VEGF-P(HBHO)NPs缓释微球的制备性能 及生物学活性检测

2014-09-12 16:33任玮张永红肖威陆兴
中国当代医药 2014年16期
关键词:血管内皮生长因子

任玮++++张永红++肖威++陆兴++++赵良启

[摘要] 目的 制备血管内皮生长因子(VEGF)可降解缓释微球,考察其生物活性的保存情况以及对血管内皮细胞的作用。 方法 采用W1/O/W2超声乳化法制备羟基丁酸与羟基辛酸共聚物载血管内皮生长因子纳米微球,采用三步梯度筛网法培养肾微血管内皮细胞,按照培养液中所含成分不同分为3组:血管内皮生长因子组、纳米微球组、对照组,其中前两组血管内皮生长因子的有效质量浓度分别设为10、20、50 μg/L。 结果 培养第1、3天,血管内皮生长因子组与纳米微球组吸光度值比较差异无统计学意义(P>0.05),但吸光度值显著高于对照组(P<0.05),即血管内皮生长因子对肾微血管内皮细胞具有明显促增殖作用;第5、7天纳米微球组吸光度值高于血管内皮生长因子组(P<0.01),即纳米微球缓慢释放血管内皮生长因子,明显提高生物利用度;第7、10天载药纳米微球组微血管内皮细胞仍有较强的增殖能力,与其他两组比较,差异有统计学意义(P<0.01)。 结论 VEGF-P(HBHO)NPs对生长因子具有良好缓释作用,比单纯VEGF对肾微血管内皮细胞有更为明显的生物学效应,可以持续促进其增殖。

[关键词] 血管内皮生长因子;微球体;血管内皮细胞;缓释制剂

[中图分类号] Q813.2[文献标识码] A[文章编号] 1674-4721(2014)06(a)-0012-05

Preparation technique,characterizationand biological effects of VEGF-P(HBHO)NPs microspheres

REN Wei1 ZHANG Yong-hong1 XIAO Wei1 LU Xing1 ZHAO Liang-qi2

1.Department of Orthopaedics,the Second Clinical Medical College of Shanxi Medical University,Taiyuan 030001,China;2.Biological Technology Research Institute of Shanxi University,Taiyuan 030006,China

[Abstract] Objective To prepare of vascular endothelial growth factor (VEGF) biodegradable slow-release microspheres,to inspect the preservation of its biological activity and the role of vascular endothelial cells. Methods Hydroxybutyric acid and hydroxy acid copolymer vascular endothelial growth factor nanometer microspheres were prepared by W1/O/W2 ultrasonic emulsification method,the renal microvascular endothelial cells was cultivated by three gradient mesh method,they were divided into three groups according to the nutrient solution contains ingredients different:VEGF group,nanospheres group and control group,among them,the former two groups of vascular endothelial growth factor of the effective mass concentration were set to 10,20,50 μg/L. Results To cultivate 1,3 days,the absorbance value between VEGF group and nanospheres group had no statistical significance (P>0.05),but the absorbance value from them were both higher than that of the control group (P<0.05),VEGF had obvious effect on promoting proliferation of renal microvascular endothelial cells.The absorbance value in nanospheres group was significantly higher than that of the VEGF group at the 5,7 days,nanometer microspheres can slow release of vascular endothelial growth factor and improve bioavailability,microvascular endothelial cells still had a strong ability of proliferation in nanospheres group at the 7,10 days,compared with other two groups,the difference was statistically significant (P<0.01). Conclusion VEGF-P(HBHO)NPs has a good slow release effect on growth factors, have a more obvious biological effect than simple VEGF on renal microvascular endothelial cells,it can continue to promote its proliferation.

