化疗药物靶向肿瘤相关免疫抑制性细胞的研究进展

2015-12-08 22:12蒋琦,钱其军
药学实践杂志 2015年2期

·生物治疗·

化疗药物靶向肿瘤相关免疫抑制性细胞的研究进展

蒋琦,钱其军 (东方肝胆外科医院肿瘤生物治疗科、病毒基因治疗实验室,上海 200438)

[摘要]肿瘤相关免疫抑制性细胞在肿瘤的发生、发展过程中发挥重要的免疫抑制作用,肿瘤的发展和转移常伴有这些细胞的异常聚集。调节性T细胞(regulatory T cells, Treg)和髓系来源的抑制性细胞(myeloid-derived suppressor cells,MDSC)是免疫抑制性细胞网络的主要成分,它们通过直接或间接作用负向调节其他免疫细胞,抑制抗肿瘤的免疫反应。最新研究显示,有些常规化疗药物除可直接杀伤肿瘤细胞外,还可降低Treg和MDSC的数量,抑制其功能,从而增强抗肿瘤免疫功能。因此,将化疗药物作为预处理方案,凭借其免疫调节作用联合后续的过继性细胞免疫治疗可有效增强抗肿瘤免疫应答。化学免疫治疗策略将改变人们对传统化疗抗肿瘤地位的认识,继而更加合理地应用化疗药物。

[关键词]化疗药物;调节性T细胞;髓系来源的抑制性细胞;化学免疫治疗;免疫抑制性细胞

[基金项目]国家科技重大专项资助项目(No.2013ZX10002-010-007)

[作者简介]蒋琦,硕士研究生.研究方向:恶性肿瘤化疗和免疫治疗的临床与基础研究.E-mail: stjiangqichina@163.com

[通讯作者]钱其军,教授, 博士生导师. 研究方向: 肿瘤基因-病毒治疗和免疫治疗、循环肿瘤细胞研究. E-mail: qianqj@sino-gene.cn

[中图分类号]R456,R73[文献标志码]A

DOI[]10.3969/j.issn.1006-0111.2015.02.019

[收稿日期]2014-12-18[修回日期]2015-01-26

Chemotherapeutic targeting of cancer-induced immunosuppressive cells: an update research

JIANG Qi, QIAN Qijun (Laboratory of Gene and Viral Therapy, Department of Biotherapy, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China)

Abstract[]Cancer-induced immunosuppressive cells play an important immunosuppressive role during the tumor development process, and the development and progression of tumors are always accompanied with abnormal accumulation of cancer-induced immunosuppressive cells. Regulatory T lymphocytes (Treg) and myeloid-derived suppressor cells (MDSC) are major components of these inhibitory cellular networks, and they can inhibit antitumor immune response through multiple mechanisms. Recent studies have provided evidence that beyond their direct cytotoxic or cytostatic effects on cancer cells, some conventional chemotherapeutic drugs and agents used in targeted therapies can promote the elimination or inactivation of suppressive Tregs or MDSCs, resulting in enhanced anti-tumor immunity. Hence, chemotherapeutics, used as a preconditioning regimen and combined with subsequent immunotherapy, can promote anti-tumor immune response. Anticancer chemoimmunotherapy strategy will change the recognization of the role for conventional chemotherapy in anticancer treatment, and it will be helpful to optimize the chemotherapy strategies more reasonably.

