KATP通道开放剂对气道平滑肌细胞增殖表达及SOCS3/5免疫失衡的影响

2014-11-18 10:14邓伊王志强
中国当代医药 2014年29期
关键词:共培养信号转导平滑肌

邓伊++王志强

[摘要] 目的 研究ATP敏感性钾通道(KATP通道)开放剂对气道平滑肌细胞(ASMCs)增殖过程的影响,以及细胞因子信号转导抑制蛋白3/5(SOCS3/5)表达变化与转化生长因子-β1(TGF-β1)分泌释放水平的关系。 方法 体外构建增殖型ASMCs原代培养细胞模型,分为ASMCs组、AngⅡ·ASMCs组、淋巴细胞(L)组、ASMCs+L组和AngⅡ·ASMCs+L组。Real-time PCR检测细胞中SOCS3 mRNA及SOCS5 mRNA表达的差异;ELISA法检测上清液中TGF-β1的释放水平。观察KATP通道开放剂尼可地尔(NCR)干预的影响。 结果 与ASMCs组比较,AngⅡ·ASMCs组TGF-β1的表达水平明显升高(P<0.01);NCR作用于细胞后各组ASMCs表达TGF-β1与格列本脲(GLI)比较明显减少(P<0.05)。与ASMCs+L组比较,AngⅡ·ASMCs+L组SOCS3 mRNA表达增加,而SOCS5 mRNA表达减少(P<0.05)。NCR可以下调SOCS3的表达,上调SOCS5的表达。 结论 KATP通道开放可以通过抑制ASMCs增殖而调控TGF-β1分泌表达;SOCS3和SOCS5可能是哮喘气道重塑的特异性免疫治疗中的重要靶点。

[关键词] KATP通道开放剂;气道平滑肌细胞;细胞因子信号转导抑制因子;哮喘

[中图分类号] R965 [文献标识码] A [文章编号] 1674-4721(2014)10(b)-0004-04

细胞因子信号转导抑制因子(suppressor of cytokine signaling,SOCS)是近年来新发现的一类负向调节因子[1],参与多种细胞因子信号转导过程,其中SOCS3和SOCS5作为SOCS家族的重要成员,可能与哮喘等免疫性疾病的发生、发展有关,并有望成为这类疾病的治疗靶点。有研究说明[2],ATP敏感性钾通道(KATP通道)开放剂对哮喘的气道重塑可以产生有益的作用,其机制尚未见系统性的研究报道。本研究利用在体外原代培养的哮喘大鼠气道平滑肌细胞(airway smooth muscle cells,ASMCs),建立增殖型ASMCs模型,探索KATP通道开放剂的作用是否与逆转气道平滑肌细胞增殖有关,以及对SOCS3/5免疫失衡的影响,为治疗哮喘等免疫失衡疾病建立新的方法提供理论基础。

1 材料与方法

1.1 实验材料

淋巴细胞分离液,购自碧云天;辣根过氧化物酶(horseradish peroxidase,HRP)标记羊抗兔二抗,购自武汉博士德生物工程有限公司;α-肌动蛋白(α-SMA)单抗,购自Boster;SOCS3/5引物,上海生工;大鼠转化生长因子-β1(transforming growth factor-β,TGF-β1)ELISA试剂盒,购自伊莱瑞特生物科技有限公司;高糖DMEM培养基,购自美国Gbico BRL公司;地塞米松(dexamethasone,DEX)注射液,浙江仙据制药股份有限公司;尼可地尔(nicorandil,NCR),日本Tohoku Nipro医药公司;血管紧张素Ⅱ(angiotensin Ⅱ,AngⅡ)、Ⅰ型胶原酶(collagenaseⅠ)、格列本脲(glibenclamide,GLI)均购自Sigma公司。

1.2 实验方法

1.2.1 细胞培养及鉴定 雄性SD大鼠,SPF级,年龄21~36 d,体重100~140 g,由三峡大学实验动物中心提供。方法参考相关文献进行改进[3]。以10%的水合氯醛(0.4 ml/100 g)腹腔注射麻醉大鼠,放入超净台中,开胸取出气管,刮去外膜内膜,D-Hank′s液洗净,剪碎、消化后,用20%胎牛血清的高糖DMEM培养基,5%CO2培养箱中37℃静置培养1周左右,可见细胞从组织块周围爬出。实验用3~6代细胞,免疫细胞化学染色鉴定平滑肌细胞上特有的α-SMA。

