时滞系统非线性动力学研究进展*

2023-12-30 16:33孙中奎金晨
动力学与控制学报 2023年8期
关键词:振子时滞动力学

孙中奎 金晨

(1. 西北工业大学 数学与统计学院, 西安 710129) (2. 太原科技大学 应用科学学院, 太原 030024)

引言

人们对时滞系统的研究由来已久. 最早可追溯至18世纪中叶,Bernoulli、Poisson、Euler、Lagrange 等人在对古典几何问题的研究中就涉及到了时滞系统[1]. 1771年Condorcet 导出了历史上已知的第一个时滞系统。但是,由于时滞系统本身的复杂性,在此后的两个世纪中,对这方面的研究基本陷于停顿。直到二十世纪七十年代,在生物、物理、经济、电路系统、控制理论和工程应用等问题的研究中,推导出大量的时滞系统,才又一次引发人们对时滞系统的研究热潮[2-5]. 近年来,随着非线性科学的蓬勃发展,时滞动力系统的研究逐渐成为被广泛关注的热点前沿问题. 由中科院与科睿唯安联合发布的《研究前沿》在2018年和2019年连续两年将时滞系统理论方法的研究列为工程学、数学与计算机领域十大热点前沿之一.

时滞在现实系统中普遍存在,在过去很长一段时间里,人们对动力系统的研究经常忽略系统中的固有时滞. 这种做法在对精度要求不高的情况下的确可以起到简化系统的效果,但是随着对系统精度要求的不断提高,时滞对系统性能的影响越来越不可忽略. 在数学、生物、力学、经济、工程等领域中的时滞问题逐渐引起了人们的广泛关注[6-10]. 随着对时滞系统研究的深入,人们发现一方面忽略时滞可能会导致错误的结论. 例如:在对悬臂梁系统研究中,若不考虑时滞因素根本无法解释系统在某些条件下的强烈的自激振动现象. 另一方面,与无时滞的动力系统相比,含有时滞的动力系统往往会呈现更加复杂的动力学现象. 例如:著名的Mackey-Glass 方程,即便其方程维数只有一维,系统也可以产生混沌现象.在Ikeda 方程中,时滞甚至还能导致高维混沌.

在时滞系统中,系统状态随时间的演化不仅依赖当前,还和系统过去的状态有关. 这在数学上一般用时滞微分方程来描述. 由于时滞的存在,导致时滞系统的特征方程有无穷多个根,其解空间是无穷维的. 这给对时滞系统的研究带来了巨大困难和挑战. 同时,已有的研究已经发现,时滞可能导致系统从稳定变为不稳定,甚至出现极限环、分岔、混沌等复杂的动力学行为,对系统性能产生重要影响. 基于以上分析,对时滞系统的研究具有重大的理论价值和工程应用前景,是一个具有挑战性的前沿课题.

本文将以时滞为主题,对以下四方面科学问题进行综述,即时滞系统的稳定性与分岔、时滞系统的混沌及其控制、时滞系统随机动力学研究、时滞网络系统的动力学研究. 介绍了时滞系统研究的主要方法,阐述了时滞系统领域内相关热点问题的研究进展,并结合研究现状展望了若干值得关注的问题.

1 时滞系统的稳定性与分岔

1.1 稳定性

研究时滞动力系统稳定性主要有两类方法,一类是基于Lyapunov 泛函的时域方法. 从系统的状态空间出发,构造满足特定条件的Lyapunov 泛函[11-16]. 许多学者对此做了很多努力,发展出了很多改进方法,如:Lyapunov-Razumikhin 方法[3,10]、自由权矩阵方法[17,18]、基于Jensen 不等式,Park 不等式的改良结果[19,20]、时滞分解法[21,22]. 另一类是基于系统方程特征根分析的频域方法.总体思路是根据系统的特征根分布特点判定时滞系统的稳定性. 该方法最早由Pontryagin 在研究一类超越方程问题时提出并给出了用特征多项式的零点分布来表征的时滞系统的稳定性的原则性方法[23]. 自Pontryagin 提出的特征根方法问世以来,引起了很多学者的关注和兴趣,相继取得了许多实用性更强的研究成果,丰富完善了此类方法在时滞系统中的应用。如:Rouche 定理[24],Cooke 和Grossman 方法[25,26],Nyquist 准则[27], Mikhailov 判据[28,29], 辐角原理法[30,31], 域分解方法[32].

