牡蛎粗多糖对脂多糖刺激仔猪NF-κB信号通路相关基因转录的影响

2015-03-23 02:57黄志坚陈腾腾江和基曾新斌
畜牧兽医学报 2015年6期
关键词:胸腺牡蛎多糖

黄志坚,罗 刚,陈腾腾,江和基,曾新斌

(福建农林大学动物科学学院 福建省动物药物工程实验室,福州 350002)

牡蛎粗多糖对脂多糖刺激仔猪NF-κB信号通路相关基因转录的影响

黄志坚,罗 刚,陈腾腾,江和基,曾新斌

(福建农林大学动物科学学院 福建省动物药物工程实验室,福州 350002)

旨在初步探讨牡蛎粗多糖对免疫应激仔猪NF-κB信号通路相关基因的影响。选取30头28日龄左右的杜长大三元阉公仔猪,分为5个处理组,即空白对照组(Ⅰ)、免疫应激对照组(Ⅱ)以及牡蛎粗多糖低(Ⅲ)、中(Ⅳ)、高(Ⅴ)剂量组,每组6头猪。Ⅰ、Ⅱ组饲喂基础日粮,Ⅲ、Ⅳ、Ⅴ组分别饲喂含0.5%、0.8%、1.2%牡蛎粗多糖的基础日粮。试验饲养30 d后,Ⅱ、Ⅲ、Ⅳ、Ⅴ组腹腔注射100 μg·kg-1LPS,Ⅰ组注射等量的生理盐水。各组于注射后3 h剖检取肝、脾、肾上腺、淋巴结和胸腺等组织,检测TLR-4、p300和p50的相对转录水平。结果:(1)与Ⅰ组相比,Ⅱ组p300相对转录水平在淋巴结中极显著性降低,其他指标在各器官中极显著升高(P<0.01)。Ⅲ组TLR-4在淋巴结中,p50在肾上腺中和p300在肝、肾上腺及淋巴结中的相对转录水平均极显著降低(P<0.01);p50在肝、胸腺和脾中,p300在胸腺和脾中相对转录水平极显著升高(P<0.01)。Ⅳ组TLR-4在淋巴结和脾中,p300在肝、肾上腺和淋巴结中相对转录水平显著降低(P<0.05或P<0.01);TLR-4在肝、肾上腺和胸腺中,p50在肝和胸腺中相对转录水平均显著升高(P<0.05或P<0.01)。Ⅴ组TLR-4在脾,p300在肝、淋巴结、胸腺和肾上腺中相对转录水平显著降低(P<0.05或P<0.01);TLR4在肝、肾上腺和淋巴结中,p50在肝、胸腺和肾上腺相对转录水平显著升高(P<0.05或P<0.01)。(2)与Ⅱ组相比,除Ⅴ组TLR-4在淋巴结中的差异不显著外,Ⅲ、Ⅳ、Ⅴ组TLR-4的相对转录水平在各器官中均显著降低(P<0.05或P<0.01);p50的相对转录水平在肾上腺、淋巴结和脾中极显著降低(P<0.01),Ⅲ组p50的相对转录水平在肝中显著降低(P<0.01),在胸腺中极显著升高(P<0.01),Ⅴ组p50的相对转录水平在胸腺中差异极显著降低(P<0.01);p300的相对转录水平在肝、肾上腺、胸腺和脾中极显著降低(P<0.01);在淋巴结中,Ⅳ组p300的相对转录水平极显著升高(P<0.01)。牡蛎粗多糖可以缓解免疫应激仔猪器官中NF-κB信号通路相关基因的转录水平。

免疫应激;牡蛎粗多糖;p50;p300;TLR-4

动物免疫应激是指病原微生物、疫苗或异源蛋白质等抗原通过刺激动物机体,激活免疫系统,使后者产生了免疫应答,并导致动物群体中少数动物采食量下降,生长缓慢的一种普遍现象。目前,主要通过腹腔或静脉注射脂多糖,制造模型来研究免疫应激[1-5]。石君霞等[6]研究表明,注射脂多糖,诱导免疫应激,可以使PPAR-γ表达量升高,前期试验也表明,牡蛎粗多糖能够缓解脂多糖引起的免疫应激,具有抗应激的作用,且其作用与PPAR-γ有关[7]。PPAR-γ在细胞上的受体是TLR-4(Toll-like receptors 4),PPAR-γ与TLR-4结合能激活NF-κB信号通路[8]。作者在前期试验基础上,研究牡蛎粗多糖抗免疫应激功能与信号通路NF-κB的关系。