[Key words] Vascular endothelial growth factor;Microspheres;Vascular endothelial cells;Sustained release formulations

在组织工程中,生物活性生长因子可以促进其特定的种子细胞的增殖及分化,从而实现关节一体化各个区域的构建[1-4]。但生长因子极易被体内的蛋白酶所分解,生物利用度低,不能有效发挥其生物学作用[5-7]。为了解决这些问题,本课题组运用发酵技术开发出了一种新型多聚羟基烷酸-羟基丁酸与羟基辛酸共聚物(PHBHOx),不仅具有多聚羟基烷酸-羟基丁酸的通性[8-10],而且其柔韧性与加工性能得到较大改善[11-12]。本课题制备PHBHOx载血管内皮生长因子(vascular endothelial growth factor,VEGF)纳米微球,并探索研究该纳米微球的体外性能。

1 材料与方法

1.1 实验材料

1.1.1 主要材料及试剂PHBHOx(HB∶HO=9∶1,黏均分子量1.85×105 Da,由本实验室发酵生产所得);VEGF(武汉博士得生物工程有限公司,中国);二氯甲烷(天津星马克科技发展有限公司,中国);聚乙烯醇(PVA,上海研生实业有限公司,中国)。

1.1.2 主要仪器磁力加热搅拌器(浙江金坛恒丰制造有限公司,中国);超声波细胞粉碎仪(宁波新艺超声设备有限公司,中国)。

1.1.3 实验动物9周龄乳兔1只,重量1000 g,来源于山西医科大学实验动物中心,许可证号:SYXK(晋)2009-0004。

1.2 方法

1.2.1 载VEGF纳米缓释微球的制备称取一定量的PHBHOx溶于2 ml二氯甲烷(含5% Tween 80,1% Span 80)中加热溶解,作为溶液1,取10 μg VEGF溶于0.5 ml PBS液中作为溶液2,按3%的浓度秤取一定量的PVA溶于20 ml蒸馏水中,加热搅拌溶解后,降至常温,作为溶液3。调节超声波细胞粉碎仪,输出功率为250 W,有效时间30 s,冰浴条件下,用超声波细胞粉碎仪超声溶液1与2至乳状。将溶液3加入到乳状混合液中,调节超声波细胞粉碎仪,输出功率为450 W,同前超声,至乳状。将混合乳状液在常温下,机械搅拌5 h,除去二氯甲烷,15 000 r/min高速离心除去游离药物与表面活性剂(PVA;Tween 80;Span 80),用PBS液充分洗涤3次,共约700 ml,分别用不同孔径微孔滤膜由大到小依次过滤,滤出物经冷冻干燥仪冷冻干燥后,并60Co灭菌备用。

1.2.2 兔肾微血管内皮细胞的分离传代培养采用三步梯度筛网法[13-14]进行分离及培养。空气栓塞处死乳兔后取双肾,体积分数75%乙醇浸泡5 min,Hank缓冲液漂洗3次,剥离被膜和脂肪组织,取肾皮质,剪成约1 mm×1 mm×1 mm组织块,置于100目尼龙滤网上研磨,滤过物置于150目滤网上研磨,最后用200目尼龙滤网搜集滤过物;M199培养液冲洗并搜集滤过物,1200 r/min离心5 min,离心半径15.5 cm,弃上清液,用0.1%Ⅳ型胶原酶(1 g/L)37℃消化滤过物30 min,离心,取积淀物用M199培养液(含体积分数20%胎牛血清,0.02 mg/L血管内皮细胞生长因子,青、链霉素各100 U/ml)吹打匀称,细胞计数,以1×1010/L细胞浓度置于25 ml培养瓶作原代培养,倒置显微镜下察看细胞状态。72 h后首次换液,随后每隔48 h换液,待细胞增殖融合至80%~90%时,以0.25%胰蛋白酶(含0.02%乙胺四乙酸)消化传代,1∶2传至第3代备用。