[Key words]chemotherapeutics; regulatory T cell; myeloid-derived suppressor cell; chemoimmunotherapy; cancer-induced immunosuppressive cell

一直以来,肿瘤生物学领域的探索几乎完全集中于肿瘤细胞本身的研究,而对肿瘤细胞以外的肿瘤基质组成的肿瘤微环境很少关注。近年的临床和实验研究业已证实,肿瘤的形成是癌细胞及基质中多种细胞相互作用的共同结果。肿瘤基质由免疫细胞、成纤维细胞、血管内皮等细胞成分以及细胞外基质构成[1]。其中,肿瘤相关免疫抑制性细胞,主要有调节性T细胞(regulatory T cells, Treg)、髓系来源的抑制性细胞(myeloid-derived suppressor cells,MDSC)、肿瘤相关巨噬细胞(tumor-associated macrophage, TAM)和不成熟的树突状细胞(immature dendritic cells,iDC),对肿瘤的免疫逃逸和免疫疗法的低效性起关键作用[2-4]。随着基础研究和临床试验的深入,化疗药物不再是一种纯粹的细胞毒性药物,其免疫调节作用逐渐受到重视。本文就近年来最重要的2种免疫抑制性细胞(Treg和MDSC)的免疫抑制机制及其化学免疫治疗策略作一综述。

1Treg和化疗药物

1.1Treg20世纪70年代就提出抑制性T细胞这一概念[5],直到 1995年,研究才明确CD25(IL-2受体α链)可作为小鼠Treg的重要表型标记[6],此后Treg在肿瘤免疫逃逸中的作用备受关注。在人体内,Treg是一个异质性群体,主要包括CD4+CD125highTreg、Tr1(IL-10+T细胞)和TH3(TGF-β+T细胞),Foxp3是Treg的一个特异性的转录因子。其中,CD4+CD125highFoxp3+Treg在多种人体肿瘤,包括肺癌、乳腺癌、胃癌、肝癌、肾癌、卵巢癌等实体肿瘤以及淋巴瘤等血液肿瘤中都存在,在某些肿瘤中的数量还与其预后密切相关,是一个独立的预后因子。Treg发挥免疫抑制作用的机制主要有:①通过免疫抑制因子,如白细胞介素10(IL-10)、转化生长因子β(TGF-β)等抑制效应细胞的功能;②通过颗粒酶和穿孔素直接杀伤效应细胞;③影响效应细胞的代谢,如高表达CD25大量消耗IL-2、产生腺苷抑制效应细胞增殖;④影响树突状细胞(DC)的功能进而影响T细胞的活化、诱导及增殖[7]。

1.2靶向Treg的化疗药物环磷酰胺(cyclophosphamide,CTX),是一种烷化剂,可与DNA交联,抑制DNA合成,用于治疗乳腺癌、卵巢癌、多发性骨髓瘤和淋巴瘤,是第一个被报道能够抑制Treg逆转免疫耐受的药物[8]。多项研究表明,CTX能清除荷瘤动物体内的Treg,由于大剂量CTX同时还可去除其他免疫细胞,净效应为抑制抗肿瘤免疫反应。而小剂量CTX对其他免疫细胞的影响小,因此能增强机体的抗肿瘤免疫反应[9,10]。另一项研究显示,小剂量CTX能引起小鼠体内和体外Treg的凋亡而不影响CD4+CD25-T细胞的活力;CTX是通过下调FoxP3和GITR蛋白来抑制Treg的功能[11]。许多临床试验也表明,小剂量CTX能减轻CD4+CD25+Treg的影响,增强TH1细胞,从而扭转肿瘤诱导的免疫偏倚,促发肿瘤免疫。疫苗免疫之前应用小剂量CTX有利于潜在的高活性CD8+T细胞的募集[12]。最近一项临床试验证实,疫苗免疫前1 d给予CTX(200~300 mg/m2)和接种前7 d应用CTX(600 mg/m2)都能清除人体内的Treg[13]。此外,CTX节拍式给药可以清除晚期肿瘤患者体内CD4+CD25+T细胞并恢复T细胞和自然杀伤(NK)细胞的有效作用[14]。因此,从化学免疫治疗的角度来看,CTX的用药剂量、给药方式和顺序都对Treg有影响,需进一步优化和更多的临床试验验证。

