基于超声波测距的汽车电磁防撞装置

2012-10-19 05:21佟国栋刘铁生姚苏苏
中国现代教育装备 2012年9期
关键词:电磁铁防撞测距

佟国栋 徐 华 刘铁生 姚苏苏

盐城师范学院物理科学与电子技术学院 江苏盐城 224002

基于超声波测距的汽车电磁防撞装置

佟国栋 徐 华 刘铁生 姚苏苏

盐城师范学院物理科学与电子技术学院 江苏盐城 224002

汽车防撞装置能够利用语音报警提示司机人为减速,还可利用电磁铁同性磁极排斥的原理主动减速,达到防撞的效果。在该装置通电工作后,首先通过超声波测距,得出相邻汽车之间的距离,当低于预先设定的安全距离时,单片机启动语音报警器,提醒司机人为减速,同时启动电磁铁单元,最大限度地避免汽车相撞。

单片机;超声波测距;电磁铁

随着汽车拥有量的不断增加,安全驾驶越来越成为大家关注的焦点,特别是在天气情况较差或司机处于相对疲劳状态时,汽车防撞系统(Collision Avoidance System, CAS)的设计和需求就显得更为重要和迫切[1]。目前的汽车防撞系统主要基于激光测距、红外测距以及采用无线收发模块等[2-4],较新的方案还包括基于UWB技术的无线防撞系统[5]。已有的这些方案主要是根据系统测定的结果,通过语音提示司机人为减速来达到安全驾驶的目的;但是高速行驶中的汽车有着很大的惯性,刹车距离较长,完全依靠司机的临时减速,特别是司机疲劳或者没有集中注意力时,往往很难达到好的安全驾驶效果。

我们设计了一种能够自动辅助减速的防撞装置,使得汽车能够自主提前减速,达到安全驾驶的目的。该设计以STC89C52单片机为主控单元,利用超声波测距,在汽车与其他汽车的距离小于事先设定的安全距离时,启动语音报警装置,提醒司机减速,并同时启动电磁铁减速单元。该装置成本低廉,设计简单,汽车如果能够配备该装置,则可以在行驶过程中达到汽车自主辅助减速的目的。

1 系统工作原理

1.1 方案框图

汽车电磁防撞装置的具体框图如图1所示,该装置由超声波测距单元、单片机控制单元、语音报警单元以及电磁铁减速单元和复位电路等部分组成。需要说明的是,该装置需要在车前和车后都安装,以起到较为全面的安全防撞作用。

图1 汽车电磁防撞装置框图

汽车在行进过程中,车前和车后防撞装置中的超声波测距单元都处于工作状态,当检测到自身与其他汽车的距离小于安全距离时,系统将发送信息给主控单片机单元,单片机将发送相应指令给语音报警单元提示司机采取相应措施,同时汽车中的电磁铁减速单元也会收到单片机的启动指令,两辆汽车的电磁铁减速单元就会迅速启动,电磁铁减速单元可以都设置为同名N极,由于同性磁极的相互排斥作用,使得汽车能够达到自主减速的目的,有效避免了汽车相撞的发生。如果未达到设定距离,则电磁铁单元不会开启,汽车处于正常行驶状态,当然此时的超声波测距单元仍然处于监测状态。

1.2 系统工作模式

汽车防撞主要为正面防撞和追尾防撞两类方式,每一类方式中除了在同一车道上的相撞之外,还有可能存在与其他车道上的车辆的左侧相撞或右侧相撞,具体的示意图如图2所示。

图2

图2(a)所示为A车和B车在相向行驶时的示意图,两车车头安装的防撞装置中的超声波测距单元不断监测距离,当检测到两车车头之间的距离达到事先设定的安全距离时,启动各自车头防撞装置中的减速单元,如图2所示,都作为N极出现,则两车间产生排斥力,达到自主减速的目的,起到防止正面相撞的效果。

图2(b)中A车和B车同向行驶,存在追尾的风险,同理,当B车的车速相对较快,B车车头和A车车尾防撞装置中测距单元检测到两车之间的距离小于事先设定的安全距离时,各自向主控单片机发出信息,主控单片机分别下达启动电磁减速单元的指令,使得B车车头和A车车尾防撞装置中的电磁减速单元开始工作,将B车车头和A车车尾装置中的磁极均设为N极,因此产生了排斥力,使得两车有效避免了追尾相撞的事故。