总体上看,基于Lyapunov 泛函的时域方法的基本思路是将稳定性问题转换为寻找Lyapunov-Kasvoskii泛函或Lyapunov-Razumikhin 函数的问题,进而转化为归结为求解线性矩阵不等式的问题. 在实际应用中, 由于构造Lyapunov 泛函尚无规律可循, 且对沿系统轨线的全导数估计依赖于不等式估计技巧, 导致这类方法得到的结果常常过于保守. 基于系统方程特征根分析的频域方法的基本思路是将时滞系统的稳定性问题转换为频域内超越特征函数的稳定性问题,或复杂矩阵函数的谱问题. 特征根分析中的主要困难是特征方程中含有指数形式的超越函数, 使得特征根有无穷多个, 通常无法获得其所有特征根的信息. 无论是时域方法还是频域方法, 都是在借鉴了研究非线性常微分方程思路的基础上,对其研究方法进行改进和推广,进而应用在对非线性时滞常微分方程的研究中. 频域法只适用于时不变系统,而时域法适用于任何时滞系统.

1.2 Hopf 分岔

在非线性时滞动力系统中,Hopf 分岔作为被讨论的最多的分岔一直都是时滞系统研究的热点问题之一. Hopf 分岔是非线性系统特有的现象,分岔发生时系统可在不从外界吸收能量的情况下维持周期振动,即工程中的“自激振动”. 产生这种“自激振动”的内在机制是: 系统平衡点随着某个系统参数变化发生稳定性切换, 而系统非线性将受扰后发散的运动制约在有限范围内. 在数学上,对应:系统存在某个参数值,使得系统特征方程除了一对简单的共轭纯虚根外,其余特征根均具有负实部. 在时滞系统中,关于Hopf 分岔的研究成果非常丰富. 整体上看,主要围绕: 分岔存在条件、分岔方向、分岔解的求解及其稳定性等问题进行研究. 常用研究方法有:

(1)中心流形定理和规范型理论[33-36]

借助中心流形定理对系统降维,利用规范型理论对系统进行等价简化. 不仅可以判定分岔点附近周期解的存在性,还能得到周期解的近似解析表达式. 该方法有严格的数学基础做支撑,因此,受到很多数学家的青睐,但由于其繁杂的计算量和精度上的不足在工程领域和实际应用中受到一定限制.

(2)Lyapunov-Schmidt 方法[37]

该方法的主要思想是将方程所在的整个空间分解为两个子空间,得到等价的子空间的两个方程,其中一个方程由隐函数定理保证了其解的唯一性,于是原方程的分岔分析便被约化为子空间中另一个低维方程的分岔分析.

(3)Fredholm 择一法[38]

区别于中心流形定理中先进行降维,再在低维空间内研究约化系统分岔的做法. 该方法先将解在整个解空间展开, 再向低维子空间进行约化.

(4)多尺度法[39-41]

在系统非线性项较小的情况下,该方法十分有效且可以省去应用中心流形定理的繁琐计算过程.由于只适用于弱非线性系统且分岔参数只能在分岔点的某个邻域内变化,这种方法的应用十分受限.

(5)增量谐波平衡法[42]

这是由Lau 和Cheung 提出的基本原理发展而来的方法,现已广泛应用于各种强非线性时滞系统的分岔分析中. 其基本思想是将Newton-Raphson 方法与谐波平衡法相结合,得到一组非线性代数方程. 但主要问题在于谐波项项数和初始迭代值的选取没有确定的理论依据,主要依靠研究者的经验.

(6)摄动-增量方法[43,44]

该方法是由Chan 等人在摄动-迭代法的基础上提出的一种改进方法. 把经典的摄动法与增量法相结合,在分岔点附近采用摄动法,然后对参数依次增加一个小量,利用“正交”条件得到一个代数方程组,求其解可得所求周期解的修正量. 该方法即兼顾了多尺度方法的优点,又省去了应用中心流形定理的繁琐计算过程,现已广泛应用于计算各种强非线性时滞系统的周期解问题中.