1 材料与方法

1.1 动物分组与设计

选取30头日龄在(28±1)d的断奶的阉杜长大三元公仔猪,平均体重在(9.91±1.38)kg,按体重相近的原则,随机分为空白对照组,应激对照组,牡蛎粗多糖高、中、低剂量组,每组6个重复,每个重复1头猪。空白对照组和免疫应激对照组饲喂基础日粮(表1),牡蛎粗多糖高(Ⅴ)、中(Ⅳ)、低(Ⅲ)剂量组分别饲喂含有1.2%、0.8%、0.5%牡蛎粗多糖的基础日粮,饲喂周期为30 d。试验前12 h断水断料,试验各组腹腔注射100 μg·kg-1BW LPS,空白对照组注射等量生理盐水。于注射3 h后剖检,取胸腺、肠道淋巴结、肾上腺、脾、肝测定TLR-4、NF-κB 和p300的相对转录水平。

表1 断奶仔猪基础日粮配方

Table 1 Weaned basal diet recipes

项目Item810教槽料810Creepfeed811乳猪料811Sucklingpigfeed原料Ingredient一级玉米/%Corn40.449.8面粉/%Farina99液体饲料油/%Liquidfeedoil3.82豆粕/%Soybeanmeal9.221.3发酵豆粕/%Fermentedsoybeanmeal6.55进口蒸汽鱼粉/%Inletsteamfishmeal(CP65)4.23低灰分血浆蛋白粉/%Lowashplasmaproteinpowder40乳清粉/%Wheypowder110葡萄糖/%Glucose22蔗糖/%Sucrose22教槽预混料/%Creeppremix80乳猪预混料/%Sucklingpigpremix06营养水平Nutrientlevels粗蛋白质/%Crudeprotein19.5819.52粗纤维/%Crudefibre2.042.82粗脂肪/%Crudefat6.044.72钙/%Calcium0.780.75总磷/%Totalphoaphonium0.50.54有效磷/%Availablephosphorus0.40.41干物质/%Drymatter87.3687.53消化能/(kJ·kg-1)Digestiveenergy14759.5214268.82赖氨酸/%Lysine1.51.33锰/(mg·kg-1)Manganese45.7445.33锌/(mg·kg-1)Zn2168.972133.39铜/(mg·kg-1)Cu134.17133.6铁/(mg·kg-1)Fe302.24295.51硒/(mg·kg-1)Se0.50.47钴/(mg·kg-1)Co0.310.31维生素A/万IUVA10192.210165.63维生素D3/万IUVD31009.511006.88维生素E/(mg·kg-1)VE76.7875.04

1.2 材料

LPS(大肠杆菌血清型O55:B5,Sigma公司);Trizol,Prime Script®RT reagent Kit Perfect Real Time(TaKaRa Biotechnology Co.,Ltd);荧光试剂盒(北京百泰克生物技术有限公司);琼脂糖,牡蛎粗多糖(作者实验室制备[9])。

1.3TLR-4、p300和p50基因荧光定量PCR检测引物

根据GenBank中收录号为NM_001113039.1的野猪TLR-4基因序列、收录号为KC316024.1的野猪NF-κBp50亚基基因序列和收录号为XM_001929213.2的野猪p300亚基基因序列,利用Primer5.0 引物设计软件各设计引物一对,并由上海生工生物工程技术服务有限公司合成。序列见表2。

表2 荧光定量PCR检测引物序列

Table 2 Primer pairs for Fluorescence quantitative PCR detection

检测基因Gene引物Primer引物序列Primersequence片段大小/bpSizeTLR-4SenseprimersAnti-senseprimers5'-ACAGAGCCGATGGTGTATCTTT-3'5'-AGCAGGGACTTCTCCAACTTCT-3'121NF-κBp50SenseprimersAnti-senseprimers5'-GGTTATTGTTCAGTTGGTCACA-3'5'-GTCATTCGTGCTTCCAGTGTT-3'192p300SenseprimersAnti-senseprimers5'-CTTCCCAGCCTCAAACTACAAT-3'5'-GCATCTTTCTTCCACACTCTGT-3'108

1.4 荧光定量PCR反应

采用Bioteke Power 2×SYBR Real-time PCR Premixture 荧光定量试剂盒,用CFX-96 型Real-time PCR扩增仪对反转录产物进行扩增。TLR-4、p50和p300的相对转录水平用2-ΔΔCt计算,用SPSS软件进行分析。

