement Science and Technology, 2010, 21(3): 037002.

[41] 杨丽霞. 采用YSZ:Eu荧光物质进行等离子喷涂热障涂层的非接触温度测量[D]. 上海: 上海交通大学, 2018: 70-83. YANG Li-xia. Non-Contact Temperature Monitoring in Air Plasma Sprayed Thermal Barrier Coatings Using YSZ: Eu Phosphors[D]. Shanghai: Shanghai Jiao Tong University, 2018: 70-83.

[42] SKINNER S J, FEIST J P, BROOKS I J E, et al. YAG: YSZ Composites as Potential Thermographic Phosphors for High Temperature Sensor Applications[J]. Sensors and Actuators B: Chemical, 2009, 136(1): 52-59.

[43] KISSEL T, BRÜBACH J, EULER M, et al. Phosphor Thermometry: On the Synthesis and Characterisation of Y3Al5O12:Eu (YAG:Eu) and YAlO3:Eu (YAP:Eu)[J]. Materials Chemistry and Physics, 2013, 140(2-3): 435- 440.

[44] 舒鑫. 多色光致发光硅纳米晶防伪油墨的制备及应用[D]. 武汉: 武汉纺织大学, 2020: 11-16. SHU Xin. Preparation and Application of Multicolor Photoluminescence Silicon Nanocrystalline Anti-Count­erfeiting Ink[D]. Wuhan: Wuhan Textile University, 2020: 11-16.

[45] 魏俊青, 孙诚, 黄利强. 稀土铕配合物在荧光防伪油墨中的应用[J]. 天津科技大学学报, 2012, 27(4): 36-39. WEI Jun-qing, SUN Cheng, HUANG Li-qiang. Applic­ation of Rare Earth Europium Complexes in Fluorescent Falsification-Resistant Ink[J]. Journal of Tianjin University of Science & Technology, 2012, 27(4): 36-39.

[46] ZHAI Zhi-rou, XU Jia-li, GONG Tian-yu, et al. Sustainable Fabrication of N-Doped Carbon Quantum Dots and Their Applications in Fluorescent Inks, Fe(Ⅲ) Detection and Fluorescent Films[J]. Inorganic Chemistry Communications, 2022, 140: 109387.

[47] TALEBNIA F, NOURMOHAMMADIAN F, BASTANI S. Development of Novel Fluorescent Offset Ink Based on Coumarin Dyes: Synthesis and Properties[J]. Progress in Organic Coatings, 2014, 77(9): 1351-1359.

[48] LIANG Long-qi, CHEN Cai-ling, LV Zi-peng, et al. Microwave-Assisted Synthesis of Highly Water-Soluble LuVO4: Eu Nanoparticles as Anti-Counterfeit Fluorescent Ink[J]. Journal of Luminescence, 2019, 206: 560-564.

[49] ZHANG Wen-shuo, ZHANG Tao, DENG Ya-jun, et al. Environmentally Friendly Gelatin-Based Ink with Durability on Low Surface Energy Substrates for Anti-Counterfeiting Printing[J]. Journal of Cleaner Production, 2022, 362: 132518.

[50] LIU Peng, LI Xue-lian, ZHANG Hong-xia, et al. pH-Responsive Spiropyran-Based Copolymers and Their Application in Monitoring and Antibacterial Coatings[J]. Progress in Organic Coatings, 2021, 156: 106259.

[51] DHOLE G S, GUNASEKARAN G, SINGH S K, et al. Smart Corrosion Sensing Phenanthroline Modified Alkyd Coatings[J]. Progress in Organic Coatings, 2015, 89: 8-16.

[52] GUO Ya-kun, ZHAO Peng-xiang, WANG Xiao-fang, et al. Damage Indication of 2',7'-Dichlorofluorescein for Epoxy Polymer and the Effect of Water on Its Damage Indicating Ability[J]. E-Polymers, 2017, 17(1): 57-64.

[53] GALVÃO T L P, SOUSA I, WILHELM M, et al. Improving the Functionality and Performance of AA2024 Corrosion Sensing Coatings with Nanocontainers[J]. Chemical Engineering Journal, 2018, 341: 526-538.