1.2.2 AngⅡ诱导ASMCs的增殖与表达 AngⅡ(100 nmol/L)处理ASMCs,连续作用3 d,24 h换一次液;Western blotting检测α-SMA,评定AngⅡ对ASMCs增殖诱导作用;上清中TGF-β1分泌表达用ELISA检测(按说明书操作),分为ASMCs组和AngⅡ·ASMCs组。

1.2.3 AngⅡ·ASMCs与淋巴细胞共培养 以AngⅡ处理ASMCs后,D-Hank′s液洗3遍,消化重悬,以1×106 cell/L铺于6孔板中,待细胞贴壁生长24 h,加入提取的2 ml T淋巴细胞(1×105 cell/L),作用36 h,分为L组、ASMCs+L组和AngⅡ·ASMCs+L组。

1.2.4 Real-time PCR检测SOCS3和SOCS5在共培养体系中的表达 ①收集上清中的淋巴细胞,(5~10)×106单个核细胞加Trizol 1 ml,混匀后Trizol法提取总RNA,紫外分光光度法测定RNA含量。②RT-PCR反应体系:RNA 4.0348 μg,Oligo(dT)15(10 μmol/L)2 μl,dNTP(2.5 mmol/L)2 μl,ddH2O(RNAse free)至14.5 μl,70℃ 5 min,短暂离心后置于冰上;以上PCR管全部14.5 μl,5×RT缓冲液4 μl,HRP(RRI)/RNAse Inhibitor 0.5 μl,M-MLV 1 μl,ddH2O(RNAse free)至20 μl,42℃ 60 min,95℃ 5 min。③Real-time PCR反应体系:β-actin f(10 μmol/L)0.5 μl,β-actin r(10 μmol/L)0.5 μl,dNTP(2.5 mmol/L)2 μl,Ex Taq 0.25 μl,10×Ex Taq E缓冲液2.5 μl,cDNA 1 μl,ddH2O至25 μl,94℃ 4 min,94℃ 30 s,56℃ 30 s,72℃ 25 s,30个循环,72℃ 4 min,4℃ 4 min,引物序列及扩增条件见表1。

表1 Real-time PCR反应的引物序列及扩增条件

1.2.5 KATP通道调节剂处理细胞 NCR(开放剂)处理ASMCs以及共培养组细胞,并以DEX(治疗药)和GLI(拮抗剂)分别作为阳性对照和阴性对照。加药后细胞培养36 h,每12小时换一次液。Real-time PCR检测SOCS3和SOCS5的表达差异;上清中TGF-β1分泌表达用ELISA检测。

1.3 统计学处理

采用SPSS 13.0统计学软件进行数据分析,计量资料以x±s表示,采用t检验,以P<0.05为差异有统计学意义。

2 结果

2.1 AngⅡ作用于ASMCs的增殖与表达

2.1.1 Western blotting检测α-SMA的表达 BandScan分析胶片灰度值分析后两组α-SMA/β-actin的比较如图1,可见,AngⅡ处理后的ASMCs表达α-SMA水平比未用AngⅡ处理的ASMCs组明显升高,说明AngⅡ处理ASMCs后可使细胞增殖。

图1 AngⅡ处理前后ASMCs增殖的比较

α-SMA/β-actin代表ASMCs增殖量,与ASMCs组比较,*P<0.01

2.1.2 ELISA法检测上清液中TGF-β1表达的差异 与ASMCs组比较,AngⅡ·ASMCs组TGF-β1的表达水平明显升高(P<0.01)(图2)。

图2 AngⅡ处理ASMCs前后TGF-β1表达的差异

与ASMCs组比较,*P<0.01

2.2 SOCS3和SOCS5 mRNA在共培养体系中的表达

荧光定量PCR结果采用ΔΔCt法计算:目的基因相对表达量=2-ΔΔCt,ΔΔCt=实验组(Ct目的基因-Ct内参基因)-对照组(Ct目的基因-Ct内参基因),所以2-ΔΔCt表示目的基因相对于内参基因的相对表达量。ASMCs与淋巴细胞共培养后,SOCS3 mRNA表达增加,而SOCS5 mRNA表达减少(P<0.05);与ASMCs+L组比较,AngⅡ·ASMCs与淋巴细胞共培养,SOCS3 mRNA表达增加,而SOCS5 mRNA表达减少(P<0.05)(表2)。