2 结 果

2.1 不同器官TLR-4的相对转录水平

图1显示,与空白对照组相比,应激对照组TLR-4 mRNA的相对转录水平在肝、肾上腺、淋巴结、胸腺和脾都极显著性升高(P<0.01);牡蛎粗多糖低剂量组淋巴结中TLR-4的相对转录水平极显著降低(P<0.01),而在肝、肾上腺、胸腺和脾TLR-4 mRNA的相对转录水平差异不显著(P>0.05);牡蛎粗多糖中剂量组TLR-4 mRNA的相对转录水平在肝显著升高(P<0.05),在肾上腺和胸腺极显著升高(P<0.01),在淋巴结中显著性降低(P<0.05),在脾极显著降低(P<0.01);牡蛎粗多糖高剂量组TLR-4 mRNA的相对转录水平在肝、肾上腺和淋巴结中极显著升高(P<0.01),在脾极显著降低(P<0.01),在胸腺差异不显著(P>0.05)。与应激对照组相比,除了牡蛎粗多糖高剂量组TLR-4 mRNA的相对转录水平在淋巴结差异不显著(P>0.05),牡蛎粗多糖组TLR-4 mRNA的相对转录水平在各器官均极显著降低(P<0.01),牡蛎粗多糖高剂量组在肝显著降低(P<0.05)。由此可得出,牡蛎粗多糖对LPS刺激导致各组织TLR-4 mRNA相对转录水平显著性升高有一定的缓解作用,且添加剂量在0.5%左右效果更佳。

Ⅰ.空白对照组;Ⅱ.应激对照组;Ⅲ.牡蛎粗多糖低剂量组;Ⅳ.牡蛎粗多糖中剂量组;Ⅴ.牡蛎粗多糖高剂量组。下图同Ⅰ.Control;Ⅱ.Stress control;Ⅲ.Low-dose group;Ⅳ.Medial-dose group;Ⅴ.High-dose group.The same as below图1 TLR-4在免疫器官中 mRNA的相对转录水平Fig.1 mRNA expression of TLR-4 in immune organs

2.2 不同器官NF-κBp50的相对转录水平

从图2中可知,与空白对照组相比,应激对照组p50 mRNA的相对转录水平在肝、肾上腺、淋巴结、胸腺和脾都极显著升高(P<0.01);牡蛎粗多糖低剂量组肝、胸腺和脾p50 mRNA的相对转录水平极显著升高(P<0.01),在肾上腺极显著降低(P<0.01),在淋巴结中差异不显著(P>0.05);牡蛎粗多糖中剂量组肝和胸腺中p50 mRNA的相对转录水平极显著升高(P<0.01),在肾上腺、淋巴结和脾中差异不显著(P>0.05);牡蛎粗多糖高剂量组p50 mRNA的相对转录水平在肝和胸腺极显著升高(P<0.01),在肾上腺显著性升高(P<0.05),而在淋巴结和脾差异不显著(P>0.05)。与应激对照组相比,牡蛎粗多糖组p50 mRNA的相对转录水平在肾上腺、淋巴结和脾极显著降低(P<0.01),低、中剂量添加组p50 mRNA的相对转录水平在肝显极著降低(P<0.01),在胸腺极显著升高(P<0.01),高剂量组p50 mRNA的相对转录水平在肝差异不显著(P>0.05),在胸腺差异极显著性降低。由图2可知,牡蛎粗多糖对LPS刺激导致肝、肾上腺、淋巴结和脾p50 mRNA相对转录水平显著性升高有一定的缓解作用,且添加剂量在0.8%左右效果更佳,而对胸腺中p50 mRNA相对转录水平显著性升高无缓解作用。

图2 p50在免疫器官中 mRNA的相对转录水平Fig.2 mRNA expression of p50 in immune organs

2.3 不同器官p300的相对转录水平

从图3可知,与空白对照组相比,应激对照组p300 mRNA的相对转录水平在肾上腺、肝、胸腺和脾极显著升高(P<0.01),在淋巴结极显著降低(P<0.01);牡蛎粗多糖低剂量组p300 mRNA的相对转录水平在肝、肾上腺和淋巴结极显著降低(P<0.01),在胸腺中显著升高(P<0.05),在脾极显著升高(P<0.01);牡蛎粗多糖中剂量组p300 mRNA的相对转录水平在肝、肾上腺和淋巴结极显著降低(P<0.01),在胸腺和脾差异不显著(P>0.05);牡蛎粗多糖高剂量组p300 mRNA的相对转录水平在肝、淋巴结和胸腺极显著降低(P<0.01),在肾上腺显著降低(P<0.05),在脾差异不显著(P>0.05)。与应激对照组相比,牡蛎粗多糖添加组p300 mRNA的相对转录水平在肝、肾上腺、胸腺和脾极显著降低(P<0.01);在淋巴结,牡蛎粗多糖低、高剂量组p300 mRNA的相对转录水平差异不显著(P>0.05),中剂量组极显著升高(P<0.01)。由此可知,牡蛎粗多糖对LPS刺激导致肝、肾上腺、胸腺和脾p300 mRNA相对转录水平显著升高及淋巴结中p300 mRNA相对转录水平显著降低有一定的缓解作用,且添加剂量在0.8%左右效果更佳。

