十齿花化学成分研究

2014-01-09 07:38秦向东刘吉开
天然产物研究与开发 2014年5期
关键词:柱层析波谱硅胶

秦向东,刘吉开

1中国科学院昆明植物研究所 植物化学与西部植物资源持续利用国家重点实验室,昆明 650204;2云南农业大学基础与信息工程学院,昆明 650201

十齿花(Dipentodon sinicus Dunn)是生于亚热带阔叶林中的一种落叶小乔木。其分布区地跨热带以至中亚热带南缘,生长于海拔800~2400 m 的山地,在我国主要分布于西藏、云南、贵州、广西等省。由于森林资源日益遭到破坏,其生长范围缩减,有可能变为濒危种。目前已被我国列为国家二级保护植物。

十齿花为单属单种植物,通常认为属于卫矛科(Celastraceae)。自从1911 年十齿花被发现并被Dunn 归为卫矛科植物后[1],很多研究者提出了不同的看法。1925 年,Sprague[2]将其改归为天料目科(Samydaceae),还有人认为十齿花应属大风子科(Flacourtiaceae)[3-5]。1941 年,Merrill[6]提出了十齿花科(Dipentodontaceae)的概念,并将其置于蔷薇目(Rosales)金缕梅科(Hamamelidaceae)和蔷薇科(Rosaceae)之间,该概念得到了一定程度上的认可。1981 年,Cronquist[7]发表文章,认为十齿花应属于檀香目(Santalales)。彭雅林[8]等人则通过测定十齿花叶绿体rbcL、核糖体18S 和线粒体matR 基因的DNA 序列,否定了上述所有归属,提出了十齿花与锦葵目(Malvales)和无患子目(Sapindales)有较近的亲缘关系的观点。

目前关于十齿花的系统发育以及系统位置的研究有很多,而对其化学成分的研究还鲜有报道。我们对采自云南贡山县的十齿花的地上部分的化学成分作了研究,希望能从这一颇为独特的植物中发现较为特殊的化学成分。同时鉴于亲缘关系相近的植物其化学成分也体现了一定的相似性,希望通过对十齿花化学成分的研究,可以为研究十齿花在卫矛科植物进化过程中的地位提供一些参考。

1 仪器与材料

十齿花(Dipentodon sinicus Dunn)2005 年采于云南贡山县,由中国科学院昆明植物研究所龙春林研究员提供。

ZF-Ⅱ型三用紫外分析仪(上海安亭电子仪器厂),DB-III 型电热板(常州国华电器有限公司),RE-3000 旋转蒸发器(上海亚荣生化仪器厂),SHZCB 型循环水式多用真空泵(河南巩义市英峪予华仪器厂),X-4 数字显示显微熔点测定仪(巩义市予华仪器有限责任公司),VG AutoSpec-3000 质谱仪(美国Beckman 公司),Bruker AM-400 和DRX-500核磁共振波谱仪(瑞士Bruker 公司),Horiba SEPA-300 旋光仪,ISO 9001 型分析天平(北京赛多利斯天平有限公司)。

薄层硅胶板(青岛海洋化工厂分厂),80~100目柱层析硅胶,200~300 目层析硅胶和层析硅胶H(青岛美高集团有限公司)。显色剂为香草醛-浓硫酸显色剂。所用洗脱溶剂均为工业纯,使用前经过重蒸,其他试剂为分析纯。

2 提取与分离

干燥并粉碎的十齿花样品(1.7 kg),依次用甲醇和甲醇/氯仿(1∶1,v/v)于室温下分别提取3 次,每次1 d。提取液合并后减压浓缩,得175 g 黑褐色浸膏。该浸膏加少量水悬浮后过滤除去不溶性物质,滤液用石油醚和乙酸乙酯萃取3 次,乙酸乙酯萃取部分合并后减压浓缩得粗提物20 g。粗提物进行200~300 目硅胶柱层析,以氯仿-甲醇梯度洗脱。得19 个组分(Fr.1-19)。由Fr.7(氯仿-甲醇9 ∶1 洗脱)直接得到化合物1(54 mg);由Fr.14(氯仿-甲醇9∶1 洗脱)直接得到化合物11(67 mg)。