此外,研究Hopf分岔的方法还包括弧长路径跟踪法、特征函数法、频域法、离散Lyapunov 泛函和不变流形理论相结合等方法.我国学者胡海岩、王在华、徐鉴等人在对时滞系统的稳定性及分岔的研究中也取得了很多优秀成果[10,45-48].

2 时滞系统的混沌及其控制

2.1 时滞系统中的混沌

混沌作为非线性动力系统所特有的动力学现象,由美国气象学家洛伦兹在研究气候模型时首先发现的. 混沌是一种在确定性系统中出现的随机状态. 对于不含时滞的动力系统而言,混沌现象往往只能在高维系统中出现. 然而,对于含时滞的非线性系统,即便是在最简单的一维系统中, 也可产生混沌. 例如, Mackey 和Glass 在研究粒细胞和骨髓干细胞再循环过程中引入了一个一维的含有时滞的动力系统Mackey-Glass 系统[49],并在此一维时滞系统中发现了混沌. 随后Farmer对著名的Macky-Glass 系统的动力学行为进行了深入研究,发现了时滞和吸引子维数之间的线性依赖关系[50]. Heiden 等人在数学上严格证明了一维时滞微分方程可产生混沌[51].

Ikeda 等人、Lepri 等人在对一个含有时滞的光学系统的研究中发现了高维混沌行为[52,53]. Fischer 在半导体激光系统实验中也发现了时滞诱导的高维混沌[54]. 在文献[55]中Boe 等人、在文献[56]中Ueda 等人研究了时滞系统的分岔和混沌以及通向混沌的道路. Plaut 等人在文献[57]中研究了参激和外激共同作用下的时滞非线性系统的混沌运动. Nbendjo 等人运用Melnikov 方法分析了Duffing 系统出现混沌的必要条件,并结合数值方法研究了该时滞系统的混沌现象[58,59]. 我国学者胡海岩等人研究了带有时滞位移反馈的Duffing 系统的分岔和混沌现象[60]. 我国学者徐鉴等人在文献[47,48]中分别研究了带有时滞速度反馈的Duffing 振子和带有时滞位移反馈的Van der Pol-Duffing 振子的动力学行为,并借助中心流形理论,得到了约化系统,结合分岔图、Poincare 映射等数值方法讨论了时滞导致的分岔以及时滞诱导的混沌等复杂行为.

2.2 混沌的控制及其同步

自混沌现象被发现以来,控制混沌逐渐成为一个重要的研究方向,并在二十世纪九十年代后取得了长足发展,很多混沌控制方法被提出并在对动力系统混沌控制的应用中不断成熟,完善起来. 控制混沌的主要方法有:OGY 控制法[61-63]、时滞反馈控制法[64,65]、开环控制法[66,67]、自适应控制法[68,69]、线性和非线性控制法[70,71]等. 整体上看,Pyragas 提出的时滞反馈控制法不需重构像空间,不需跟踪目标状态且对噪声不敏感. 因而在各种动力系统中有着更广泛的应用. 在对时滞系统混沌的控制研究中,Babloyantz 等人基于改进的OGY 控制法研究了一类混沌网络振子的不稳定周期轨道[72]. Celka 应用Pyragas 所提出的时滞反馈控制法研究了一个时滞电路模型的混沌运动[73]. 在文献[74]中,作者研究了一类含时滞的一阶连续时间矢量系统的混沌控制问题. 文献[75]中, 作者推广了标准反馈控制法并将其应用到含时滞的一维动力系统中,实现了混沌控制. 针对不稳定轨道的周期未知的困难,Nakajima 等人[76]和Kittel 等人[77]分别提出了自适应控制法, 并已被广泛应用到对混沌时滞系统的控制上来[78].