图3 p300在免疫器官中 mRNA的相对转录水平Fig.3 mRNA expression of p300 in immune organs

3 讨 论

3.1 不同器官TLR-4的相对转录水平

肝是机体内先天性免疫的淋巴器官,被誉为“消化道与其他组织器官的过滤器”[10],同时也是机体内重要的解毒器官,故可以通过检测肝的一些指标,判断动物机体的免疫应答状态。近年来,用LPS刺激动物机体,经TLR4信号途径造成肝损伤模型,已广泛应用于基础性研究[11-14]。H.An等[15]研究表明脂多糖刺激未成熟的树突状细胞,可以导致TLR-4 mRNA显著上升;任大宾等[16]利用RT-PCR和Western blot研究了LPS注射前后肝内CD14和TLR-4的表达量,结果表明注射LPS后肝内TLR-4的表达量显著提高;万幸等[17]研究也表明LPS刺激后能够显著提高肺、肝和脾中TLR-4的相对转录水平。本试验表明,LPS刺激后TLR-4 mRNA在肝、肾上腺、淋巴结、胸腺和脾中的相对转录水平极显著升高,提示LPS腹腔注射断奶仔猪,激活机体内的免疫系统的机制与TLR4信号途径相关,与上述研究结果基本一致,也进一步证实了刘玉兰等[18]的研究结果,即LPS刺激后在肾上腺、脾和胸腺中TLR-4 mRNA相对转录水平显著升高。

多糖的免疫调节作用与TLR4介导的信号通路有关,如灵芝多糖通过TLR4/TLR2介导的信号通路,引起鼠B细胞产生抗体[19];红花多糖通过TLR4激活NF-κB信号通透,诱导巨噬细胞分泌细胞因子[8],猪苓多糖通过TLR4的介导能激活巨噬细胞[20]。研究表明,牡蛎多糖具有免疫调节作用,但对其免疫调节机制的研究比较少。本研究结果表明,牡蛎粗多糖添加组TLR-4 mRNA相对转录水平在各器官中极显著低于应激对照组,说明牡蛎粗多糖可以缓解由LPS刺激引起的TLR-4 mRNA升高,一定程度上说明牡蛎粗多糖缓解免疫应激的机制,即一方面通过降低PPAR-γ的表达,从而减少炎性细胞因子的释放来缓解免疫应激,另一方面通过降低TLR-4的表达,进而减少细菌或LPS侵袭细胞所必须的受体,降低细菌或LPS的入侵。

3.2 不同器官NF-κBp50亚基的相对转录水平

R.Sen等首先发现核因子κB(nuclear factor-kappa B,NF-κB)是一种能与免疫球蛋白κ链增强子上特异性序列结合,转录免疫球蛋白上的轻链基因的核蛋白因子[21]。它广泛的存在于真核细胞中,是由两个来自Rel家族的亚基组成的二聚体蛋白。Rel家族成员在N末端有300个相同的氨基酸序列,称为Rel同源区,而NF-κB活性形式主要是由p50和p65两个亚基组成的异源二聚体。动物机体在正常情况下,NF-κB与IκB结合,存在于细胞质中,其信号通路被抑制。当动物机体受到病毒、细菌感染或者外界刺激时,会激活细胞表面相应的受体,例如Toll样受体,导致NF-κB信号通路上游激酶IκK磷酸化,磷酸化的IκK进一步将IκB磷酸化而降解,致使NF-κB与IκB分离后DNA结合位点暴露,转位入核以后与靶基因上启动子或增强子结合,激活相应基因的转录表达,这些基因中包括IL-1β、IL-6和TNF-α。前面研究显示,LPS腹腔刺激后血清中炎性细胞因子水平显著性升高,可能与NF-κB信号通路激活有关,为证实NF-κB信号通路是否激活,研究各组织中p50基因的mRNA表达水平有一定意义。