1.2.3 实验分组实验分组依据所含成分的不同分为3组。A组:VEGF组;B组:纳米微球组;C组:对照组。A组为单纯10%胎牛血清DMEM液+VEGF;B组将VEGF-P(HBHO)NPs加入10%胎牛血清DMEM液。C组为没有添加药物的10%胎牛血清DMEM液(对照组)。前两组培养液中VEGF浓度分别设为10、20、50 ng/ml 3个浓度。提取培养至第3代的兔肾微血管内皮细胞,用培养液调整浓度至1×107个/L,接种到96孔板上,每孔200 μl。使细胞同步生长后,隔天换液1次,并于1、3、5、7、10 d收集细胞,A、B两组每个时相点设置4个重复测量孔,C组每个时相点设置2个重复测量孔。

1.2.4 MTT法检测缓释纳米微球对肾血管内皮细胞活力的影响分别于培养1、3、5、7、10 d,常规先后加入5%四甲基偶氮唑盐(MTT)20 μl,经过4 h后再加入二甲基亚砜150 μl,低速振荡,用酶联免疫检测仪依次测量各孔的吸光度值,检测波长为490 nm,以反映VEGF对肾微血管内皮细胞活力的影响。

1.3 统计学处理

本研究所得数据均采用SPSS 13.0统计软件进行统计分析,计数资料以x±s表示,采用t检验,计数资料采用方差分析,以P<0.05为差异有统计学意义。

2 结果

2.1 纳米微球及肾微血管内皮细胞形态的观察

纳米缓释微球表面形态,基本完整,大小较均一,分散性可;载药纳米微球的平均粒径为(524.75±67.46) nm(图1)。肾微血管内皮细胞呈短胖梭形,镶嵌分列,互不堆叠,产生接触抑制呈铺路鹅卵石形(图2)。

图1 纳米微球扫描电镜图

图2 肾微血管内皮细胞显微镜图

2.2 载VEGF缓释纳米微球载药量与包封率的测定结果

采用ELISA法在450 nm波长处,测定某一标准孔的OD值,吸光度(A)与浓度(C)呈较好线性关系,回归方程为:A=0.002C+0.122,r2=0.997(表1、图3)。

表1 在450nm波长处一定浓度的吸光度值

图3 在450 nm波长处一定浓度的吸光度值线性关系

根据公式,载药量=(微球中所含药物重/微球的总重)×100%;包封率=(系统中包封与未包封的总药量-液体介质中未包封的药量/系统中包封与未包封的总药量)×100%;得到载VEGF缓释纳米微球的载药量为:(1.257±0.024)×10-3%,包封率为:(90.77±1.67)%(表2)。

表2 PHBHOx载VEGF纳米微球载药量及包封率的测定结果

2.3 PHBHOx载VEGF缓释纳米微球体外释药率的测定

精确称取10 mg纳米粒分散于100 ml pH 7.4的PBS液中,水浴恒温37℃,并以一定的速度低速搅拌,分别在0、1、3、5、7、9、11、13、15 d取样5 ml,同时补充同体积的PBS,立即对样液进行离心(15 000 r/min,10 min),取上清10 μl,测OD值,代入标准曲线回归方程,计算累积释药百分数,并制图(x轴释药天数,y轴释药百分比)。在第1天内微球释药速率较快,这可能与微球迅速吸水溶胀,而快速的释放包被的生物活性因子;同时也未超过20%,5 d释药率可达50%,14 d可达90%的释药率,这段时间微球的释药率逐渐减慢,这可能与微球以自身降解来释放药物有关(图4)。