在超声波测距单元电路中,发射和接收超声波的超声传感器,在距离监测中起着关键的作用,传感器在发射超声波时,能量呈扇形分布,但是并不是均匀分布的,一般以传感器的中轴线方向为最强,而向两边逐渐减弱,当发射能量减小到一半左右时,此时的方向与中轴线的夹角称为“波束角”,波束角是超声波传感器探测范围的主要参数,一般在30°左右。因此除了图2(a)和(b)的两种情况外,传感器还可以探测到相邻车道中的汽车,起到左侧防撞和右侧防撞的效果。

通过超声波测距单元电路,利用回波时间计算出相邻汽车之间的距离,进而结合主控单片机,与事先设定的安全距离比较后,如果得出距离过近的结果,单片机启动语音电路和电磁减速单元电路,一方面提醒司机减速,另一方面利用同极磁体的排斥力进行自主减速,最大限度起到正面防撞以及追尾防撞的效果。

2 系统硬件电路

2.1 主控单片机电路

系统中采用了低电压、高性能的STC89C52单片机,它是STC89C51的增强型号,其中包含了可反复擦写的8 kB的程序存储器和12 B的RAM,器件采用高密度、非易失性存储技术生产,可以完全兼容标准的MCS-51系统。

STC89C52单片机的工作电压为5 V,最高的工作频率为24 MHz,有40个引脚,其中包含32个双向的I/O端口,2个全双工通信口,2个读写口线以及3个16位的可编程定时计数器。该单片机中可反复擦写的Flash存储器可以有效降低开发的成本,使得STC89C52单片机得到了广泛的使用。

2.2 语音报警单元电路

该部分采用ISD1420P语音芯片及外围电路实现语音报警提示功能,ISD1420P芯片内部包含片上时钟、麦克风前置放大器等,它采用模拟存储技术,能够提供20秒的录放时间,且断电不丢失,语音质量高。

外围电路主要由驻极体话筒和扬声器加少量电容电阻组成,实现语音信号的输入输出,并且用1个二极管作为录音指示灯,通过8根地址线和2根录放控制线与单片机相连。在录音模式中,单片机将27脚置低,并送出相应的地址,从而实现分段录音。录音时发光二极管D1被点亮,D1熄灭表示录音结束。在需要报警时,只需要由单片机P0口送出所需报警内容的存储地址,给24脚一个下降沿信号,即开始放音,通过更改地址即可播放不同的预录语音信号,如可以事先录下“注意本车道正面防撞”“注意本车道追尾防撞”“注意左侧车道追尾防撞”等多种可能的语音报警内容,供单片机在实际行驶过程中根据具体情况调用,语音芯片接口原理图如图3所示。

图3 语音芯片ISD1420P接口原理图

2.3 超声波测距单元电路

该单元电路以超声波的发射、接收单元为核心,发射探头发射超声波后,遇到障碍物返回,接收探头接收到相应的信号,经过放大、整形等处理后发送给单片机,单片机根据超声波的往返时间间隔以及传播速度计算得障碍物的距离[6]。

在本系统中采用了DYP-ME007 V2超声波测距模块,图4为其实物图。管脚1~5分别定义为:Vcc,Trig,Echo,Out,GND。

该模块包括了超声波发射单元、超声波接收单元和控制电路,以及温度补偿。该模块可以提供0.02~5 m的测距范围,当该模块收到一个触发信号后,发射单元将开始发射超声波信号,如果探测范围内有障碍物,则接收单元会收到返回的信号,利用发送信号和返回信号的时间差则可以计算得到障碍物的距离。

图4 DYP-ME007模块实物图

使用该模块时,需要占用单片机的两个I/O口,一个I/O口作为触发端,另一个I/O口作为回波PWM信号捕捉引脚。在开始写入程序时,先在Trig引脚给一个大约为10 ms的高电平触发信号,同时该模块的内部将发出8个40 kHz的周期脉冲并检测相应回波信号,同时读出环境温度,计算出真实的距离值,并将其变换成一个PWM的信号从Echo引脚输出。因此只需要读出PWM信号的高电平持续时间,由于该模块带有温度补偿,因此不管温度为多少,距离计算时只需要用340 m/s即可,如果没有收到回波信号,则模块的回响信号脚将输出约65 ms的电平,以防止发射信号的影响。