各组分分别用硅胶柱层析和Sephadex LH-20(氯仿/甲醇1∶1 洗脱)进行再分离和纯化,由Fr.2得到化合物4(21 mg);由Fr.4 得到化合物5(5.2 mg)、6(3.8 mg)、7(3.5 mg);由Fr.9 得到化合物8(10.9 mg);由Fr.10 得到化合物9(12 mg);由Fr.11 得到化合物10(6.3 mg);由Fr.14 得到化合物2(32 mg)和3(44 mg)。

3 结构鉴定

化合物1 白色无定形粉末(氯仿-甲醇);1H NMR (500 MHz,CD3OD)δ:7.45 (1H,s,H-5),7.73(1H,s,H-5'),5.54 (1H,d,J=1.58Hz,H-1''),4.02 (3H,s,3-Me),4.04 (3H,s,3'-Me);13C NMR(125 MHz,CD3OD)δ:110.9 (C-1),140.9 (C-2),140.1 (C-3),152.8 (C-4),111.6 (C-5),111.8 (C-6),158.2 (C-7),114.0 (C-1'),141.4 (C-2'),141.8 (C-3'),150.2 (C-4'),111.7 (C-5'),112.5(C-6'),158.3 (C-7'),99.9 (C-1''),70.0 (C-2''),70.4 (C-3''),71.5 (C-4''),70.3 (C-5''),17.9 (C-6''),60.9 (3-Me),61.5 (3'-Me);EI-MS m/z(rel.int.):330 [M-C6H11O4+H]+(100),315(56),287 (21);Negative FAB-MS m/z:475 [MH]-。化合物波谱数据与文献[9]相符,鉴定为3,3'-二甲氧基鞣酸-4'-鼠李糖苷。

化合物2 黄色晶体(氯仿-甲醇);1H NMR(400 MHz,pyridine-d5)δ:8.42 (1H,d,J=1.83 Hz,H-2'),7.24 (1H,d,J=8.40 Hz,H-5'),8.13 (1H,dd,J=8.40,1.83 Hz,H-6'),6.67 (1H,d,J=1.74 Hz,H-6),6.61 (1H,d,J=1.74 Hz,H-8),6.07(1H,d,J=7.72Hz,H-1''),4.17~4.81 (7H,m,H-2''~H-6'');13C NMR (100 MHz,pyridine-d5)δ:157.6 (C-2),135.8 (C-3),178.9 (C-4),162.7 (C-5),99.8 (C-6),166.0 (C-7),94.6 (C-8),157.8(C-9),105.2 (C-10),122.8 (C-1'),116.3 (C-2'),146.8 (C-3'),150.8 (C-4'),117.8 (C-5'),122.3(C-6'),105.5 (C-1''),73.4 (C-2''),75.5 (C-3''),69.8 (C-4''),77.7 (C-5''),61.9 (C-6'');EIMS m/z (rel.int.):302[M-C6H11O5+H]+(100);negative FAB-MS m/z:463[M-H]-;13C NMR 数据与文献[10]一致,鉴定为槲皮素-3-O-β-D-葡萄糖苷。

化合物3 白色无定型粉末;1H NMR (400 MHz,pyridine-d5)δ:8.01 (1H,s,H-5),8.45 (1H,s,H-5'),5.44 (1H,d,7.8 Hz,H-1''),4.17 (3H,s,3-Me),4.26 (3H,s,3'-Me);13C NMR (100 MHz,pyridine-d5)δ:111.8 (C-1),142.0 (C-2),141.3(C-3),154.5 (C-4),113.1 (C-5),112.9 (C-6),159.0 (C-7),114.8 (C-1'),142.4 (C-2'),142.8(C-3'),152.7 (C-4'),113.1 (C-5'),113.9 (C-6'),159.2 (C-7'),102.6 (C-1''),74.9 (C-2''),78.6 (C-3''),71.1 (C-4''),79.2 (C-5''),62.3 (C-6''),61.3 (3-Me),61.9 (3'-Me);EI-MS m/z(rel.int.):330 (100),315 (57),287 (25),259(9),231 (12),203 (12);negative FAB-MS m/z:492[M]-。NMR 数据与文献[9]相符,鉴定为3,3'-二甲氧基鞣酸-4'-葡萄糖苷。