紫杉醇(paclitaxel,PTX),属于紫杉烷类,可与微管蛋白的β亚单位结合,影响微管的聚合,抑制有丝分裂,最终导致细胞死亡。有研究报道,标准剂量PTX应用于晚期非小细胞肺癌患者,可选择性地减少Treg数量和抑制Treg功能,同时保留效应T细胞的功能。PTX的选择性作用归结于其上调Treg的死亡受体Fas,而对效应T细胞不起作用[15]。在小鼠肺癌模型中,PTX可能通过影响凋亡调节蛋白Bcl-2/Bax的表达而诱导Treg凋亡[16]。多西他赛(docetaxel,DTX)同样具有免疫刺激特性,Garnett等[17]证实DTX可降低Treg数量,但对Treg的功能无影响;增强CD8+T细胞对CD3交联的应答,对CD4+T细胞无作用;增强疫苗的抗原特异性T细胞应答,降低了小鼠的肿瘤负荷。

标准剂量氟达拉滨(fludarabine,FA)对Treg具有抑制作用。Beyer等[18]发现慢性淋巴细胞白血病患者接受FA治疗后,体内Treg数量显著减少;体外实验发现与FA共培养的Treg有70% 表达凋亡标志,较CD4+CD25-T细胞敏感;体外混合淋巴细胞反应显示,经FA化疗后患者的Treg对CD4+CD25-T细胞的抑制作用减弱。

在大鼠神经胶质瘤模型中显示小剂量替莫唑胺(temozolomide,TEM)节拍式给药能减少Treg在总CD4+T细胞中的比例,并且降低Treg的活性[19]。在晚期黑色素瘤患者中TEM能减少Treg数量的现象被进一步证实[20]。还有研究表明,用吉西他滨(gemcitabine,GEM)和FOLFOX4治疗转移性结直肠癌,再行皮下注射集落刺激因子(GM-CSF)和IL-2,可以使65%的患者Treg明显减少,该发现与70%的对治疗的客观反应率有关[21]。来那度胺、泊马度胺通过减少FoxP3表达来抑制Treg的增殖和功能,但具体机制不明[22]。在A20淋巴瘤模型中,显示来那度胺能同时降低Treg和MDSC的数量。

2MDSC和化疗药物

2.1MDSC在荷瘤小鼠的脾脏、血液及肿瘤组织广泛存在着一群强免疫抑制功能的细胞群体,来源于骨髓祖细胞和未成熟髓细胞,是树突状细胞、巨噬细胞或粒细胞的前体,称为髓系来源的抑制性细胞。小鼠肿瘤动物模型中,这群细胞共表达髓系分化抗原Gr1和CD11b,可分为2个亚型:粒细胞样的MDSC(CD11b+Ly6G+Ly6Clow)和单核细胞样的MDSC(CD11b+Ly6G-Ly6Chigh)[3]。人体肿瘤MDSC的最基本识别特征还没有公认的标准,现有的研究越来越多地用CD33、CD11b、HLA-DR、Lin、CD14、CD15等作为MDSC的表面标志,或用以上分子的不同组合作为肿瘤患者MDSC的鉴定标志。在多种肿瘤中发现MDSC表型为CD33和(或)CD11b表达阳性,而HLA-DR和(或)Lin不表达或低表达。与小鼠MDSC相似,人MDSC也可分为单核系MDSC(monocytic-MDSC、M-MDSC)和粒系MDSC (granulocytic-MDSC、G-MDSC),人体M-MDSC表达CD14,而G-MDSC表达CD15,这2类MDSC均表达CD11b和CD33,不表达或低表达HLA-DR和Lin。MDSC主要从两方面促进肿瘤的发展:① MDSC能表达多种促血管生成因子,如血管内皮生长因子(VEGF)、碱性成纤维细胞生长因子(bFGF)和(MMP),直接促进肿瘤血管形成。②MDSC能通过高表达的精氨酸酶1(ARG1)、诱导型一氧化氮合成酶(iNOS)和活性氧簇(ROS)抑制T细胞介导的适应性抗肿瘤免疫和NK细胞与巨噬细胞介导的天然抗肿瘤免疫。例如,表达ARG1来分解T细胞赖以活化的精氨酸,下调TCRδ链和抑制归巢受体CD62L的表达;诱导Treg的产生;分泌IL-10抑制巨噬细胞和DC的功能,阻断NKG2D或膜型TGF-β抑制NK细胞功能[23]。