随着时滞系统混沌研究的蓬勃发展, 关于时滞系统混沌同步方面的工作也取得了一系列丰富的成果. 1990年Pecora 和Carroll 首次发现了时滞系统的混沌同步现象[79]. 2000年Voss 在含有时滞反馈的动力系统中首次发现了被驱动系统可以与驱动系统的未来状态同步,并将这种反直觉的动力学现象称为超前同步[80]. 随后在2001 年, Voss 在先前工作的基础上推广了文献[80]的主要结论, 使之能够对混沌系统进行长期预测[81], 并运用所提超前同步的概念研究了一个电路系统的超前同步[82]. 紧接着, Masolle 和Zanette 又进一步推广了Voss 的结果, 研究发现超前同步的超前时间具有一定独立性[83,84]. Pyragas 首次从理论角度研究了一维时滞系统的完全同步,推导了Mackey-Glass 系统发生完全同步的解析条件[85]. Shahverdiev 等人对含多时滞Mackey-Glass 系统的完全同步问题展开了全面研究[86]. Boccaletti 等人综述了混沌同步领域的主要方法, 详细介绍了几种不同类型的混沌同步的特征[87]. 文献[88,89]和文献[90-92]分别研究了由于参数不匹配而导致的完全同步和滞后同步问题. 文献[93-95]研究了时滞系统的相同步问题. 文献[96,97]研究了带有时滞反馈的神经网络的混沌同步问题. 作者研究了单时滞系统和多时滞系统中的混沌运动及其同步控制策略,揭示了时滞对系统混沌行为的关键性影响[98,99]. 关于机器学习在混沌的预测及其同步问题上的应用可以参看文献[100,101].

此外,近年来有越来越多的学者在一些工程和实际应用中开展了时滞利用的研究,即利用时滞对系统响应进行主动干预和控制. 例如,我国学者徐鉴等人利用时滞对吸振器和隔振器的动态行为进行调节,大大提高了吸振器的吸振性[102-104]. 在海洋平台的动力学控制中,有学者通过在控制通道中引入人为时滞,发现适当的时滞可以增强海洋平台稳定性,减弱波浪引发的振动,从而提高系统的控制性能[105-107].

3 时滞系统的随机动力学研究

关于随机时滞动力系统动力学的研究,虽然没有确定性时滞系统那样深入和完善,但也吸引了海内外诸多学者的关注. 自Kiyosi It对随机微分方程领域开创性的研究以来[108],对随机时滞动力系统也取得了一系列成果. Mohammed 的专著[109]对之前的工作进行了总结,进一步发展了随机时滞系统的稳定性理论. Adomian 等人发展了求解非线性随机时滞微分方程的近似方法[110]. Steve Guillouzic 等人首次推导出了随机时滞系统的FPK 方程,但是方程本身不具有闭合性,根本无法解析的求解,甚至数值求解也非常困难[111]. Frank 基于Mohammed 理论提出了广义随机时滞系统的FPK 方程[112]. Kim 等人研究了含时滞的耦合振子的随机共振问题[113]. Ivanov 等人对随机时滞微分方程稳定性理论及其应用进行了综述[114]. 我国学者毛学荣提出了随机Razumikhin方法和随机LaSalle 原理, 在随机时滞系统的稳定性分析领域做出了很多开创性的贡献[115-117]. 廖晓昕等人也在随机时滞系统解的稳定性方面做出了优秀的工作[118,119]. Yu 等人研究了一类时滞神经网络系统的随机同步问题[120]. 作者对随机时滞系统中的随机共振、随机分岔、混沌运动现象进行了深入研究,发现了时滞诱导的丰富的分岔现象,发展了适用于随机时滞系统的多尺度方法和广义Melnikov 理论,提出了利用白噪声来实现或增强非线性系统滞后同步的同步控制策略[121-123]. 此外,对随机时滞系统数值求解方面的研究可参看文献[124,125].

4 时滞网络系统的动力学研究

近年来,网络系统逐渐成为包括力学、物理学、脑科学在内的诸多领域关注的热点问题. 特别地,时滞耦合作用下网络系统中很多有趣的动力学现象吸引的大量学者的关注. 在时滞耦合网络系统中,同步和振动抑制现象是两类最常见动力学现象. 对时滞耦合网络系统中同步和振动抑制现象的研究对进一步发展时滞网络系统动力学、促进其在相关学科领域的实际应用都有非常重要的理论和现实意义.