图4 载VEGF的缓释纳米微球释药曲线

2.4 不同浓度的单纯VEGF、VEGF-P(HBHO)NPs及对照组对肾微血管内皮细胞增殖检测的结果

培养1~3 d,A组与B组比较,差异无统计学意义(P>0.05),即肾微血管内皮细胞在不同形式的生物活性因子的作用下,增殖无明显差别;C组与A、B组比较,差异均有统计学意义(P<0.01),表明VEGF可显著促进肾微血管内皮细胞的增殖;共培养5~7 d,A组与C组比较,差异有统计学意义,说明VEGF可继续促进肾微血管内皮细胞的增殖,B组与A、C组比较,差异均有统计学意义,表明缓释纳米微球缓慢持续的释放VEGF;共培养7~10 d,A组与C组比较,差异无统计学意义,即VEGF的生物活性可能丧失,无法发挥其促进肾微血管内皮细胞增殖分化的作用;B组与A、C组比较,差异均有统计学意义(P<0.01),表明载VEGF的纳米缓释微球仍然可以缓慢释放生物活性因子,在很大程度上,延长了生物活性因子的作用时间,显示出纳米粒子的缓释作用(表3)。

3 讨论

在组织工程中,生物活性生长因子可以促进其特定的种子的增殖及分化[15-16],这其中VEGF可以为关节一体化支架基质区的构建提供生长因子[17-18],同时可以有效促进关节周围肉芽组织生长以及在创伤修复中的伤口愈合[19-20]。但由于VEGF本身属于一种蛋白质,极易被体内的蛋白酶降解,短时间内就会被代谢,因而自身组织的修复不能被充分满足,研究生长因子缓释微球,可以为组织工程技术修复软骨损伤铺平道路。

本研究通过超声乳化法[12,21]制备载VEGF缓释纳米微球,并与肾微血管内皮细胞共培养,肾微血管内皮细胞在不同形式的生物活性因子的作用下,增殖无明显差别,可能与缓释纳米微球迅速吸水溶胀,从而快速释放出所包被的生物活性因子有关;VEGF可显著促进肾微血管内皮细胞的增殖;包被在载体中的生物活性因子随着载体材料的降解而缓慢持续释出,从而显著提高生物活性因子的生物利用度,在较长的一段时间内可继续促使肾微血管内皮细胞的增殖,在很大程度上,延长了生物活性因子的作用时间,显示出纳米粒子的缓释作用。

综上所述,采用超声乳化法制备的载VEGF缓释纳米微球,可以一定速率释放VEGF,可以持续有效的较长时间促进肾血管内皮细胞的增殖及分化。制备的载药纳米粒子初期快速释药,使单纯使用生长因子与载药粒子无明显差异,而后期,包被的药物通过载体材料的降解而缓慢持续释药,缓释纳米粒子的缓释作用得到显著体现,这也说明纳米粒子释放规律基本遵守降解扩散控制原则[22-25]。但由于时间因素,未能做在体内环境下,实施纳米微球与支架复合后的损伤修复实验,有待进一步的研究证明该微球的生物学意义和应用价值。

[参考文献]

[1]Seil JT,Webster TJ.Antimicrobial applications of nanotechnology:methods and literature[J].Int J Nanomedicine,2012,7:2767-2781.

[2]Tiwari M.Nano cancer therapy strategies[J].J Cancer Res Ther,2012,8(1):19-22.

[3]Kawagachi T,Tsugane A,Higashide K,et al.Control of drug release with a combination of prodrug and polymer matrix:antitumor activity and release profiles of 3′,5′-diacyl-5-fluoro-2′-deoxyurkline from poly (3-hydroxybutyrat e) microspheres[J].J Pharm Sci,1992,81(6):508-512.

[4]Liu Y,Tan J,Thomas A,et al.The shape of things to come: importance of design in nanotechnology for drug delivery[J].Ther Deliv,2012,3(2):181-194.

[5]Desai N.Challenges in development of nanoparticle-based therapeutics[J].AAPS J,2012,14(2):282-295.

[6]Pouton CW,Akhtar S.Biosynthetic polyhydroxyalkanoates and their potential in drug delivery[J].Adv Drug Deliv Rev,1996,18(2):133-162.

[7]Koosha F,Muller RH,Davis SS.Polyhydroxybutyrate as a drug carries[J].Crit Rev Ther Darrier Syst,1989,6(2):117-130.

