钙离子调节异常对心房颤动影响的研究进展

2015-02-23 00:11吴鹏,刘星,范忠才
西南国防医药 2015年1期
关键词:心房颤动综述



钙离子调节异常对心房颤动影响的研究进展

作者单位:646000 四川 泸州,泸州医学院附属医院心内科

吴鹏,刘星,范忠才

[关键词]钙离子;异常调节;心房颤动;异位激动;折返;综述

房颤(atrial fibrillation,AF)是临床上最常见的心律失常之一。据初步估计,全世界AF患者已超过3300万人[1]。随着人口老龄化的到来,它将成为一个更加普遍性的医学和社会问题[2]。AF是中风和心力衰竭的重要危险因素,其发病率与致死率密切相关[3]。目前,用于恢复AF患者窦性心律的药物主要包括Ⅰ类和Ⅲ类抗心律失常药物,但是其疗效差强人意。在>1年的随访中,窦性心律的维持率仅为30%~70%[4]。而且,这些药物同时也存在致心律失常和心外毒副作用等不良反应[5-6],其安全性也限制了其使用。因此,更好地认识AF的病理生理机制,寻找新的治疗靶向,对提高抗心律失常治疗效果非常重要[7]。越来越多的证据显示:异常的钙离子(Ca2+)调节是AF发病机制的中心环节[8-10]。本文主要总结近年来有关Ca2+异常调节在AF发病机制中的研究进展,为进一步深入探讨AF的发病机制和寻找更为有效的治疗提供新的思路。

1正常心房肌细胞的结构特性

包括人在内的哺乳动物的心室肌细胞拥有为数众多的发达的T管系统。但是,与心室肌细胞相比,心房肌细胞的T管系统明显减少。这种心房和心室心肌细胞间结构的差异,可能是心房肌细胞Ca2+调节独特的原因[11-13]。虽然人类心房心肌细胞的T管结构较少,但是也存在分布差异,而且在心脏疾病(包括房颤)中存在重构的现象[12,14]。

2正常心房肌细胞的电生理特点

心房肌细胞的动作电位(AP)是由去极化和复极化离子电流决定。其中,超快激活延迟整流K+电流(IKur)和乙酰胆碱敏感K+电流(IK,ACh)在心房肌细胞表达显著[15]。心肌细胞膜去极化引起电压依赖性L型Ca2+通道开放,少量Ca2+内流进入胞浆,激发肌浆网(sarcoplasmic reticulum,SR)2型Ryanodine受体通道(RyR2)开放,引起Ca2+的大量释放,该过程称为钙诱导的钙释放(CICR),从而促进心房肌细胞的收缩[16-17]。近年来的研究发现,三磷酸肌醇(IP3)受体不但可直接激活钠-钙交换体1(NCX1),而且可以激活邻近RyR2,诱导Ca2+的释放[8,18]。

3心房颤动与RyR2的异常Ca2+释放

AF的发生是电冲动形成或者传导异常的结果[19-20]。在窦房结以外的电冲动的产生被称为异位电活动,它可以驱动AF发生,也可以在有效不应期缩短、缓慢和不均一传导的不稳定基质中形成折返激动。而这种不稳定基质的形成可能与遗传背景以及老化有关,也可能与心力衰竭、高血压等疾病相关[20]。折返激动可以在解剖或者功能异常的情况下发生,它也被认为是AF维持的主要机制。一旦AF持续,心房心动过速相关的电重构和结构重构可进一步促进AF的持续和稳定,最终可导致更加难以治疗的持续性AF的形成。

细胞水平的异位激动机制主要包括早后去极化(EADs)和迟后去极化(DADs)。当APD过度延长,失活的Ca2+通道可重新恢复开放,导致Ca2+内流产生EADs;当EADs足够大,便可产生新的动作电位,触发心律失常[21]。在房性心律失常的形成过程中,DADs起着重要的作用,这与舒张期Ca2+在肌浆网RyR2的异常释放密切相关[22]。当舒张期产生过量的Ca2+,就可以激活细胞膜上的钠钙交换体(NCX),这将促进Ca2+-3Na+的交换,从而产生瞬时内向电流(Iti),导致DADs;如果这个产生的DADs足够大,达到阈值便可产生异位激动,而反复出现的DADs则会导致房性心动过速。