国内外对NF-κB在各器官内的表达水平的研究相对较少。研究表明[22-23],脂多糖刺激可以导致肝和免疫器官中NF-κB表达量显著性升高。汤夏冰等[24]研究也表明,LPS刺激喉癌细胞可以导致NF-κB蛋白表达量显著提高。王建春等[25]在脂多糖刺激的急性肺损伤模型的研究中发现肺组织细胞中NF-κB的表达量显著升高,且在刺激前后由细胞质转移到细胞核中而活化。本试验研究表明,注射脂多糖后断奶仔猪肝、肾上腺、淋巴结、胸腺和脾中p50 mRNA相对转录水平显著性升高,与以上研究结果基本相似。刘玉兰[18]研究也显示,脂多糖刺激断奶仔猪,可以导致肾上腺、脾和胸腺中NF-κBp65 mRNA的相对转录水平显著性升高,说明脂多糖腹腔注射可以激活NF-κB的信号通路。

研究表明,黄芪多糖能够缓解创伤应激引起的脾和胸腺淋巴细胞中NF-κB mRNA的过高表达[26],本研究也表明,牡蛎粗多糖添加组脾p50 mRNA相对转录水平显著性低于应激对照组,胸腺p50 mRNA相对转录水平在低、中剂量显著性高于应激对照组,在高剂量组显著性低于应激对照组,说明添加量在1.2%左右时对胸腺有缓解作用,与上述研究结果基本一致。试验结果还表明,在肾上腺和淋巴结,牡蛎粗多糖添加组p50 mRNA相对转录水平极显著性低于应激对照组,肝中牡蛎粗多糖低、中剂量组显著性低于应激对照组,高剂量与应激对照组差异不显著,说明牡蛎粗多糖的添加剂量在0.5%~0.8%对肾上腺、淋巴结和肝的缓解效果较好。

3.3 不同器官p300的相对转录水平

染色质是由核小体和DNA凝集在一块形成的,而核小体是由组蛋白八聚体和连接组蛋白的H1或H5组成。基因在转录前,RNA聚合酶无法结合到染色质上去进行转录,需要借助转录共激活因子(如p300)与转录因子结合,通过对核小体上的组蛋白进行修饰,使染色质发生重组,基因调控区域和内部核小体结构发生改变,RNA聚合酶才容易与基因相应部位结合,进行转录[27]。

脂多糖刺激断奶仔猪,与细胞膜上的受体TLR4结合,激活NF-κB通路,致使NF-κB在核内与转录共激活因子p300结合,启动炎性细胞因子基因的转录表达。通过测量应激仔猪各器官中p300 mRNA相对转录水平,可以一定程度上反映仔猪炎性因子的表达水平。国内外研究表明,癌症病人细胞中p300的表达量显著上升[28-31],LPS刺激可以导致单核细胞p300的表达[32],细菌或病毒感染的动物,体内炎性细胞因子显著提高[33-34],本试验前期研究也表明,LPS刺激可以导致血清中IL-1β、IL-6和TNF-α的水平显著性提高,说明LPS腹腔注射可以导致p300基因的广泛表达,协助炎性因子的转录表达。本试验结果表明,LPS刺激后,肝、肾上腺、胸腺和脾p300 mRNA的相对转录水平显著上升,牡蛎粗多糖添加组比应激组显著性降低,表示牡蛎粗多糖对LPS刺激引起的p300 mRNA表达量的上升有缓解作用,且中剂量组的缓解作用更好。而淋巴结中p300 mRNA 相对转录水平在应激后显著降低,原因可能与PPAR-γ的降低有关,具体原因有待进一步研究。牡蛎粗多糖中剂量组淋巴结中p300 mRNA的相对转录水平显著高于应激对照组,说明对LPS刺激导致淋巴结中p300 mRNA的相对转录水平的降低有一定缓解作用。

4 结 论

牡蛎粗多糖可以缓解免疫应激仔猪免疫器官中TLR-4、NF-κBp50 和p300的相对转录水平,且其缓解机制可能与NF-κB信号通路有关。

[1] JOHNSON R W,VON BORELL E.Lipopolysaccharide-induced sickness behavior in pigs is inhibited by pretreatment with indomethacin [J].JAnimSci,1994,72(2):309-314.

[2] WEBEL D M,FINCK B N,BAKER D H,et al.Time course of increased plasma cytokines,cortisol,and urea nitrogen in pigs following intraperitoneal injection of lipopolysaccharide [J].JAnimSci,1997,75(6):1514-1520.

[3] WRIGHT K J,BALAJI R,HILL C M,et al.Integrated adrenal,somatotropic,and immune responses of growing pigs to treatment with lipopolysaccharide [J].JAnimSci,2000,78(7):1892-1899.