[8]Bosetti M,Boccafoschi F,Leigheb M,et al.Chondrogenic induction of human mesenchyal stem cells using combined growth factors for cartilage tissue engineering[J].J Tissue Eng Regen Med,2012,6(3):205-213.

[9]de Koning GJM,Lemstra PJ.Crystallization phenomena in bacterial poly[(R) -3-hydroxybutyrate]:3.Toughening via texture changes[J].Polymer,1994,35(21):4598-4605.

[10]Li S,Ji Z,Zou M,et al.Preparation,characterization,pharmacokinetics and tissue distribution of solid lipidnanoparticles loaded with tetrandrine[J].AAPS Pharm Sci Tech,2011,12(3):1011-1018.

[11]Ozturk K,Caban S,Kozlu S,et al.The influence of technologicalparameters on the physicochemical properties of blank PLGAnanoparticles[J].Pharmazie,2010,65(9):665-669.

[12]Park YM,Lee SJ,Kim YS,et al.Nanoparticle-based vaccine delivery for cancer immunotherapy[J].Immune Netw,2013,13(5):177-183.

[13]Rolbblat G.Growth,nutrition,and metabolism of cell in culture[M].New York:Academic Publishers,1977.

[14]Manke A,Wang L,Rojanasakul Y.Mechanisms of nanoparticle-induced oxidative stress and toxicity[J].Biomed Res Int,2013,2013:942916.

[15]Li C,Li L,Keates AC.Targeting cancer gene therapy with magnetic nanoparticles[J].Oncotarget,2012,3(4):365-367.

[16]张纲.bFGF、rhBMP-2聚乳酸纳米微球促进下颌骨骨折愈合的实验研究[D].重庆:第三军医大学,2007.

[17]陈璋,张婵,郭羽,等.羟基丁酸与羟基辛酸共聚物载阿霉素缓释纳米微球的研究[J].山西大学学报(自然科学版),2009,32(2):258-262.

[18]郭羽,董岳峰,陈璋,等.羟基丁酸与羟基辛酸共聚体骨组织工程支架的初步研究[J].功能材料,2009,40(3):459-462,466.

[19]Havla JB,Lotz AS,Richter E,et al.Cartilage tissue engineering for auricular reconstruction in vitro evaluation of potential genotoxic and cytotoxic effects of scaffold materials[J].Toxicol In Vitro,2010,24(3):849-853.

[20]Agarwal S,Wendorff JH,Greiner A.Use of electrospinning technique for biomedical applications[J].Polymer,2008, 49(26):5603-5621.

[21]Sun ML,Zhang H.The development of nanoparticles on DNA isolation and purification[J].Sheng Wu Gong Cheng Xue Bao,2001,17(6):601-603.

[22]Park H,Hwang MP,Lee KH.Immunomagnetic nanoparticle-based assays for detection of biomarkers[J].Int J Nanomedicine,2013,8:4543-4552.

[23]Bañobre-López M,Teijeiro A,Rivas J.Magnetic nanoparticle-based hyperthermia for cancer treatment[J].Rep Pract Oncol Radiother,2013,18(6):397-400.

[24]Cohen NP,Foster RJ,Mow VC.Composition and dynamics of articular cartilage:structure,function,and maintaining healthy state[J].J Orthop Sports Phys Ther,1998, 28(4):203-215.

[25]Rim KT,Song SW,Kim HY.Oxidative DNA damage from nanoparticle exposure and its application to workers′ health:a literature review[J].Saf Health Work,2013,4(4):177-186.

(收稿日期:2014-04-04本文编辑:林利利)

[18]郭羽,董岳峰,陈璋,等.羟基丁酸与羟基辛酸共聚体骨组织工程支架的初步研究[J].功能材料,2009,40(3):459-462,466.