SR的钙超载或者RyR2功能紊乱均可导致肌浆网内Ca2+的释放。RyR2的功能是通过通道磷酸化来调节的,RyR2的过度磷酸化可致Ca2+异常释放和心律失常[23]。RyR2磷酸化后可以增加它的Ca2+敏感性,增强通道开放的概率[24]。FK506结合蛋白12.6是RyR2的抑制物,当其缺失时可明显增加大鼠心房肌细胞SR Ca2+释放和触发激动,进而易发展为AF;在获得性RyR2基因突变的大鼠,也有相同的发现[24-25]。系列研究发现,蛋白激酶A(PKA)磷酸化RyR2第2808位点的丝氨酸后,以及Ca2+/钙调蛋白依赖性蛋白激酶Ⅱ(CaMKⅡ)或β1肾上腺受体激动剂cAMP2(Epac2)磷酸化RyR2第2814位点的丝氨酸后,均可以促进肌浆网内Ca2+的释放,从而增加AF的发生率[24,26-28]。

CaMKⅡ参与的RyR2过度磷酸化和相关的Ca2+异常调节是促发AF的最重要因素之一[22]。以往研究发现,CaMKⅡ的活性是通过Ca2+和钙调蛋白复合物激活[26]。但是,近年来的研究证实,钙调蛋白也可以直接调节RyR2,稳定SR Ca2+释放[29]。有研究发现,在AF发生后,不但总的钙调蛋白水平增加[30],而且CaMKⅡ氧化也随之增加[31]。血管紧张素除可以促进结构的重构与AF的发生相关外,研究还发现其也可氧化CaMKⅡ,并增强CaMKⅡ对RyR2磷酸化作用促进AF的形成[32]。

有研究发现,RyR2表达与RyR2单通道开放概率在阵发性AF(pAF)患者中是增加的,同时伴随SR Ca2+的负荷增加,可能与PKA依赖的肌浆网受磷蛋白(PLB)过度磷酸化有关[33],因为PLB过度磷酸化可以导致Ca2+超载,诱导RyR2的功能障碍。移除肌浆网Ca2+-ATP酶(SERCA)的PLB抑制物,可以增强SR对Ca2+的摄取。增强PKA和/或CaMKⅡ的活性,或增加碱性磷酸酶抑制蛋白的活性,都能减少碱性磷酸酶的作用,促进肌浆网PLB的过度磷酸化[22,34]。

在许多AF相关的研究中,可以很普遍地观察到存在NCX表达增强,舒张期SR Ca2+释放增多,导致Iti的产生[12,26,34],增加了DADs和触发激动的风险[22]。有证据显示,使用β肾上腺受体激动剂后,CaMKⅡ可以使NCX1的转录上调[35],使NCX1表达增加,可能与AF的发生相关。IP3受体(IP3R2)也参与了Ca2+的转运,促进了心律失常SR Ca2+的释放[36],可能导致AF相关的触发激动[37]。

4房颤治疗新靶点的研究进展

大量研究表明,Ca2+异常调节在AF发病机制中起着重要的作用,提示其将是一个有价值的治疗心律失常的新靶点。RyR2的稳定化治疗,可以作为抑制Ca2+异常释放,有效控制心律失常的新方法。目前几种有效的抗心律失常药物,包括Ic类Na+通道阻滞剂(氟卡尼)[38]、β肾上腺受体阻滞剂(卡维地洛)[39]和抗心绞痛治疗药物(雷诺嗪)[40],都可以结合或者抑制RyR2通道,可能是其治疗AF有效性的原因之一。已有研究证实,氟卡尼成功用于与Ca2+异常释放有关的儿茶酚胺敏感性多形性室速(CPVT)的治疗[41]。而且,氟卡尼也可以抑制心房细胞IK,ACh[42],可能对AF治疗有效。CaMKⅡ抑制剂或者抑制RyR2依赖CaMKⅡ的磷酸化,已经被证实在AF老鼠模型具有抗心律失常作用,并且在慢性AF患者心房肌细胞实验中显示了有利的影响[9,24,43]。但是,CaMKⅡ在许多生理过程中均有重要的作用,广泛的CaMKⅡ抑制可能出现各种各样的副作用,包括生育能力下降和记忆障碍等[44-45]。近年来还有研究显示,145微小RNA和30b-5p微小RNA可以抑制CaMKⅡδ的表达[46-47]。因此,增加这些微小RNA在心脏的水平,或许能选择性抑制CaMKⅡ,从而可能是AF治疗的新策略。