4.1 时滞网络系统中的同步

同步在自然界、生物系统、社会生活、工程技术等领域是普遍存在的. 例如,萤火虫同步地闪动荧光、鱼群保持同方向地迅速游动、鸟群的集体迁徙、帕金森氏病和原发性震颤、蝗虫的同步爆发等. 因而研究时滞耦合网络系统中同步现象及其内在机理有着非常明确和重要的现实意义. 同步是指网络中多个振子在耦合作用下,其状态变量保持一定相对关系的动力学行为. 广义上说,同步包括完全同步、相同步、滞后同步、超前同步等. 研究同步问题的理论和方法比较单一,基本上都是采用Krasovskii-Lyapunov 方法求解平衡点的稳定性和同步的充要条件,再辅以数值分析验证.

Dhamala 等人在含时滞的Hindmarsh-Rose 神经元网络中发现了时滞增强神经同步的现象,在无时滞的条件下,这种同步只有通过更高的耦合强度才能实现[126]. 王青云和陈关荣研究了具有化学突触和信息传输时滞的无标度Rulkov 神经网络系统,发现在不同的抑制突出概率下时滞可以促进或抑制神经元网络的同步[127]. Rossoni 等人研究了Hodgkin-Huxley 神经元系统同步的稳定性. 通过计算最大李雅普诺夫指数发现了两个神经元Hodgkin-Huxley 在含时滞的扩散耦合和脉冲耦合下的同步与去同步行为[128]. Selivanov 等研究了时滞耦合下Stuart-Landau 振子网络的同步及其控制策略,将时滞耦合与控制理论中的速度梯度法相结合,提出了一种新的同步控制的自适应方法[129]. Schöll及其合作者在复杂网络等领域开展了大量关于时滞诱导或增强振子的同步运动、振幅奇异态以及复杂动力学等方面的研究工作,取得了许多有价值的研究进展[130-132]. 杨晓丽等人研究了模神经元网络中时滞对抑制突发同步的差分反馈控制的显著影响,发现了在小世界网络和无标度网络中部分时滞耦合诱导的时空有序现象[133,134]. 国内的王青云团队长期从事生物神经元网络系统的动力学研究,针对时滞诱导的同步转迁行为开展了大量研究工作,取得了一系列有意义的研究成果[135-137]. 马军团队在时滞耦合神经元系统的群体动力学领域做出了出色的工作[138-139]. 茅晓晨等人在时滞神经网络系统的稳定性切换、分岔、同步等方面的研究也取得了丰富的成果[140,141]. 此外,关于含时滞的复杂网络中各类稳定性、控制与同步问题的研究,还可参阅文献[142-144].

4.2 时滞网络系统中的振动控制

时滞网络系统中另一个典型现象是振动抑制,指多个处于振荡态的振子在相互作用下,稳定到不动点解的动力学行为. 1998 年,Reddy 等人考虑到振子之间的相互作用存在时间延迟,在两个全同的极限环振子中引入了时滞耦合,首次发现了在全同振子中的振幅死亡现象[145]并从实验的角度证实了时间延迟能使耦合系统产生振幅死亡现象[146]. 随后,Strogatz 教授在Nature 杂志上指出Reddy 等人关于时延诱导的振幅死亡的研究具有重要的科学意义[147]. 邹为等人研究发现部分时滞耦合能扩大系统发生振幅死亡态的参数区域,揭示了振幅死亡区域和比例因子存在近似的函数关系[148]. Teki 等人研究了两个一维复杂的Ginzburg-Landau 系统,发现全同耦合系统引入时滞后才能出现振幅死亡态[149]. 作者研究了全局时滞耦合的分数阶振子系统的振幅死亡. 利用分数阶时滞系统的稳定性理论,推导了死亡岛的边界解析条件和死亡岛个数的理论表达式,发现了分数阶导数和时滞共同诱导的死亡岛涌现现象[150,151].