[54] MAIA F, TEDIM J, BASTOS A C, et al. Nanoco­ntainer-Based Corrosion Sensing Coating[J]. Nanotech­nology, 2013, 24(41): 415502.

[55] WANG Jun-peng, SONG Xiao-ke, WANG Jun-kuo, et al. Smart-Sensing Polymer Coatings with Autonomously Reporting Corrosion Dynamics of Self-Healing Systems [J]. Advanced Materials Interfaces, 2019, 6(10): 1900055.

[56] SOUSA I, QUEVEDO M C, SUSHKOVA A, et al. Chitosan Microspheres as Carriers for PH-Indicating Species in Corrosion Sensing[J]. Macromolecular Materials and Engineering, 2020, 305(2): 1900662.

[57] 高立新, 朱冲, 李康, 等. 喹啉-2-甲醛对AA5052铝合金早期腐蚀的检测[J]. 材料保护, 2017, 50(4): 80-84. GAO Li-xin, ZHU Chong, LI Kang, et al. Quinoline- 2-Formaldehyde for Early Detection of Corrosion of 5052 Aluminum Alloy[J]. Materials Protection, 2017, 50(4): 80-84.

[58] ZHANG Li, ZHANG da quan, MENG Yu, et al. Detection and Inhibition of Refractory Steel Corrosion by Rhoda­mine-Based Compound[J]. Advanced Materials Research, 2013, 864: 672-676.

[59] 孟宇, 张俐, 吴崇田, 等. 罗丹明酰肼在盐酸溶液中对20钢的缓蚀及腐蚀荧光监测作用[J]. 材料保护, 2014, 47(9): 26-28. MENG Yu, ZHANG Li, WU Chong-tian, et al. Synthesis of Rhodamine B Hydrazide and Investigation of Its Inhibition Effect for Mild Steel in Hydrochloric Acid as Well as Its Application in Fluorescence Spectrometric Monitoring of Corrosion[J]. Materials Protection, 2014, 47(9): 26-28.

[60] MOHAMMADLOO H, MIRABEDINI S M, PEZESHK- FALLAH H. Microencapsulation of Quinoline and Cerium Based Inhibitors for Smart Coating Application: Anti-Corrosion, Morphology and Adhesion Study[J]. Progress in Organic Coatings, 2019, 137: 105339.

[61] LIU Cheng-bao, WU Hao, QIANG Yu-jie, et al. Design of Smart Protective Coatings with Autonomous Self-Healing and Early Corrosion Reporting Properties[J]. Corrosion Science, 2021, 184: 109355.

[62] GOSSWEILER G R, HEWAGE G B, SORIANO G, et al. Mechanochemical Activation of Covalent Bonds in Polymers with Full and Repeatable Macroscopic Shape Recovery[J]. ACS Macro Letters, 2014, 3(3): 216-219.

[63] BRYANT D E, GREENFIELD D. The Use of Fluorescent Probes for the Detection of Under-Film Corrosion[J]. Progress in Organic Coatings, 2006, 57(4): 416-420.

[64] ZHENG Xu, WANG Qing, LI Yao, et al. Fabrication of Self-Reactive Microcapsules as Color Visual Sensing for Damage Reporting[J]. Journal of Materials Science, 2020, 55(21): 8861-8867.

[65] VIDINEJEVS S, ANISKEVICH A N, GREGOR A, et al. Smart Polymeric Coatings for Damage Visualization in Substrate Materials[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(12): 1371-1377.

[66] GUO Y K, CHEN L, XU D G, et al. A Dual Functional Epoxy Material with Autonomous Damage Indication and Self-Healing[J]. RSC Advances, 2016, 6(69): 65067-65071.

[67] LI Wen-le, MATTHEWS C C, YANG Ke, et al. Autono­mous Indication of Mechanical Damage in Polymeric Coatings[J]. Advanced Materials, 2016, 28(11): 2189- 2194.

[68] ROBB M J, LI Wen-le, GERGELY R C R, et al. A Robust Damage-Reporting Strategy for Polymeric Materials Enabled by Aggregation-Induced Emission[J]. ACS Central Science, 2016, 2(9): 598-603.

[69] LUO J, XIE Z, LAM J W, et al. Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5-Pentaphenylsilole[J]. Chemical Communications, 2001(18): 1740-1741.