[4] KEGLEY E B,SPEARS J W,AUMAN S K.Dietary phosphorus and an inflammatory challenge affect performance and immune function of weanling pigs [J].JAnimSci,2001,79(2):413-419.

[5] LIU Y L,LI D F,GONG L M,et al.Effects of fish oil supplementation on the performance and the immunological,adrenal,and somatotropic responses of weaned pigs after anEscherichiacolilipopolysaccharide challenge [J].JAnimSci,2003,81(11):2758-2765.

[6] 石君霞,刘玉兰,鲁 晶,等.脂多糖对断奶仔猪外周血免疫细胞和免疫器官中PPARγ mRNA表达水平的影响[J].畜牧兽医学报,2008,39(5):608-613. SHI J X,LIU Y L,LU J,et al.Effects of lipopolysaccharide challenge on PPARγ mRNA expression in immune cells and immune organs of weanling piglet[J].ActaVeterinariaetZootechnicaSinica,2008,39(5):608-613.(in Chinese)

[7] 罗 刚,黄志坚,陈腾腾,等.牡蛎粗多糖对免疫应激仔猪炎性细胞因子和PPARγ mRNA转录水平的影响[J].畜牧兽医学报,2014,45(3):483-488. LUO G,HUANG Z J,CHEN T T,et al.Effects of oyster crude polysaccharides on inflammatory cytokine andPPARγ mRNA transcription of weanling piglets after immunological stress[J].ActaVeterinariaetZootechnicaSinica,2014,45(3):483-488.(in Chinese)

[8] ANDO I,TSUKUMO Y,WAKABAYASHI T,et al.Safflower polysaccharides activate the transcription factor NF-κB via Toll-like receptor 4 and induce cytokine production by macrophages[J].IntImmunopharmacol,2002,2(8):1155-1162.

[9] 李 志.牡蛎多糖的分离纯化及生物学活性研究[D].福州:福建农林大学,2009. LI Z.The extraction,purification and biologic activity of 0streidae polysaccharides[D].Fuzhou:Fujian Agriculture and Forest University,2009.(in Chinese)

[10] CHEN Y,SUN R.Toll-like receptors in acute liver injury and regeneration[J].IntImmunopharmacol,2011,11(10):1433-1441.

[11] GALANOS C,FREUDENBERG M A,REUTTER W.Galactosamine-induced sensitization to the lethal effects of endotoxin[J].ProcNatlAcadSciUSA,1979,76(11):5939-5943.

[12] LEIST M,GANTNER F,JILG S,et al.Activation of the 55 kDa TNF receptor is necessary and sufficient for TNF-induced liver failure,hepatocyte apoptosis,and nitrite release[J].JImmunol,1995,154(3):1307-1316.

[13] CHOSAY J G,ESSANI N A,DUNN C J,et al.Neutrophil margination and extravasation in sinusoids and venules of liver during endotoxin-induced injury[J].AmJPhysiol,1997,272(5):G1195-G1200.

[14] FREUDENBERG M A,KEPPLER D,GALANOS C.Requirement for lipopolysaccharide-responsive macrophages in galactosamine-induced sensitization to endotoxin[J].InfectImmun,1986,51(3):891-895.

[15] AN H,YU Y,ZHANG M,et al.Involvement of ERK,p38 and NF-κB signal transduction in regulation of TLR2,TLR4 and TLR9 gene expression induced by lipopolysaccharide in mouse dendritic cells[J].Immunology,2002,106(1):38-45.

[16] 任大宾,杜烨玮,张 健,等.静脉注射脂多糖上调小鼠肺及肝 CD14 和 Toll-like 受体 4 表达[J].基础医学与临床,2005,25(4):331-336. REN D B,DU Y W,ZHANG J,et al.Intravenously lipopolysaccharide injected upregulates expressions of CD14 and Toll-like receptor 4 in lung and liver of mice[J].Basic&ClinicalMedicine,2005,25(4):331-336.(in Chinese)

[17] 万 幸,王培训,周 联,等.脂多糖刺激前后小鼠肺肝脾组织中 Toll 样等受体基因表达情况[J].中国危重病急救医学,2004,16(2):73-76. WAN X,WANG P X,ZHOU L,et al.Gene expression of Toll-like receptors in the liver,lungs and spleen in mice after endotoxin challenge[J].ChineseCriticalCareMedicine,2004,16(2):73-76.(in Chinese)

[18] LIU Y,CHEN F,LI Q,et al.Fish oil alleviates activation of the hypothalamic-pituitary-adrenal axis associated with inhibition of TLR4 and NOD signaling pathways in weaned piglets after a lipopolysaccharide challenge[J].JNutr,2013,143(11):1799-1807.