总之,Ca2+的调节异常不但促进异位激动产生导致AF,而且促成折返形成导致AF维持。目前抗心律失常药物治疗AF仅有有限的疗效和安全性。更好地了解这些AF调节的机制对改进治疗策略,提高疗效,减少副作用至关重要。Ca2+的调节异常为治疗AF提供了一个潜在的新颖的治疗靶点。然而,临床AF的发生和发展是多种病因和复杂机制调控的结果,不同发病机制和调控机制导致的AF,必须采用针对性的个体化治疗。抑制心脏舒张期Ca2+异常释放的特异性药物,有可能成为特定AF患者的治疗策略。

【参考文献】

[1]Chugh SS,Havmoeller R,Narayanan K,et al.Worldwide epidemio-logy of atrial fibrillation:a Global Burden of Disease 2010 Study[J].Circulation,2014,129(8):837-847.

[2]Miyasaka Y,Barnes ME,Gersh BJ,et al.Secular trends in incidence of atrial fibrillation in Olmsted County,Minnesota,1980 to 2000,and implications on the projections for future prevalence[J].Circulation,2006,114(2):119-125.

[3]Camm AJ,Lip GY,De Caterina R,et al.2012 focused update of the ESC Guidelines for the management of atrial fibrillation:an update of the 2010 ESC Guidelines for the management of atrial fibrillation.Developed with the special contribution of the European Heart Rhythm Association[J].Eur Heart J,2012,33(21):2719-2747.

[4]Camm J.Antiarrhythmic drugs for the maintenance of sinus rhythm:risks and benefits[J].Int J Cardiol,2012,155(3):362-371.

[5]Zimetbaum P.Antiarrhythmic drug therapy for atrial fibrillation[J].Circulation,2012,125(2):381-389.

[6]Heijman J,Voigt N,Dobrev D.New directions in antiarrhythmic drug therapy for atrial fibrillation[J].Future Cardiol,2013,9(1):71-88.

[7]Dobrev D,Carlsson L,Nattel S.Novel molecular targets for atrial fibrillation therapy[J].Nat Rev Drug Discov,2012,11(4):275-291.

[8]Dobrev D,Nattel S.Calcium handling abnormalities in atrial fibril-lation as a target for innovative therapeutics[J].J Cardiovasc Pharmacol,2008,52(4):293-299.

[9]Heijman J,Voigt N,Nattel S,et al.Calcium handling and atrial fibrillation[J].Wien Med Wochenschrm,2012,162(13-14):287-291.

[10]Nattel S,Dobrev D.The multidimensional role of calcium in atrial fibrillation pathophysiology:mechanistic insights and therapeutic opportunities[J].Eur Heart J,2012,33(15):1870-1877.

[11]Dibb KM,Clarke JD,Horn MA,et al.Characterization of an extensive transverse tubular network in sheep atrial myocytes and its depletion in heart failure[J].Circ Heart Fail,2009,2(5):482-489.

[12]Lenaerts I,Bito V,Heinzel FR,et al.Ultrastructural and func-tional remodeling of the coupling between Ca2+influx and sarcoplasmic reticulum Ca2+release in right atrial myocytes from experimental persistent atrial fibrillation[J].Circ Res,2009,105(9):876-885.

[13]Richards MA,Clarke JD,Saravanan P,et al.Transverse tubules are a common feature in large mammalian atrial myocytes including human[J].Am J Physiol Heart Circ Physiol,2011,301(5):H1996-2005.

[14]Trafford AW,Clarkez JD,Richards MA,et al.Calcium signalling microdomains and the t-tubular system in atrial mycoytes:potential roles in cardiac diseaseand arrhythmias[J].Cardiovasc Res,2013,98(2):192-203.