[70] ZHANG Yu-jie, DONG Jie, SUN Han-xue, et al. Solvat­ochromic Coatings with Self-Cleaning Property from Palygorskite@Polysiloxane/Crystal Violet Lactone[J]. ACS Applied Materials & Interfaces, 2016, 8(40): 27346-27352.

[71] MCCAFFERTY E, WIGHTMAN J P. Determination of the Concentration of Surface Hydroxyl Groups on Metal Oxide Films by a Quantitative XPS Method[J]. Surface and Interface Analysis, 1998, 26(8): 549-564.

[72] HU Ming-han, PEIL S, XING Yao-wen, et al. Monitoring Crack Appearance and Healing in Coatings with Damage Self-Reporting Nanocapsules[J]. Materials Horizons, 2018, 5(1): 51-58.

[73] STEENBAKKER R. Phosphor Thermometry in an EB–PVD TBC[D]. Cranfifield: University of Cranfifield, 2008: 83-96.

[74] GENTLEMAN M M. High Temperature Sensing of Thermal Barrier Materials by Luminescence[D]. Santa Barbara: University of California, 2006.

[75] 杨丽霞, 付雅婷, 赵晓峰, 等. 热障涂层在线/离线磷光温度测量技术研究进展[J]. 航空制造技术, 2022, 65(3): 71-81. YANG Li-xia, FU Ya-ting, ZHAO Xiao-feng, et al. Research Progress of On-Line/Off-Line Phosphor Therm­ometry Technology for Thermal Barrier Coatings[J]. Aero­nautical Manufacturing Technology, 2022, 65(3): 71-81.

[76] PIN Li-sa, PILGRIM C, FEIST J, et al. Characterisation of Thermal Barrier Sensor Coatings Synthesised by Sol-Gel Route[J]. Sensors and Actuators A: Physical, 2013, 199: 289-296.

[77] RABHIOU A, FEIST J, KEMPF A, et al. Phosphorescent Thermal History Sensors[J]. Sensors and Actuators A: Physical, 2011, 169(1): 18-26.

[78] 俞胡斐, 钱静. 不可逆温敏变色油墨的显色动力学探究[J]. 包装工程, 2022, 43(11): 46-53. YU Hu-fei, QIAN Jing. Color Kinetics of an Irreversible Thermochromic Ink[J]. Packaging Engineering, 2022, 43(11): 46-53.

[79] 张晓婷. 隐色体染料甲乙结晶紫内酯的显色研究及应用[D]. 太原: 山西大学, 2012: 6-10. ZHANG Xiao-ting. Study and Application of Color Development of Leuco Dye A, B and Crystal Violet Lactone[D]. Taiyuan: Shanxi University, 2012: 6-10.

[80] 胡志鹏. 防伪油墨的成分及原理[J]. 中国品牌与防伪, 2009(6): 70-74. HU Zhi-peng. Composition and Principle of Anti- Counterfeiting Ink[J]. China Brand and Anti-Count­erfeiting, 2009(6): 70-74.

[81] 任健旭. NiI2基湿致变色材料的应用研究[D]. 湘潭: 湘潭大学, 2020: 11-15. REN Jian-xu. Study on Application of NiI2Based Wet Electrochromic Materials[D]. Xiangtan: Xiangtan Unive­rsity, 2020: 11-15.

[82] SAGARA Y, MUTAI T, YOSHIKAWA I, et al. Material Design for Piezochromic Luminescence: Hydrogen- Bond-Directed Assemblies of a Pyrene Derivative[J]. Journal of the American Chemical Society, 2007, 129(6): 1520-1521.

Progress of Application and Mechanism of Fluorescent Probes in Coating

1,1,2,1,1,1*

(1. Civil Aviation University of China, Tianjin 300300, China; 2. Beijing Machine and Equipment Institute, Beijing 100854, China)

Loading fluorescent probes into the coating can give the coating special fluorescence response performance, which is widely used in metal corrosion, metal high temperature monitoring and anti-counterfeiting encryption. The preparation technology and related applications of fluorescent probes in coatings at home and abroad were introduced, and the research progress of the mechanism of fluorescent probes used in coatings was discussed.