近年来,对于不同形式的时滞诱导的振动抑制行为的研究也吸引了很多学者的关注,取得了丰富的成果. Atay 研究了两个带有分布式时滞的耦合振子,发现当时滞分布在一个区间而不是集中在一点时,能扩大振幅死亡区域[152]. 随后,Kyrychko 等人将分布式时滞引入非全同的耦合振子系统,研究发现在弱时滞分布下,振子的频率失谐越高,系统的振幅死亡区域越大;强时滞分布下,频率失谐越高,系统的振幅死亡区域越小[153]. Konishi 等人研究了具有不同的耦合时滞笛卡尔网络,发现了子网中的耦合时滞存在差异情况下诱导的振幅死亡行为[154]. Saxena 等人研究了一个具有积分时滞耦合的动力系统,发现积分时滞耦合下系统的振动抑制行为会更加稳健[155].

5 展望

本文以时滞动力系统为主题,对非线性时滞系统中我们所关心的问题进行了四个方面的综述,介绍了近期取得的一些研究进展和成果. 通过以上综述可以看出,时滞系统是对事物规律更本质的刻画,已经成为包括数学、力学、物理学、生命科学、信息科学在内的诸多学科领域内的热点研究课题. 海内外诸多学者开展了大量研究工作,取得了一系列有意义的研究成果. 随着非线性科学的飞速发展,时滞系统在各个领域的应用前景广阔,必将是今后一个时期里非线性科学领域重点关注的课题之一.

下面就本文涉及的研究内容,对一些值得关注的问题和发展趋势进行研究展望:

(1)时滞系统的理论性研究

目前,研究时滞系统的理论方法仍然十分有限,数学基础相对薄弱. 时滞系统的特征方程有无穷多个根,其解空间是无穷维Banach空间. 这给对时滞系统的研究带来了巨大困难和挑战. 尤其是对高维时滞系统和随机时滞系统动力学行为的研究在深度和广度上都存在很大的不足.

(2)时滞系统的动力学复杂性研究

在以往海量的关于时滞系统动力学的研究中,学者们发现了包括随机共振、随机分岔、混沌及其同步、振幅死亡在内的诸多复杂动力学现象. 但对这些复杂动力学现象的内在机制的研究相对较少且极具挑战性. 特别地,对于时滞诱导的特有的动力学现象背后机理的研究在理论上存在明显短板. 因此,时滞系统复杂动力学及动力学复杂性的研究仍然是国内外学者关注的重要课题[156].

(3)数据驱动的时滞系统动力学研究

大数据时代的到来,通过计算对大数据进行加工处理和从中萃取有用信息的人工智能技术得到了长足发展. 此类数据驱动的技术已广泛应用于包括科学、社会、经济、管理在内的诸多领域, 逐渐成为促进社会创新发展的核心驱动力之一[157]. 机器学习作为数据驱动技术中最具智能特征,最前沿的研究领域之一,研究其在时滞系统中的应用,并以此为工具进一步探究时滞系统的复杂动力学无疑是一个具有广阔前景的研究方向. 例如,作者基于机器学习方法开发了“参数感知”的储层计算方案,成功预测了时滞耦合振子中的振幅死亡现象[158].

(4)含时滞的机器人动力学及控制研究

近年来,随着制造业自动化程度的不断提升,以机器人为代表的智能制造行业蓬勃发展. 在《中国制造2025》规划中明确将机器人列为全面推进实施制造强国战略的十大重点领域之一. 由于各种滤波器和数字控制器的大量使用,机器人模型中的时滞是不可避免的且对系统有着不可忽略的重要影响[159]. 对含时滞的机器人动力学及控制问题的研究既丰富了机器人动力学又契合了国家重大战略需求,是一个具有重大理论和现实意义的问题.

猜你喜欢
振子时滞动力学
具有Markov切换的非线性随机SIQS传染病模型的动力学行为
弹簧振子问题的分析与求解
带有时滞项的复Ginzburg-Landau方程的拉回吸引子
非线性Duffing扰动振子共振机制的研究
基于近似熵和混沌振子的电力谐波检测与估计
基于随机-动力学模型的非均匀推移质扩散
电磁弹簧振子实验装置的改进
一阶非线性时滞微分方程正周期解的存在性
一类时滞Duffing微分方程同宿解的存在性
TNAE的合成和热分解动力学