化合物4 白色晶体(氯仿-甲醇);1H NMR(400 MHz,pyridine-d5)δ:7.31 (1H,s,H-2),7.14(1H,d,J=8.5 Hz,H-5),7.00 (1H,d,J=8.5Hz,H-6),4.53 (1H,d,J=10.73 Hz,H-7),2.38 (1H,dd,J=10.73,10.51 Hz,H-8),4.58 (1H,m,H-9a),3.61 (1H,m,H-9b),6.83 (1H,s,H-2'),6.85 (1H,s,H-5'),3.33 (1H,dd,J=11.46,15.46 Hz,H-7'a),3.13 (1H,dd,J=4.09,15.73 Hz,H-7'b),2.47(1H,m,H-8'),4.30 (1H,m,H-9'a),3.59 (1H,m,H-9'b),4.61 (1H,d,J=7.23 Hz,H-1''),4.04(1H,t,J=7.8 Hz,H-2''),4.12 (1H,t,J=8.7 Hz,H-3''),4.22(1H,m,H-4''),4.26 (2H,m,H-5''),3.70 (3H,s,3-OMe),3.77 (3H,s,3'-OMe);13C NMR (100 MHz,pyridine-d5)δ:137.9 (C-1),114.4(C-2),148.5 (C-3),146.4 (C-4),116.6 (C-5),122.6 (C-6),47.4 (C-7),45.5 (C-8),68.5 (C-9),128.1 (C-1'),112.5 (C-2'),147.0 (C-3'),146.1 (C-4'),118.0 (C-5'),134.0 (C-6'),33.8(C-7'),39.2 (C-8'),67.2 (C-9'),106.1 (C-1''),75.2 (C-2''),78.5 (C-3''),71.2 (C-4''),64.2 (C-5''),55.8 (3-OMe),56.0 (3'-OMe);EI-MS m/z(rel.int.):492[M]+(1),360 (13),341 (36),137(100);negative FAB-MS m/z:491[M-H]-。波谱数据与文献[11]相符,鉴定为isolariciresinol-9-O-α-L-arabinopyranoside。

化合物5 无色针晶(氯仿-甲醇);1H NMR(400 MHz,CD3OD)δ:6.60 (4H,s,H-2,3,5,6);13C NMR (100 MHz,CD3OD)δ:151.2 (C-1,4),116.8(C-2,3,5,6);EI-MS m/z (rel.int.):110 (100),81(24)。化合物结构由波谱数据解析为对苯二酚。

化合物6 浅黄色晶体(氯仿-甲醇);1H NMR(400 MHz,CD3OD)δ:7.87 (2H,d,J=8.79 Hz,H-2,6),6.80 (2H,d,J=8.79 Hz,H-3,5);13C NMR(100 MHz,CD3OD)δ:122.7 (C-1),133.0 (C-2,6),116.0 (C-3,5),163.4 (C-4),170.1 (-COOH);EI-MS m/z (rel.int.):138[M]+(65),121 (100),93 (23)。化合物结构由波谱数据解析为对羟基苯甲酸。

化合物7 无色晶体(氯仿-甲醇);1H NMR(400 MHz,CD3OD)δ:7.32 (2H,d,J=8.60 Hz,H-2,6),6.80 (2H,d,J=8.60 Hz,H-3,5),5.48 (1H,s,H-α);13C NMR (100 MHz,CD3OD)δ:129.0 (C-1),129.3 (C-2,6),116.5 (C-3,5),159.5 (C-4),121.2 (-CN),63.6 (C-α);EI-MS m/z (rel.int.):149[M]+(5),138 (58),121 (100),93 (30)。化合物结构由波谱数据解析为α-hydroxy-(4-hydroxyphenyl)acetonitrile。