[19] LIN K I,KAO Y Y,KUO H K,et al.Reishi polysaccharides induce immunoglobulin production through the TLR4/TLR2-mediated induction of transcription factor Blimp-1[J].JBiolChem,2006,281(34):24111-24123.

[20] LI X,XU W.TLR4-mediated activation of macrophages by the polysaccharide fraction from Polyporus umbellatus (pers.) Fries[J].JEthnopharmacol,2011,135(1):1-6.

[21] SEN R,BALTIMORE D.Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism[J].Cell,1986,47(6):921-928.

[22] 洪 宇.鱼油对脂多糖诱导的仔猪机体炎症反应和肝脏损伤的影响[D].武汉:武汉工业学院,2011. HONG Y.Effect of fish oil on inflammatory response and liver injury in piglets after lipopolysaccharide challenge[D].Wuhan:Wuhan Polytechnic University,2011.(in Chinese)

[23] 李 权.鱼油对脂多糖刺激仔猪下丘脑—垂体—肾上腺—免疫轴TLR4 和NOD信号通路的调控作用[D].武汉:武汉工业学院,2012. LI Q.Regulative role of fish oil on TLR4 and NOD signaling pathways in hypothanlamus-pituitary-adrenal-immune axis in piglets after lipopolysaccharide challenge[D].Wuhan:Wuhan Polytechnic University,2012.(in Chinese)

[24] 汤夏冰,李 蕾,庄强尔,等.TLR4/NF-κB通路在脂多糖诱导喉癌细胞释放HMGB1中的作用[J].江苏医药,2013,39(15):1762-1764. TANG X B,LI L,ZHUANG Q E,et al.Effect of TLR4/NF-κB signaling pathway on extracellular release of HMGB1 in lipopolysaccharide-induced laryngeal Hep-2 carcinoma cells[J].JiangsuMedicalJournal,2013,39(15):1762-1764.(in Chinese)

[25] 王建春,姜 鹏,谢艳萍,等.急性肺损伤大鼠肺组织 NF-κB 表达的研究[J].中国现代医学杂志,2006,16(16):2448-2452. WANG J C,JIANG P,XIE Y P,et al.Study on NF-κB expression in rat lung tissue with acute lung injury[J].ChinaJournalofModernMedicine,2006,16(16):2448-2452.(in Chinese)

[26] 曾广仙,刘俊英,熊金蓉,等.黄芪多糖调节创伤应激小鼠免疫功能的研究[J].中华微生物学和免疫学杂志,2004,24(12):942-945. ZENG G X,LIU J Y,XIONG J R,et al.Study on effect of Astragalus polysaccharide for traumatic stress mice cell immunity[J].ChineseJournalofMicrobiologyandImmunology,2004,24(12):942-945.(in Chinese)

[27] WU C.Chromatin remodeling and the control of gene expression[J].JBiolChem,1997,272(45):28171-28174.

[28] LI M,LUO R Z,CHEN J W,et al.High expression of transcriptional coactivator p300 correlates with aggressive features and poor prognosis of hepatocellular carcinoma[J].JTranslMed,2011,9:5.

[29] HOU X,LI Y,LUO R Z,et al.High expression of the transcriptional co-activator p300 predicts poor survival in resectable non-small cell lung cancers[J].EurJSurgOncol,2012,38(6):523-530.

[30] XIAO X S,CAI M Y,CHEN J W,et al.High expression of p300 in human breast cancer correlates with tumor recurrence and predicts adverse prognosis[J].ChinJCancerRes,2011,23(3):201-207.

[31] LI Y,YANG H X,LUO R Z,et al.High expression of p300 has an unfavorable impact on survival in resectable esophageal squamous cell carcinoma[J].AnnThoracSurg,2011,91(5):1531-1538.

[32] GUHA M,MACKMAN N.LPS induction of gene expression in human monocytes[J].CellSignal,2001,13(2):85-94.

[33] MOVAT H Z,CYBULSKY M I,COLDITZ I G,et al.Acute inflammation in gram-negative infection:endotoxin,interleukin 1,tumor necrosis factor,and neutrophils[J].FedProc,1987,46(1):97-104.

[34] KARIN M,GRETEN F R.NF-κB:linking inflammation and immunity to cancer development and progression[J].NatRevImmunol,2005,5(10):749-759.