表2 SOCS3和SOCS5基因表达相对量2-ΔΔCt值(x±s,n=3)

与L组比较,*P<0.05;与ASMCs+L组比较,#P<0.05

2.3 KATP通道开放剂作用结果

2.3.1 药物作用后上清中的TGF-β1表达差异 在各组用药后DEX和NCR使ASMCs表达TGF-β1水平均比用拮抗剂GLI明显减少(P<0.05);而AngⅡ处理ASMCs后分泌表达TGF-β1比ASMCs组明显增加(P<0.01)(表3)。

表3 检测上清中的TGF-β1表达差异(x±s,n=3)

与拮抗剂GLI比较,*P<0.05;与ASMCs组比较,#P<0.01

2.3.2 药物作用后SOCS3和SOCS5表达差异 与拮抗剂GLI比较,DEX和NCR作用与共培养体系可以下调SOCS3 mRNA的表达水平,上调SOCS5 mRNA的表达水平(表4)。

3 讨论

支气管哮喘以慢性气道炎症和气道重塑为主要特征,伴随发生气道高反应,而气道重塑的机制和治疗药物是目前研究的热点。支气管平滑肌细胞是支气管主要的结构细胞,其异常增殖在气道重塑中起到十分重要的作用[4-5]。气道平滑肌细胞增生的直接后果是造成气道壁的增厚,加重气道的狭窄,产生气道高反应性,造成呼吸道气流受限,与哮喘严重程度密切相关。因此,有效遏制气道平滑肌细胞过度增殖,是治疗难治性哮喘的根本途径之一[6]。收缩型ASMCs无增殖和迁移能力,对外界刺激产生收缩反应,增殖/合成型能够分泌表达多种活性物质,具有增殖、迁移的能力[7]。本实验采用AngⅡ诱导,在体外建立增殖型ASMCs与淋巴细胞共培养模型,结果显示,ASMCs的增殖可以调节Th1/Th2免疫相关细胞因子信号转导抑制因子的平衡,促进SOCS3的表达而抑制SOCS5的表达,从而使SOCS3/5免疫失衡,表现为SOCS3与炎症反应正相关,而SOCS5则相反。TGF-β1的合成分泌与ASMCs增殖呈正相关,说明TGF-β1可能参与哮喘ASMCs的增殖过程,在哮喘的发病过程中有重要的作用。TGF-β1与气道损伤后的修复过程及气道重塑有密切关系,其在气道中表达增高能刺激气道平滑肌细胞ASMCs分裂与增殖,导致平滑肌增生和肥厚及气道重塑,从而加重哮喘。

钾通道是体内一种重要的离子通道,它广泛分布于各种器官组织的细胞膜,在调节膜电位和兴奋性方面起着重要作用;平滑肌上至少有三种钾通道:钙激活钾通道(KCa)、迟整流钾通道(Kdr)、KATP。其中,KATP最为重要,当该通道开放时,产生一系列电化学反应,有效舒张平滑肌、起到降压解痉的作用[8],因此,KATP通道是多种疾病的治疗靶点。本实验结果显示,KATP通道开放剂对ASMCs的增殖有抑制作用,相应地TGF-β1也随之减少,与拮抗剂有明显的差异;同时,又可下调SOCS3 mRNA的表达,上调SOCS5 mRNA的表达,从而逆转ASMCs增殖所致的SOCS3/5表达失衡,说明KATP通道开放剂能够抑制气道平滑肌细胞增殖和分泌。