2.2靶向MDSC的化疗药物吉西他滨(gemcitabine,GEM)是一种嘧啶核苷类似物的抗代谢药,可以抑制核酸还原酶和DNA聚合酶α,阻止DNA的合成。临床上广泛用于胰腺癌、肺癌、乳腺癌等多种肿瘤的治疗。在多种肿瘤动物模型中,GEM通过降低MDSC的数量来抵抗肿瘤免疫。同样地,另一种抗代谢药氟尿嘧啶(5-Fu)小剂量应用时也能诱导MDSC凋亡,而对T细胞、B细胞及NK细胞的数量没有明显影响,机制可能是MDSC低表达胸苷酸合成酶[24]。因此,GEM对MDSC的作用主要表现为诱导凋亡。

多西他赛(docetaxel,DTX)是PTX的类似物,主要通过抑制MDSC的STAT3磷酸化和促使MDSC向M1分化来减弱MDSC的抑制作用[25]。动物实验发现,DTX能有效抑制小鼠肿瘤生长并降低MDSC在小鼠脾脏内的数量,使细胞毒性T淋巴细胞反应性提高。经全身照射治疗的机体产生淋巴细胞缺乏症后,MDSC和调节性T细胞可以很快恢复其数量和功能,而加用DTX治疗则能有效阻止MDSC的恢复,提高放射治疗的疗效[26]。Kodumudi[26]等研究发现,DTX处理组小鼠肿瘤微环境中的MDSC与对照组相比明显减少,进一步研究发现,处理组有高达40% 的MDSC表达CCR7表型,而CCR7正是M1型巨噬细胞的表型。体外实验显示,DTX作用24 h后,MDSC上巨噬细胞的分化标志MHC-Ⅱ、CD11c、CD86表达均上调。同时,DTX可以诱导M2型巨噬细胞凋亡却对M1型细胞有保护作用。由此可见,DTX对MDSC的作用表现为多方面,其中一个重要方面即表现为促进MDSC的分化成熟。另外,作为紫杉烷类的PTX,在体外1 nmol/L的PTX不能诱导MDSC的凋亡但却可以促使MDSC分化为DC,揭示了低剂量PTX在动物实验中降低MDSC水平的过程[27]。

阿霉素(adriamycin,ADM)是蒽环类抗生素,其代谢活性物嵌入DNA碱基中形成复合体,抑制DNA合成和转录。在多种荷瘤小鼠模型中发现ADM具有免疫调节效应,能选择性地清除和灭活MDSC,机制可能包括:① ADM优先靶向高增殖活性细胞,在非干预状态下的荷瘤小鼠体内MDSC的增殖活力远高于T细胞和NK细胞;② ADM能提高已较其他免疫细胞高表达ROS的MDSC持续高表达ROS,导致ROS依赖的细胞凋亡。尽管ADM的选择性作用是暂时的,但优先靶向MDSC的作用提高了效应T细胞与免疫抑制性细胞的比例,为CD4+T细胞、CD8+T细胞和NK细胞发挥抗肿瘤免疫提供了最基本的条件。值得重视的是,与单用ADM比较,小鼠在接受含ADM的联合治疗后,其体内MDSC数量能较长时间维持低水平[28]。这种现象进一步提示了化学免疫治疗策略中免疫刺激后进一步联合治疗的可能性和重要性。