[19]Havla JB,Lotz AS,Richter E,et al.Cartilage tissue engineering for auricular reconstruction in vitro evaluation of potential genotoxic and cytotoxic effects of scaffold materials[J].Toxicol In Vitro,2010,24(3):849-853.

[20]Agarwal S,Wendorff JH,Greiner A.Use of electrospinning technique for biomedical applications[J].Polymer,2008, 49(26):5603-5621.

[21]Sun ML,Zhang H.The development of nanoparticles on DNA isolation and purification[J].Sheng Wu Gong Cheng Xue Bao,2001,17(6):601-603.

[22]Park H,Hwang MP,Lee KH.Immunomagnetic nanoparticle-based assays for detection of biomarkers[J].Int J Nanomedicine,2013,8:4543-4552.

[23]Bañobre-López M,Teijeiro A,Rivas J.Magnetic nanoparticle-based hyperthermia for cancer treatment[J].Rep Pract Oncol Radiother,2013,18(6):397-400.

[24]Cohen NP,Foster RJ,Mow VC.Composition and dynamics of articular cartilage:structure,function,and maintaining healthy state[J].J Orthop Sports Phys Ther,1998, 28(4):203-215.

[25]Rim KT,Song SW,Kim HY.Oxidative DNA damage from nanoparticle exposure and its application to workers′ health:a literature review[J].Saf Health Work,2013,4(4):177-186.

(收稿日期:2014-04-04本文编辑:林利利)

[18]郭羽,董岳峰,陈璋,等.羟基丁酸与羟基辛酸共聚体骨组织工程支架的初步研究[J].功能材料,2009,40(3):459-462,466.

[19]Havla JB,Lotz AS,Richter E,et al.Cartilage tissue engineering for auricular reconstruction in vitro evaluation of potential genotoxic and cytotoxic effects of scaffold materials[J].Toxicol In Vitro,2010,24(3):849-853.

[20]Agarwal S,Wendorff JH,Greiner A.Use of electrospinning technique for biomedical applications[J].Polymer,2008, 49(26):5603-5621.

[21]Sun ML,Zhang H.The development of nanoparticles on DNA isolation and purification[J].Sheng Wu Gong Cheng Xue Bao,2001,17(6):601-603.

[22]Park H,Hwang MP,Lee KH.Immunomagnetic nanoparticle-based assays for detection of biomarkers[J].Int J Nanomedicine,2013,8:4543-4552.

[23]Bañobre-López M,Teijeiro A,Rivas J.Magnetic nanoparticle-based hyperthermia for cancer treatment[J].Rep Pract Oncol Radiother,2013,18(6):397-400.

[24]Cohen NP,Foster RJ,Mow VC.Composition and dynamics of articular cartilage:structure,function,and maintaining healthy state[J].J Orthop Sports Phys Ther,1998, 28(4):203-215.

[25]Rim KT,Song SW,Kim HY.Oxidative DNA damage from nanoparticle exposure and its application to workers′ health:a literature review[J].Saf Health Work,2013,4(4):177-186.

(收稿日期:2014-04-04本文编辑:林利利)

猜你喜欢
血管内皮生长因子
阿托伐他汀对冠脉粥样斑块和血管内皮功能的影响
左炔诺孕酮宫内缓释系统在子宫内膜异位症术后患者中的应用效果观察
eNOS对糖尿病视网膜病变的研究进展
褪黑素通过HIF—1α/VEGF信号通路减轻急性肾损伤的研究
β—catenin和VEGF在基底细胞癌中的表达及其相关性
热痹康汤对胶原诱导性关节炎大鼠滑膜血管内皮生长因子的影响
急性冠脉综合征患者血浆periostin蛋白水平与VEGF、ET—1及hs—CRP的相关性探讨
丁苯酞对急性脑梗死患者血清VEGF影响及临床疗效观察
苦瓜等对链脲佐菌素诱导糖尿病模型小鼠血糖血脂影响的比较