A Hilbert-Type Integral Inequality with the Inhomogeneous Kernel and Multi-Parameters

2015-05-03 02:45,
湘潭大学自然科学学报 2015年3期
关键词:权函数邵阳国家自然科学基金

,

(1.Preparatory Department of Primary Education, Changsha Normal University, Changsha 410100;2.Department of Science and Information, Shaoyang University,Shaoyang 422000 China)



A Hilbert-Type Integral Inequality with the Inhomogeneous Kernel and Multi-Parameters

HUANGLin1*,LIUQiong2

(1.Preparatory Department of Primary Education, Changsha Normal University, Changsha 410100;2.Department of Science and Information, Shaoyang University,Shaoyang 422000 China)

In this paper, by means of weight function and the technique of real analysis, and introducing multi-parameters and some special functions to jointly characterize the constant factor, a Hilbert-type integral inequality with the inhomogeneous kernel and multi-parameters and it’s equivalent form are given. Their constant factors are proved be the best possible, and its application is discussed.

Hilbert-type integral inequality; weight function; the best constant factor; inhomogeneous kernel; multi-parameters

1 Introduction

For convenience, Ifθ(x)(>0)ismeasurablefunction,ρ≥1,thefunctionspacesaresetas:

and

Iff,g∈L2(0,),‖f‖2,‖g‖2>0,thenwehavethefollowingHilbert’sintegralinequality[1]:

(1.1)

(1.2)

(1.3)

(1.4)

Inthispaper,bymeansofweightfunctionandthetechniqueofrealanalysis,aHilbert-typeintegralinequalitywiththeinhomogeneouskernelandMulti-parametersisgivenasfollows:

(1.5)

2 Some Lemmas

We need the following definitions[11]:

(2.1)

(2.2)

Lemma 2.1 Letmbe a positive integer, then we have the summation formulas[11]:

(2.3)

Lemma 2.2 Leta>-1,Re(s)>0,thentheLaplaceintegraltransformofthepowerfunctionxaasfollows[12]:

(2.4)

Lemma 2.3 Ifx>1,wehave

(2.5)

Proof Because

therefore

(2.6)

by(2.6),wefind

thenwehave

(2.7)

where

(2.8)

Particularly,whenη=2m(m=1,2,…),Γ(η)=Γ(2m)=(2m-1)!,by(2.3),wefind

(2.9)

wheretheBm′saretheBernoullinumbers.

Proof Settingαxλ1yλ2=u,thenby(2.4)and(2.6),wehave:

thenwehave:

(2.10)

(2.11)

Proof We easily get:

SinceF(u)=uη+1(1-tanhu)iscontinuousin(0,),(u)=0,(u)=0,thereexistsM>0,satisfyingF(u)≤M,byFubini’stheorem[13],wehave:

3 Main results and applications

(3.1)

(3.2)

Ifinequality(3.2)keepstheformofanequality,thenaccordingto[14]thereexisttwoconstantsAandB, such that they are not all zero and:

(3.3)

Proof Setting a bounded measurable function as:

since0<‖f‖p,φ<,thereexistsn0∈N, such that 0<φ(x)<(n≥n0),setting:

whenn≥n0,by(3.1)wefind:

(3.4)

(3.5)

Itfollows0<‖f‖p,φ<.Forn→,by(3.1),both(3.4)and(3.5)stillkeeptheformofstrictinequalities,hence,wehaveinequality(3.3).

Theinequalityis(3.1),whichisequivalentto(3.3).

Bytakingthespecialparametervaluesin(3.1)and(3.3),somemeaningfulinequalitiesareobtained:

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

Comments:Veryunfortunately,wecannotgetaHilbert-typeintegralinequalitywiththekernelofthehyperbolictangentfunctionby(3.1).

[1] HARDY G H,LITTLEWOOD J E, PLYA G. Inequalities[M].Cambridge: Cambridge Univ Press, 1952.

[2] HARDY G H. Note on a theorem of Hilbert concerning seris of postive terms[J].Proc London Math Soc, 1925, 23(2):xlv-xlvi.

[3] MINTRINOVIC D S,PECARIC J E,KINK A M. Inequalities involving functions and their integrals and derivertives[M].Boston:Kluwer Academic Publishers,1991.

[4] BICHENG Y. A survey of the study of Hilbert-tpye inequalities with parameters[J].Advances in Mathematics, 2009, 38(3):257-258.

[5] BICHENG Y.On the norm of a Hilbert’s type linear operator and applications[J].J Math Anal Appl,2007,325: 529-541.

[6] JIMENG L, QING L. A generalization of the Hardy-Hilbert’s inequality and its application[J].Acta Mathematics Sinica, Chinese Series, 2009, 52(2): 237-244.

[7] QIONG L, BICHENG Y. A Hilbert-type integral inequality with the mixed kernel of some parameters and its application[J].Journal of Zhejiang University(Science Edition), 2012, 39(2):135-141.

[8] BICHENG Y. On a base Hilbert-type integral inequality and extensions[J].College Mathematics, 2008, 24(2):87-89.

[9] LIU Q, LONG S C. A Hilbert-type integral inequality with the kernel of hyperbolic secant function[J].Journal of Zhejiang University(Science Edition), 2013, 40(3):255-259.

[10] LIU Q, LONG S C. A Hilbert-type integral inequality with the kernel of hyperbolic cosecant function[J].Acta Mathematics Sinica, Chinese Series, 2013, 56(1):97-104.

[11] HUANG Z S,GUO D R. An Intruction to Special Function[M].Beijing:Beijing Press, 2000.

[12] SHU B P,CHEN D L. Complex-variable function and integral transform[M].Beijing:Higher Education Press, 2003.

[13] KUANG J C. Introduction to real analysis[M].Changsha:Hunan Edueation Press,1996.

[14] KUANG J C. Applied inequalities[M].3rd ed.Jinan:Shandong Science and Technology Press,2004.

[15] YANG B C. The norm of operator and Hilbert-type inequalities[M].Beijing:Science press, 2009.

责任编辑:龙顺潮

2015-02-18

国家自然科学基金项目(11171280);湖南省教育厅科学研究项目(10C1186)

黄琳(1964— ),女,江西 上饶人,副教授.E-mail:13787312290@163.com

一个多参数非齐次核Hilbert型积分不等式

黄 琳1*, 刘 琼2

(1.长沙师范学院 初等教育预科部,湖南 长沙 410100;2.邵阳学院 理学与信息科学系,湖南 邵阳 422000)

利用权正数方法和实分析技巧,引入多参数和一些特殊函数联合刻画常数因子,得到一个多参数非齐次核Hilbert型积分不等式和它的等价式,证明了它们的常数因子是最佳的,并讨论了其应用.

Hilbert型积分不等式;权函数;最佳常数因子;非齐次核;多参数

O178

A

1000-5900(2015)03-0001-08

猜你喜欢
权函数邵阳国家自然科学基金
基于改进权函数的探地雷达和无网格模拟检测混凝土结构空洞缺陷工程中的数学问题
邵阳非物质文化遗产的视觉化设计与开发
常见基金项目的英文名称(一)
常见基金项目的英文名称(一)
一类广义的十次Freud-型权函数
邵阳学院艺术设计学院作品选登
单圈图的增强型Zagreb指数的下界
邵阳三一工程机械与零部件再制造工程项目开工
我校喜获五项2018年度国家自然科学基金项目立项
无限板孔边裂纹问题的高精度解析权函数解