阿扎胞苷(5-azacytidine,AZA)是一种去甲基化药物,在小鼠TC-1/A9和TRAMP-C2肿瘤模型中可观察到,能减少MDSC聚集和抑制MDSC功能[29]。但是化疗药物并非都能减轻MDSC的负荷,某些药物反而可以诱导MDSC生成。CTX在非荷瘤小鼠中可以诱导MDSC短暂升高。研究显示,CTX和肿瘤均可诱导正常小鼠MDSC增多,两者诱导的MDSC都会加速肿瘤的生长,但是它们的亚型和抑制免疫功能的机制不同。CTX诱导的MDSC中单核细胞样MDSC的比例较高,抑制性基因水平表达较低,经干扰素-γ刺激之后,其表达上调,但抑制功能仍不及肿瘤诱导的MDSC。而荷瘤小鼠给予CTX治疗后诱导的MDSC表型和功能介于上述两者之间,且具有更强的可塑性[30]。

3结语

基于对宿主-肿瘤相互作用的免疫细胞和分子机制,以及肿瘤化疗药对该机制作用的深入认识,传统化疗药物靶向作用于肿瘤诱导产生的免疫抑制细胞网络,将是一个新的研究热点。策略性的联合化疗药的免疫治疗来改变宿主的整体内环境和局部肿瘤微环境,以及改变免疫耐受和免疫抑制的不同机制,可以维持有效、持久的抗肿瘤免疫应答。但需注意的是,在实际应用时,化疗药物的可能的分子机制、药物剂量和用药时机等细节问题仍然需要进一步设计和优化。尚需开展更多的相关研究,特别是大样本临床试验,使化学免疫治疗广泛用于恶性肿瘤的治疗成为现实。

【参考文献】

[1]Thompson RH, Kwon ED. Significance of B7-H1 overexpression in kidney cancer[J].Clin Genitourin Cancer ,2006,5(3),206-211.

[2]Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion[J]. Nat Rev Immunol,2006,6(10):715-727.

[3]Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system[J]. Nat Rev Immunol,2009,9(3):162-174.

[4]Colombo MP, Piconese S. Regulatory-T-cell inhibitionversusdepletion: the right choice in cancer immunotherapy[J]. Nat Rev Cancer,2007,7(11):880-887.

[5]Curiel TJ, Coukos G, Zou L,etal. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival[J]. Nat Med,2004,10(9):942-949.

[6]Sakaguchi S, Sakaguchi N, Asano M,etal. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol,1995,155(3):1151-1164.

[7]曾益新,吕有勇,朱明华,等.肿瘤学[M].3版. 北京:人民卫生出版社,2012:281-282.

[8]North RJ. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells[J]. J Exp Med,1982,155(4):1063-1074.

[9]Sharabi A, Ghera NH. Breaking tolerance in a mouse model of multiple myeloma by chemoimmunotherapy[J]. Adv Cancer Res,2010,107:1-37.

[10]Wada S, Yoshimura K, Hipkiss EL,etal. Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model[J]. Cancer Res,2009,69(10):4309-4318.

[11]Ghiringhelli F, Larmonier N, Schmitt E,etal. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative[J]. Eur J Immunol,2004,34(2):336-344.

[12]Chen G, Emens LA. Chemoimmunotherapy: reengineering tumor immunity[J]. Cancer Immunol Immunother,2013,62(2):203-216.

[13]Nizar S, Copier J, Meyer B,etal. T-regulatory cell modulation: the future of cancer immunotherapy?[J]. Br J Cancer,2009,100(11):1697-1703.

[14]Ghiringhelli F, Menard C, Puig PE,etal. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients[J]. Cancer Immunol Immunother,2007,56(5):641-648.

[15]Zhang L,Dermawan K,Jin M,etal.Differential impairment of regulatory T cells rather than effector T cells by paclitaxel-based chemotherapy[J].Clin Immunol,2008,129(2):219-229.

[16]Liu N, Zheng Y, Zhu Y,etal. Selective impairment of CD4+CD25+Foxp3(+)regulatory T cells by paclitaxel is explained by Bcl-2/Bax mediated apoptosis[J]. Int mmunopharmacol,2011,11(2):212-219.