目前认为[9-12],SOCS通过两条通路抑制信号传导的作用,即JAK激酶/信号转导和转录激活因子(JAK/STAT),有丝分裂原活化蛋白激酶/细胞外信号调节激酶 (MAPK/ERK),但是当前对JAK/STAT通路研究较多,对MAPK/ERK通路研究较少。SOCSs通过细胞内JAK-STAT系统信号途径调节细胞信号转导,参与细胞炎性反应、细胞增殖与分化等生物学功能的调节。已有研究发现,SOCS蛋白对Th细胞的分化具有重要的调控作用[9,13-14],其中SOCS5/3与Th1/Th2免疫失衡密切相关,SOCS3主要表达在Th2细胞中并抑制Th1型免疫反应,SOCS5通过抑制Th2细胞因子信号转导促进Th1细胞分化[15-17]。因此认为KATP开放剂能够抑制气道平滑肌细胞增殖分泌,并通过调节Th1/Th2免疫因子和SOCS蛋白的免疫平衡产生治疗作用,此方面的研究可望为临床对哮喘的预防和治疗提供新的思路。

[参考文献]

[1] Linossi EM,Babon JJ,Hilton DJ,et al.Suppression of cytokine signaling:the SOCS perspective[J].Cytokine Growth Factor Rev,2013,24(3):241-248.

[2] Wan X,Zhao J,Xie J.Effects of mitochondrial ATP-sensitive K(+) channel on protein kinase C pathway and airway smooth muscle cell proliferation in asthma[J].J Huazhong Univ Sci Technolog Med Sci,2012,32(4):480-484.

[3] 邱晨,李娜.平滑肌细胞培养方法探讨[J].广东医学,2008,29(11):1791-1793.

[4] Damera G,Tliba O,Penattieri RA Jr.Airway smooth muscle as an immunomodulatory cell[J].Pulm Pharmacol Ther,2009,22(5):353-359.

[5] Prakash YS.Airway smooth muscle in airway reactivity and remodeling:what have we learned[J]Am J Physiol Lung Cell Mol Physiol,2013,305(12):L912-933.

[6] Xia YC,Redhu NS,Moir LM,et al.Pro-inflammatory and immunomodulatory functions of airway smooth muscle:emerging concepts[J].Pulm Pharmacol Ther,2013,26(1):64-74.

[7] Hirota JA,Nguyen TT,Schaafsma D,et al.Airway smooth muscle in asthma:phenotye plasticity and fanction[J].Pulm Pharmacol Ther,2009,22(5),370-378.

[8] Malerba M,Radaeli A,Mancuso S,et al.The potential therapeutic role of potassium channel modulators in asthma and chronic obstructive pulmonary disease[J].J Biol Regul Homeost Agents,2010,24(2):123-130.

[9] Yoshimura A,Suzuki M,Sakaguchi R,et al.SOCS,Inflammation,and Autoimmunity[J].Front Immunol,2012,3:20.

[10] Babon JJ,Kershaw NJ,Murphy JM,et al.Suppression of cytokine signaling by SOCS3:characterization of the mode of inhibition and the basis of its specificity[J].Immunity,2012,36(2):239-250.

[11] Kolesnik TB,Nicholson SE.Analysis of Suppressor of Cytokine Signalling (SOCS) gene expression by real-time quantitative PCR[J].Methods Mol Biol,2013,967:235-248.

[12] Babon JJ,Nicola NA.The biology and mechanism of action of suppressor of cytokine signaling 3[J].Growth Factors,2012,30(4):207-219.

[13] Palmer DC,Restifo NP.Suppressors of cytokine signaling (SOCS) in T cell differentiation,maturation,and function[J].Trends Immunol,2009,30(12):592-602.

[14] Zhang JG,Nicholson SE.Detection of endogenous SOCS1 and SOCS3 proteins by immunoprecipitation and Western blot analysis [J].Methods Mol Biol,2013,967:249-259.

[15] Daegelmann C,Herberth G,Rder S,et al.Association between suppressors of cytokine signalling,T-helper type 1/T-helper type 2 balance and allergic sensitization in children[J].Clin Exp Allergy,2008,38(3):438-448.

[16] Nakaya M,Hamano S,Kawasumi M,et al.Aberrant IL-4 production by SOCS3-over-expressing T cells during infection with Leishmania major exacerbates disease manifestations[J].Int Immunol,2011,23(3):195-202.