2.4 电磁铁模块

如图5所示为电磁铁的驱动原理图,电磁铁利用通电的铁心线圈吸引衔铁,当电源断开时,电磁铁的磁性随之消失。电磁铁主要由线圈、铁芯和衔铁组成。本装置采用U型电磁铁作为小车防撞的主要设备,它包含一个U型铁芯,两个线圈和衔铁,线圈面缠绕塑料带表示线圈的绕向,电磁铁做成U型可以使磁感线在工件内形成通路,能大大增强排斥力。本设计采用的是车头和车尾装配统一的U电磁铁。车头和车尾N极和S极都在同一侧。能够使两个车同向和相向行驶时,都产生斥力。

图5 电磁铁驱动原理图

当超声波测距单元检测到障碍物时,单片机P0口的相应管脚输出低电平,光耦芯片(Optoislator1)内部的发光二极管发光,另一边三极管由以前的截止状态变为导通状态,电源电压加到电磁铁P7上,电磁铁开始正常工作。

3 结束语

笔者设计了一种以STC89C52单片机为控制核心的汽车电磁防撞装置,在汽车的车前和车后普遍安装该装置时,汽车在行驶过程中,该车与其他相邻汽车的超声波测距电路均在监测工作状态中,如果发现低于安全距离,则两车一方面启动各自系统中的语音报警装置,提示司机人为减速,另一方面,各自系统的单片机发出信号,分别启动电磁铁单元电路,产生同性相斥的阻力,达到主动减速的目的,与司机的人为减速一起,最大限度上避免汽车的相撞,车前和车后安装该装置,还考虑到了正面防撞和追尾防撞两种状况。如果采用其他性能更好和探测范围更大的超声波测距单元[7],或者超声波测距阵列,可以提供更大范围、更为准确的探测和防撞。

[1] 戴巍.现代汽车防撞系统[J].实用汽车技术,2006,3:5.

[2] 刘岩川,王玲芬,栾慧.基于激光测距技术的汽车防撞系统[J].仪表技术与传感器,2008,11:96-98.

[3] 罗淳,熊庆国.智能汽车防撞报警器的设计开发[J].现代电子技术,2009,11:158-160.

[4] 张旭辉,朱宏辉.基于nRF24E1与TMC2023的汽车防撞系统的研制与实现[J].电子技术应用,2004,11:61-63.

[5] 王英,许可.基于UWB无线定位的汽车防撞系统设计[J].重庆邮电大学学报,2010,22(6):804-807.

[6] 王博.基于超声波测距技术的倒车雷达的应用和设计[J].黑龙江科技信息,2008,12:26.

[7] 杨斌虎,谢克明,杜艳生.基于DSP芯片的超声波测距系统[J].太原理工大学学报,2004,35(2):149-151.

Automobile electromagnet collision avoidance system based on ultrasonic distance measurer

Tong Guodong, Xu Hua, Liu Tiesheng, Yao Susu
Yancheng teachers university, Yancheng, 224002, China

An automobile collision avoid system is proposed in this paper. On the one hand, the sound alarm unit in this system can give a warn signal to the driver to make the car slow down if distance of adjacent car is too near; on the other hand, the electromagnet is used to reduce the speed of the car. Thus, the automobile collision may be avoided effectively by the useage of the proposed system. When the power of the system is on, it f rstly calculate the distance of adjacent cars via ultrasonic distance measurer. Then sound alarm unit will be triggered by the MCU to warn the driver slow down his car if the measured distance is smaller than the predetermined value. At the same time, the electromagnet unit is activated.

MCU; ultrasonic distance measurer; electromagnet

2011-12-13

佟国栋,在读本科生。通讯作者:徐华,博士,副教授。

江苏省高等学校大学生实践创新训练计划项目。

猜你喜欢
电磁铁防撞测距
奇妙的电磁铁
磁浮列车R50弯道悬浮和导向分析计算
磁悬浮小车电磁铁优化设计
高压断路器电磁铁仿真设计及优化
类星体的精准测距
铝合金在汽车前防撞梁轻量化中的应用
浅谈超声波测距
雾天上高速 防撞有招数
直升机载毫米波雷达高压线防撞处理研究
空中交通防撞系统(TCAS Ⅱ)的排故与维护