The types of coatings applied to fluorescent probes included anti-corrosion coatings, thermal barrier coatings, and anti-counterfeiting coatings. The role of fluorescent probes in three coatings was described. Based on these three coating types, the preparation technology and function of fluorescent probes for coating were described. The mechanism of action of fluorescent probes in three types of coatings was clarified, and the future development direction was pointed out.

The fluorescent probe was used for anti-corrosion coatings, which could give the coating a special function and play a self-warning role in corrosion; Fluorescent probes were used for thermal barrier coatings, which were mainly used to monitor and analyze high-temperature environments; The fluorescent probe was used for anti-counterfeiting coatings, mainly used for anti-counterfeiting encryption and storage, anti-counterfeiting identification of valuables, etc. The mechanism of pH-responsive fluorescent probe was mainly to use substances that were sensitive to pH value changes to produce fluorescence after interacting with hydrogen ions or hydroxide ions at the cathode of the corroded microregion, which provided early warning for the early corrosion of metal materials. The mechanism of corrosion ion-responsive fluorescent probes was mainly to fluoresce after the fluorescence probe interacted with the metal ions generated by the corrosion micro-anode, so as to predict the early corrosion of metals. The mechanism of mechanical damage-responsive fluorescent probes mainly referred to the chemical changes and color of fluorescent probes released after the microcapsule was damaged under the action of mechanical damage, to indicate the occurrence of early corrosion. The mechanism of fluorescent probe for thermal barrier coating was mainly under the excitation of ultraviolet/visible light source, the phosphorescent layer generated a phosphorescence signal with characteristic temperature correlation, and the temperature information of the position of the phosphorescent layer was obtained by measuring the phosphorescence signal, so as to measure the temperature of the surface, interior and interface of the ceramic base/adhesive layer of the thermal barrier coating. The mechanism of thermal color-changing anti-counterfeiting coating was to add substances whose color changes with temperature to the coating; The mechanism of photochromic anti-counterfeiting coating was to add photochromic or photoactivated compounds to the coating; The mechanism of moisture-sensitive color-changing anti- counterfeiting coating was to add substances whose color changed with humidity to the coating; The mechanism of pressure- sensitive color-changing anti-counterfeiting coating was to add pressure-induced chromic compounds or microcapsules to the coating.

According to the current research results, the application of fluorescent probes in the field of coatings still faces the following problems. In the field of anti-corrosion coatings, future research should focus on the integration of self-warning and self-healing functions, and the preparation of composite coatings with "self-warning/self-repair" dual functions. In the field of thermal barrier coatings, the upper limit of fluorescence temperature measurement still needs to be widened; The stability of temperature measurement still needs to be further improved; It is required to ensure the stability of the mechanical properties of the coating structure in the service environment. In the field of anti-counterfeiting encryption coatings, it is necessary to further explore and solve the "premature fluorescence phenomenon", and at the same time be able to cope with changing stimuli and improve the practical application of anti-counterfeiting encryption coatings.

fluorescent probe; coating; mechanism; corrosion; self-warning

2022-07-25;

2022-11-12

TG172

A

1001-3660(2023)10-0099-16

10.16490/j.cnki.issn.1001-3660.2023.10.007

2022-07-25;

2022-11-12

中央高校基本科研业务费项目中国民航大学专项(3122023047)

Fundamental Research Funds for the Central Universities Special Project of Civil Aviation University of China (3122023047)

杜娟, 魏士钧, 石玉超, 等.荧光探针在涂层中的应用及机理研究进展[J]. 表面技术, 2023, 52(10): 99-114.

DU Juan, WEI Shi-jun, SHI Yu-chao, et al. Progress of Application and Mechanism of Fluorescent Probes in Coating[J]. Surface Technology, 2023, 52(10): 99-114.

通信作者(Corresponding author)

责任编辑:彭颋

猜你喜欢
热障防伪机理
INTEGRITYTM ECO100再生缝纫线引入防伪技术
隔热纤维材料的隔热机理及其应用
你知道古代圣旨和纸钞是怎样防伪的吗
热载荷下热障涂层表面裂纹-界面裂纹的相互作用
煤层气吸附-解吸机理再认识
民国时期纸钞上的防伪暗记
雾霾机理之问
热障涂层闪光灯激励红外热像检测
一种具有防伪功能的卷烟纸
DNTF-CMDB推进剂的燃烧机理