[17] Tang JF,Guan SH,Wang ZG.Roles of interleukin-10 differentiated dendritic cell of allergic asthma patients in T-lymphocyte proliferation in vitro[J].Zhonghua Yi Xue Za Zhi,2012,92(40):2851-2854.

(收稿日期;2014-06-05 本文编辑:郭静娟)

[参考文献]

[1] Linossi EM,Babon JJ,Hilton DJ,et al.Suppression of cytokine signaling:the SOCS perspective[J].Cytokine Growth Factor Rev,2013,24(3):241-248.

[2] Wan X,Zhao J,Xie J.Effects of mitochondrial ATP-sensitive K(+) channel on protein kinase C pathway and airway smooth muscle cell proliferation in asthma[J].J Huazhong Univ Sci Technolog Med Sci,2012,32(4):480-484.

[3] 邱晨,李娜.平滑肌细胞培养方法探讨[J].广东医学,2008,29(11):1791-1793.

[4] Damera G,Tliba O,Penattieri RA Jr.Airway smooth muscle as an immunomodulatory cell[J].Pulm Pharmacol Ther,2009,22(5):353-359.

[5] Prakash YS.Airway smooth muscle in airway reactivity and remodeling:what have we learned[J]Am J Physiol Lung Cell Mol Physiol,2013,305(12):L912-933.

[6] Xia YC,Redhu NS,Moir LM,et al.Pro-inflammatory and immunomodulatory functions of airway smooth muscle:emerging concepts[J].Pulm Pharmacol Ther,2013,26(1):64-74.

[7] Hirota JA,Nguyen TT,Schaafsma D,et al.Airway smooth muscle in asthma:phenotye plasticity and fanction[J].Pulm Pharmacol Ther,2009,22(5),370-378.

[8] Malerba M,Radaeli A,Mancuso S,et al.The potential therapeutic role of potassium channel modulators in asthma and chronic obstructive pulmonary disease[J].J Biol Regul Homeost Agents,2010,24(2):123-130.

[9] Yoshimura A,Suzuki M,Sakaguchi R,et al.SOCS,Inflammation,and Autoimmunity[J].Front Immunol,2012,3:20.

[10] Babon JJ,Kershaw NJ,Murphy JM,et al.Suppression of cytokine signaling by SOCS3:characterization of the mode of inhibition and the basis of its specificity[J].Immunity,2012,36(2):239-250.

[11] Kolesnik TB,Nicholson SE.Analysis of Suppressor of Cytokine Signalling (SOCS) gene expression by real-time quantitative PCR[J].Methods Mol Biol,2013,967:235-248.

[12] Babon JJ,Nicola NA.The biology and mechanism of action of suppressor of cytokine signaling 3[J].Growth Factors,2012,30(4):207-219.

[13] Palmer DC,Restifo NP.Suppressors of cytokine signaling (SOCS) in T cell differentiation,maturation,and function[J].Trends Immunol,2009,30(12):592-602.

[14] Zhang JG,Nicholson SE.Detection of endogenous SOCS1 and SOCS3 proteins by immunoprecipitation and Western blot analysis [J].Methods Mol Biol,2013,967:249-259.

[15] Daegelmann C,Herberth G,Rder S,et al.Association between suppressors of cytokine signalling,T-helper type 1/T-helper type 2 balance and allergic sensitization in children[J].Clin Exp Allergy,2008,38(3):438-448.

[16] Nakaya M,Hamano S,Kawasumi M,et al.Aberrant IL-4 production by SOCS3-over-expressing T cells during infection with Leishmania major exacerbates disease manifestations[J].Int Immunol,2011,23(3):195-202.

[17] Tang JF,Guan SH,Wang ZG.Roles of interleukin-10 differentiated dendritic cell of allergic asthma patients in T-lymphocyte proliferation in vitro[J].Zhonghua Yi Xue Za Zhi,2012,92(40):2851-2854.

(收稿日期;2014-06-05 本文编辑:郭静娟)

[参考文献]

[1] Linossi EM,Babon JJ,Hilton DJ,et al.Suppression of cytokine signaling:the SOCS perspective[J].Cytokine Growth Factor Rev,2013,24(3):241-248.