[15]Christ T,Wettwer E,Voigt N,et al.Pathology-specific effects of the IKur/Ito/IK,AChblocker AVE0118 on ion channels in human chronic atrial fibrillation[J].Br J Pharmacol,2008,154(8):1619-1630.

[16]Bers DM,Guo T.Calcium signaling in cardiac ventricular myocytes[J].Ann N Y Acad Sci,2005,1047:8698.

[17]Bers DM.Cardiac excitation-contraction coupling[J].Nature,2002,415(6868):198-205.

[18]Roderick HL,Knollmann BC.Inositol 1,4,5-trisphosphate receptors:“exciting” players in cardiac excitation-contraction coupling[J]? Circulation,2013,128(12):1273-1275.

[19]Nattel S,Burstein B,Dobrev D.Atrial remodeling and atrial fibril-lation:mechanisms and implications[J].Circ Arrhythm Electrophysiol,2008,1(1):62-73.

[20]Wakili R,Voigt N,Kääb S,et al.Recent advances in the molecular pathophysiology of atrial fibrillation[J].J Clin Invest,2011,121(8):2955-2968.

[21]Nattel S.From guidelines to bench:implications of unresolved clinical issues for basic investigations of atrial fibrillation mechanisms[J].Can J Cardiol,2011,27(1):19-26.

[22]Dobrev D,Voigt N,Wehrens XH.The ryanodine receptor channel as a molecular motif in atrial fibrillation:pathophysiological and therapeutic implications[J].Cardiovasc Res,2011,89(4):734-743.

[23]MacLennan DH,Chen SR.Store overload-induced Ca2+release as a triggering mechanism for CPVT and MH episodes caused by mutationsin RYR and CASQ genes[J].J Physiol,2009,587(Pt 13):3113-3115.

[24]Chelu MG,Sarma S,Sood S,et al.Calmodulin kinase Ⅱ-mediated sarcoplasmic reticulum Ca2+leak promotes atrial fibrillation in mice[J].J Clin Invest,2009,119(7):1940-1951.

[25]Sood S,Chelu MG,van Oort RJ,et al.Intracellular calcium leak due to FKBP12.6 deficiency in mice facilitates the inducibility of atrial fibrillation[J].Heart Rhythm,2008,5(7):1047-1054.

[26]Neef S,Dybkova N,Sossalla S,et al.CaMKⅡ-dependent diastolic SR Ca2+leak and elevated diastolic Ca2+levels in right atrial myocardium of patients with atrial fibrillation[J].Circ Res,2010,106(6):1134-1144.

[27]Greiser M,Neuberger HR,Harks E,et al.Distinct contractile and molecular differences between two goat models of atrial dysfunction:AV block-induced atrial dilatation and atrial fibrillation[J].J Mol Cell Cardiol,2009,46(3):385-394.

[28]Pereira L,Cheng H,Lao DH,et al.Epac2 mediates cardiac β1-adrenergic-dependent sarcoplasmic reticulum Ca2+leak and arrhythmia[J].Circulation,2013,127(8):913-922.

[29]Yang Y,Guo T,Oda T,et al.Cardiac myocyte Z-line calmodulin is mainly RyR2-bound,and reduction is arrhythmogenic and occurs in heart failure[J].Circ Res,2014,114(2):295-306.

[30]Voigt N,Li N,Wang Q,et al.Enhanced sarcoplasmic reticulum Ca2+leak and increased Na+-Ca2+exchanger function underlie delayed after depolarizations in patients with chronic atrial fibrillation[J].Circulation,2012,125(17):2059-2070.

[31]Purohit A,Rokita AG,Guan X,et al.Oxidized Ca(2+)/calmodulin-dependent protein kinase Ⅱ triggers atrial fibrillation[J].Circulation,2013,128(16):1748-1757.

[32]Gassanov N,Brandt MC,Michels G,et al.Angiotensin Ⅱ-induced changes of calcium sparks and ionic currents in human atrial myocytes:potential role for early remodeling in atrial fibrillation[J].Cell Calcium,2006,39(2):175-186.

[33]Voigt N,Heijman J,Wang Q,et al.Cellular and molecular mecha-nisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation[J].Circulation,2014,129(2):145-156.

[34]El-Armouche A,Boknik P,Eschenhagen T,et al.Molecular deter-minants of altered Ca2+handling in human chronic atrial fibrillation[J].Circulation,2006,114(7):670-680.