(编辑 白永平)

Explore Mechanism of Oyster Crude Polysaccharide Alleviated Immune Stress on Weanling Piglets

HUANG Zhi-jian,LUO Gang,CHEN Teng-teng,JIANG He-ji,ZENG Xin-bin

(CollegeofAnimalScience,FujianAgricultureandForestryUniversity/EngineeringLaboratoryofAnimalPharmaceuticalsofFujianProvince,Fuzhou350002,China)

This study was designed to explore the impact of Oyster Polysaccharides on immune stress piglets of NF-κB signaling pathway-related genes A total of thirty Duroc × Landrace × Yorkshire castrated piglets of 28±1 d were randomly allocated into five groups,namely Blank control (Ⅰ),Immunological stress control (Ⅱ) and Oyster polysaccharide Low (Ⅲ),Medium (Ⅳ) and High (Ⅴ) dose group,with six replicates per group according to the principle of similar weight.Piglets were fed basal diet (Control) or 0.5%,0.8%,1.2% OPS (OPS Low,Medium and High dose group) for 30 days.The piglets were injected i.p with a dose ofEscherichiacoliLPS (100 μg·kg-1BW) except the Blank control which were injected with the same dose of normal saline.Three hours later,the liver,spleen,adrenal gland,lymph nodes and thymus were collected for detecting the relative transcription level ofTLR-4,p50 andp300.Results were as follows:(1) Compared with the GroupⅠ,p300 relative transcript levels of GroupⅡ were significantly decreased in Lymph Node,while the other indicators were significantly increased in various organs (P<0.01).The relative transcript levels ofTLR-4 in lymph nodes,p50 in adrenal gland andp300 in liver,adrenal gland and lymph nodes were significantly decreased (P<0.01) while the relative transcript levels ofp50 in adrenal gland andp300 in liver,adrenal gland and lymph node were significantly increased (P<0.01) in Group Ⅲ than GroupⅠ.The relative transcript levels ofTLR-4 in lymph nodes and spleen,p300 in liver,adrenal gland and lymph nodes were significantly decreased (P<0.05 orP<0.01) while the relative transcript levels ofTLR-4 in liver,adrenal gland and thymus andp50 in liver,thymus were significantly increased (P<0.05 orP<0.01) in Group Ⅳ than GroupⅠ.The relative transcript levels ofTLR-4 in spleen,p300 in liver,lymph nodes,thymus and adrenal gland were significantly decreased (P<0.05 orP<0.01) while the relative transcript levels ofTLR-4 in liver,adrenal gland and lymph nodes andp50 in liver,thymus and adrenal gland were significantly increased in Group Ⅴ than Group Ⅰ(P<0.05 orP<0.01).(2)Compared with the Group Ⅱ,the relative transcription ofTLR-4 levels were significantly decreased in these organs of Group Ⅲ,Ⅳ and Ⅴ (P<0.05 orP<0.01)other than in lymph node of Group Ⅴ (P>0.05).The relative transcription ofp50 levels were significantly decreased in adrenal glands,lymph glands and spleen of Group Ⅲ,Ⅳ,and Ⅴ(P<0.01);and were significantly decreased in liver and significantly increased in thymus of Group Ⅲ(P<0.01);and that were significantly increased in thymus of Group Ⅴ (P<0.01).The relative transcription ofp300 mRNA levels were significantly decreased in liver,adrenal glands,thymus and spleen of Group Ⅲ,Ⅳ,and Ⅴ(P<0.01);and that were significantly increased in lymph nodes of Group Ⅳ (P<0.01).Oyster polysaccharides can relieve stress piglets transcription of NF-κB signaling pathway-related genes.

immunological stress;OPS;p50;p300;TLR-4

10.11843/j.issn.0366-6964.2015.06.021

2014-06-09

福建省科技厅农业科技重点项目(2011N0001)

黄志坚(1963-),男,福建惠安人,教授,主要从事动物疾病防治与保健研究,E-mail:huangzj1999@sina.com

S852.4

A

0366-6964(2015)06-1037-10

猜你喜欢
胸腺牡蛎多糖
胸腺增生的影像学研究进展
米胚多糖的组成及抗氧化性研究
熟三七多糖提取工艺的优化
法国培育出多口味牡蛎
胸腔镜胸腺切除术后不留置引流管的安全性分析
甲状腺显示胸腺样分化的癌1例报道及文献回顾
昙石山文化的牡蛎器
小鼠胸腺上皮细胞的培养、鉴定及对淋巴细胞促增殖作用的初步研究
《如何煮狼》:煮狼的女人爱牡蛎
酶法降解白及粗多糖