化合物8 无色针晶(氯仿-甲醇);1H NMR(500 MHz,CD3OD)δ:5.95 (1H,s,H-2),7.49(2H,d,J=8.7Hz,H-4,8),6.97 (2H,d,J=8.7 Hz,H-5,7),4.63 (1H,d,J=7.7 Hz,H-1'),3.23 (1H,m,H-2'),3.41 (1H,m,H-3'),3.28 (1H,m,H-4'),3.37 (1H,m,H-5'),3.68 (1H,dd,J=6.3,12.0 Hz,H-6'a),3.92 (1H,dd,J=2.0,12.0 Hz,H-6'b),3.81 (3H,s,OMe);13C NMR (125 MHz,CD3OD)δ:118.7 (C-1),68.2 (C-2),127.2 (C-3),130.4 (C-4,8),115.2 (C-5,7),162.3 (C-6),101.9 (C-1'),74.8 (C-2'),78.0 (C-3'),71.6 (C-4'),78.6 (C-5'),62.8 (C-6'),55.9 (6-OMe);EI-MS m/z(rel.int.):163 [M-C6H11O5+H]+(16),147[MC6H11O5-Me+H]+(100);Negative FAB-MS m/z:324[M-H]-。化合物骨架结构由HMBC 数据(图1)得出,dhurrin 骨架部分1H NMR 波谱数据与文献[12]相符,鉴定为6-O-methyldhurrin。

图1 化合物8 的HMBC 关系Fig.1 Key HMBC correlations of compound 8

化合物9 无色针晶(氯仿-甲醇);1H NMR(400 MHz,CD3OD)δ:4.55 (1H,d,J=7.52 Hz,H-2),3.97 (1H,m,H-3),2.84 (1H,dd,J=5.37,16.11 Hz,H-4a),2.50 (1H,dd,J=8.20,16.12 Hz,H-4b),5.92 (1H,d,J=2.27 Hz,H-6),5.85 (1H,d,J=2.25 Hz,H-8),6.83 (1H,d,J=1.78 Hz,H-2'),6.71 (1H,dd,J=1.85,8.14 Hz,H-5'),6.75(1H,d,J=8.09Hz,H-6');13C NMR (100 MHz,CD3OD)δ:82.9 (C-2),68.8 (C-3),28.5 (C-4),156.9 (C-5),96.2 (C-6),157.8 (C-7),95.4 (C-8),157.6 (C-9),100.8 (C-10),132.2 (C-1'),116.0 (C-2'),146.2 (C-3'),146.3 (C-4'),115.2(C-5'),120.0 (C-6');EI-MS m/z (rel.int.):290[M]+(15),152 (40),139 (100),123 (38);negative FAB-MS m/z:289 [M-H]-。NMR 数据与文献[13]一致,鉴定为3,3',4',5,7-五羟基黄烷。

化合物10 黄色晶体(氯仿-甲醇);1H NMR(400 MHz,CD3OD)δ:7.27 (2H,d,J=8.5Hz,H-2,6),6.91 (2H,d,J=8.6 Hz,H-3,5),9.76 (1H,s,-CHO);13C NMR (100 MHz,CD3OD)δ:130.3 (C-1),133.5 (C-2,6),116.9 (C-3,5),165.2 (C-4),192.8 (-CHO);EI-MS m/z (rel.int.):122 [M]+(73),121[M-H]+(100),93[M-CHO]+(36);negative FAB-MS m/z (rel.int.):121 [M-H]-(100)。化合物结构由波谱数据解析为对羟基苯甲醛。