[2] Wan X,Zhao J,Xie J.Effects of mitochondrial ATP-sensitive K(+) channel on protein kinase C pathway and airway smooth muscle cell proliferation in asthma[J].J Huazhong Univ Sci Technolog Med Sci,2012,32(4):480-484.

[3] 邱晨,李娜.平滑肌细胞培养方法探讨[J].广东医学,2008,29(11):1791-1793.

[4] Damera G,Tliba O,Penattieri RA Jr.Airway smooth muscle as an immunomodulatory cell[J].Pulm Pharmacol Ther,2009,22(5):353-359.

[5] Prakash YS.Airway smooth muscle in airway reactivity and remodeling:what have we learned[J]Am J Physiol Lung Cell Mol Physiol,2013,305(12):L912-933.

[6] Xia YC,Redhu NS,Moir LM,et al.Pro-inflammatory and immunomodulatory functions of airway smooth muscle:emerging concepts[J].Pulm Pharmacol Ther,2013,26(1):64-74.

[7] Hirota JA,Nguyen TT,Schaafsma D,et al.Airway smooth muscle in asthma:phenotye plasticity and fanction[J].Pulm Pharmacol Ther,2009,22(5),370-378.

[8] Malerba M,Radaeli A,Mancuso S,et al.The potential therapeutic role of potassium channel modulators in asthma and chronic obstructive pulmonary disease[J].J Biol Regul Homeost Agents,2010,24(2):123-130.

[9] Yoshimura A,Suzuki M,Sakaguchi R,et al.SOCS,Inflammation,and Autoimmunity[J].Front Immunol,2012,3:20.

[10] Babon JJ,Kershaw NJ,Murphy JM,et al.Suppression of cytokine signaling by SOCS3:characterization of the mode of inhibition and the basis of its specificity[J].Immunity,2012,36(2):239-250.

[11] Kolesnik TB,Nicholson SE.Analysis of Suppressor of Cytokine Signalling (SOCS) gene expression by real-time quantitative PCR[J].Methods Mol Biol,2013,967:235-248.

[12] Babon JJ,Nicola NA.The biology and mechanism of action of suppressor of cytokine signaling 3[J].Growth Factors,2012,30(4):207-219.

[13] Palmer DC,Restifo NP.Suppressors of cytokine signaling (SOCS) in T cell differentiation,maturation,and function[J].Trends Immunol,2009,30(12):592-602.

[14] Zhang JG,Nicholson SE.Detection of endogenous SOCS1 and SOCS3 proteins by immunoprecipitation and Western blot analysis [J].Methods Mol Biol,2013,967:249-259.

[15] Daegelmann C,Herberth G,Rder S,et al.Association between suppressors of cytokine signalling,T-helper type 1/T-helper type 2 balance and allergic sensitization in children[J].Clin Exp Allergy,2008,38(3):438-448.

[16] Nakaya M,Hamano S,Kawasumi M,et al.Aberrant IL-4 production by SOCS3-over-expressing T cells during infection with Leishmania major exacerbates disease manifestations[J].Int Immunol,2011,23(3):195-202.

[17] Tang JF,Guan SH,Wang ZG.Roles of interleukin-10 differentiated dendritic cell of allergic asthma patients in T-lymphocyte proliferation in vitro[J].Zhonghua Yi Xue Za Zhi,2012,92(40):2851-2854.

(收稿日期;2014-06-05 本文编辑:郭静娟)

猜你喜欢
共培养信号转导平滑肌
Wnt/β-catenin信号转导通路在瘢痕疙瘩形成中的作用机制研究
BMSCs-SCs共培养体系联合异种神经支架修复大鼠坐骨神经缺损的研究
原发性肾上腺平滑肌肉瘤1例
喉血管平滑肌瘤一例
紫锥菊不定根悬浮共培养中咖啡酸衍生物积累研究
益气活血方对破裂型腰椎间盘突出大鼠p38MAPK 信号转导通路的影响
肠系膜巨大平滑肌瘤1例并文献回顾
咽旁巨大平滑肌肉瘤一例MRI表现
角质形成细胞和黑素细胞体外共培养体系的建立
从肺肠ERK信号转导通路的变化探讨“肺与大肠相表里”