[35]Mani SK,Egan EA,Addy BK,et al.beta-Adrenergic receptor stimulated Ncx1 upregulation is mediated via a CaMKⅡ/AP-1 signaling pathway in adult cardiomyocytes[J].J Mol Cell Cardiol,2010,48(2):342-351.

[36]Li X,Zima AV,Sheikh F,et al.Endothelin-1-induced arrhythmogenic Ca2+signaling is abolished in atrial myocytes of inositol-1,4,5-trisphosphate(IP3)-receptor type 2-deficient mice[J].Circ Res,2005,96(12):1274-1281.

[37]Zima AV,Blatter LA.Inositol-1,4,5-trisphosphate-dependent Ca(2+) signalling in cat atrial excitation-contraction coupling and arrhythmias[J].J Physiol,2004,555(Pt 3):607-615.

[38]Hilliard FA,Steele DS,Laver D,et al.Flecainide inhibits arrhyth-mogenic Ca2+waves by open state block of ryanodine receptor Ca2+release channels and reduction of Ca2+spark mass[J].J Mol Cell Cardiol,2010,48(2):293-301.

[39]Zhou Q,Xiao J,Jiang D,et al.Carvedilol and its new analogs suppress arrhythmogenic store overload-induced Ca2+release[J].Nat Med,2011,17(8):1003-1009.

[40]Parikh A,Mantravadi R,Kozhevnikov D,et al.Ranolazine stabilizes cardiac ryanodine receptors:a novel mechanism for the suppression of early after depolarization and torsades de pointes in long QT type 2[J].Heart Rhythm,2012,9(6):953-960.

[41]van der Werf C,Kannankeril PJ,Sacher F,et al.Flecainide therapy reduces exercise-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia[J].J Am Coll Cardiol,2011,57(22):2244-2254.

[42]Voigt N,Rozmaritsa N,Trausch A,et al.Inhibition of IK,AChcurrent may contribute to clinical efficacy of class Ⅰ and class Ⅲ antiarrhythmic drugs inpatients with atrial fibrillation[J].Naunyn Schmiedebergs Arch Pharmacol,2010,381(3):251-259.

[43]Li N,Wang T,Wang W,et al.Inhibition of CaMK Ⅱ phosphorylation of RyR2 prevents induction of atrial fibrillation in FKBP12.6 knockout mice[J].Circ Res,2012,110(3):465-470.

[44]Backs J,Stein P,Backs T,et al.The gamma isoform of CaM kinase Ⅱ controls mouse egg activation by regulating cell cycle resumption[J].Proc Natl Acad Sci USA,2010,107(1):81-86.

[45]King JH,Zhang Y,Lei M,et al.Atrial arrhythmia,triggering events and conduction abnormalities in isolated murine RyR2-P2328S hearts[J].Acta Physiol(Oxf),2013,207(2):308-323.

[46]Cha MJ,Jang JK,Ham O,et al.MicroRNA-145 suppresses ROS-induced Ca2+overload of cardiomyocytes by targeting CaMKⅡδ[J].Biochem Biophys Res Commun,2013,435(4):720-726.

[47]He J,Jiang S,Li FL,et al.MicroRNA-30b-5p is involved in the regulation of cardiac hypertrophy by targeting CaMKⅡδ[J].J Investig Med,2013,61(3):604-612.

(收稿日期:2014-08-30)

文章编号1004-0188(2015)01-0107-04

doi:10.3969/j.issn.1004-0188.2015.01.046

中图分类号R 541.75

文献标识码A

通讯作者:范忠才,E-mail:wpflying@163.com

猜你喜欢
心房颤动综述
2021年国内批评话语分析研究综述
5G应用及发展综述
机器学习综述
NBA新赛季综述
近代显示技术综述
11例非瓣膜性心房颤动患者行左心耳封堵术后的护理
高龄非瓣膜病性房颤应用华法林抗凝治疗的疗效及安全性研究
ACS合并心房颤动患者的抗栓治疗研究进展
经食道超声对射频消融术前房颤患者左房及左心耳血栓的诊断价值
杂交手术治疗心房颤动的研究进展