化合物11 黄色晶体(氯仿-甲醇);1H NMR(500 MHz,pyridine-d5)δ:6.69 (1H,s,H-6),6.64(1H,s,H-8),8.01 (1H,s,H-2'),7.29 (1H,d,J=8.25 Hz,H-5'),7.69 (1H,d,J=8.25 Hz,H-6'),6.27 (1H,s,H-1''),5.07 (1H,s,H-2''),4.63(1H,dd,J=9.25,1.52 Hz,H-3''),4.29 (1H,dd,J=9.25,9.35 Hz,H-4''),4.37 (1H,m,H-5''),1.47(3H,d,J=6.10 Hz,H-6'');13C NMR (125 MHz,pyridine-d5)δ:157.7 (C-2),136.1 (C-3),179.1(C-4),163.0 (C-5),99.7 (C-6),165.8 (C-7),94.6 (C-8),158.2 (C-9),105.5 (C-10),122.4 (C-1'),116.5 (C-2'),147.3 (C-3'),150.6 (C-4'),117.1 (C-5'),122.2 (C-6'),104.6 (C-1''),72.0(C-2''),72.6 (C-3''),73.4 (C-4''),72.1 (C-5''),18.4 (C-6'');EI-MS m/z (rel.int.):302[M-C6H11O4+H]+(100);negative FAB-MS m/z:447[MH]-。13C NMR 数据与文献[14]一致,鉴定为槲皮素-3-O-β-L-鼠李糖苷。

1 Dunn A.Dipentodon,a new genus of uncertain systematic position.Bull Misc Inform Kew,1911:310-313.

2 Sprague TA.Samydaceae.J Bot Brit Forein,1925,63:9-13.

3 Fischer CEC.Contributions to the flora of Burma:XVIII.Kew Bull,1940:282-294.

4 Lobreau D.Les limites de 1”ordre”des Celastrales d’apres le pollen.Pollen & Spores,1969,11:499-555.

5 Loesener T.Celastraceae.In A.Engler and K.Prantl(eds.),Die Natürlichen Pflanzenfamilien 20b.Berlin:Duncker & Humblot,1942.87-197.

6 Merrill ED.Dipentodontaceae.Plants collected by Captain F Kindon-Ward on the Vernay-Cutting Expedition.1938-39.Brittonia,1941,4:69-73.

7 Cronquist A.An Integrated System of Classification of Flowering Plants.New York:Columbia University Press,1981.681.

8 Peng YL,Chen ZD,Gong X,et al.Phylogenetic position of Dipentodon sinicus:evidence from DNA sequences of chloroplast rbcL,nuclear ribosomal 18S,and mitochondria matR genes.Bot Bull Acad Sin,2003,44:217-222.

9 Ye G,Peng H,Fan MS,et al.Ellagic acid derivatives from the stem bark of Dipentodon sinicus.Chem Nat Comp,2007,43:125-127.

10 Chen C (陈雏),Zhang H (张浩),Gu H (顾恒),et al.Flavonoid glycosides from the berries of Hippophae rhamnoides subsp.Sinensis Rousi.West China J Pharm Sci,2007,22:367-370.

11 Luo XD,Wu DG,Cai XH,et al.New antioxidant phenolic glycosides from Walsura yunnanensis.Chemistry & Biodiversity,2006,3:581-587.

12 Selmar D,Irandoost Z,Wray V.Dhurrin-6'-glucoside,a cyanogenic diglucoside from Sorghum bicolor.Phytochemistry,1996,43:569-572.

13 Shen CC,Chang YS,Ho LK.Nuclear magnetic resonance studies of 5,7-dihydroxyflavonoids.Phytochemistry,1993,34:843-845.

14 Ge DD (葛丹丹),Zhang Y (张祎),Liu EW (刘二伟),et al.Chemical constituents of Mangifera indica leaves (I).Chin Tradit Herb Drugs,2011,42:428-431.

猜你喜欢
柱层析波谱硅胶
盐酸四环素中可交换氢和氢键的核磁共振波谱研究
无线光电鼠标
泥炭组成成分的GC-MS分析
小蜡叶民间药用物质基础提取模式探索
琥珀酸美托洛尔的核磁共振波谱研究
柱层析用硅胶对羌活中主要成分的影响
厚朴酚中压硅胶柱层析纯化工艺的优化
检疫性杂草假高粱与近缘植物种子的波谱鉴别方法
自体耳软骨移植联合硅胶假体置入在鼻部整形中的应用
人参皂苷Rg1键合硅胶固定相的制备、表征及应用(二)