[17]Garnett CT, Schlom J, Hodge JW. Combination of docetaxel and recombinant vaccine enhances T-cell responses and antitumor activity: effects of docetaxel on immune enhancement[J]. Clin Cancer Res,2008,14(11):3536-3544.

[18]Reinartz S, Pfisterer J, du Bois A,etal. Suppressive activity rather than frequency of FoxP3(+)regulatory T cells is essential for CA-125-specific T-cell activation after abagovomab treatment[J]. Hum Immunol,2010,71(1):36-44.

[19]Banissi C, Ghiringhelli F, Chen L,etal. Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model[J]. Cancer Immunol Immunother,2009,58(10):1627-1634.

[20]Ridolfi L, Petrini M, Granato AM,etal. Low-dose temozolomide before dendritic-cell vaccination reduces (specifically) CD4+CD25+Foxp3(+)regulatory T-cells in advanced melanoma patients[J]. J Transl Med,2013,11:135.

[21]Correale P, Cusi MG, Tsang KY,etal. Chemo-immunotherapy of metastatic colorectal carcinoma with gemcitabine plus FOLFOX 4 followed by subcutaneous granulocyte macrophage colony-stimulating factor and interleukin-2 induces strong immunologic and antitumor activity in metastatic colon cancer patients[J]. J Clin Oncol,2005,23(35):8950-8958.

[22]Galustian C, Meyer B, Labarthe MC,etal. The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells[J]. Cancer Immunol Immunother,2009,58(7):1033-1045.

[23]Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer[J]. J Immunol,2009,182(8):4499-4506.

[24]Vincent J, Mignot G, Chalmin F,etal. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity[J]. Cancer Res,2010,70(8):3052-3061.

[25]Kodumudi KN, Woan K, Gilvary DL,etal. A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers[J]. Clin Cancer Res,2010,16(18):4583-4594. RH, Kwon ED. Significance of B7-H1 overexpression in kidney cancer[J].Clin Genitourin Cancer ,2006,5(3),206-211.

[2]Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion[J]. Nat Rev Immunol,2006,6(10):715-727.

[3]Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system[J]. Nat Rev Immunol,2009,9(3):162-174.

[4]Colombo MP, Piconese S. Regulatory-T-cell inhibitionversusdepletion: the right choice in cancer immunotherapy[J]. Nat Rev Cancer,2007,7(11):880-887.

[5]Curiel TJ, Coukos G, Zou L,etal. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival[J]. Nat Med,2004,10(9):942-949.

[6]Sakaguchi S, Sakaguchi N, Asano M,etal. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol,1995,155(3):1151-1164.

[7]曾益新,吕有勇,朱明华,等.肿瘤学[M].3版. 北京:人民卫生出版社,2012:281-282.

[8]North RJ. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells[J]. J Exp Med,1982,155(4):1063-1074.

[9]Sharabi A, Ghera NH. Breaking tolerance in a mouse model of multiple myeloma by chemoimmunotherapy[J]. Adv Cancer Res,2010,107:1-37.

[10]Wada S, Yoshimura K, Hipkiss EL,etal. Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model[J]. Cancer Res,2009,69(10):4309-4318.

[11]Ghiringhelli F, Larmonier N, Schmitt E,etal. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative[J]. Eur J Immunol,2004,34(2):336-344.

[12]Chen G, Emens LA. Chemoimmunotherapy: reengineering tumor immunity[J]. Cancer Immunol Immunother,2013,62(2):203-216.

[13]Nizar S, Copier J, Meyer B,etal. T-regulatory cell modulation: the future of cancer immunotherapy?[J]. Br J Cancer,2009,100(11):1697-1703.

[14]Ghiringhelli F, Menard C, Puig PE,etal. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients[J]. Cancer Immunol Immunother,2007,56(5):641-648.

[15]Zhang L,Dermawan K,Jin M,etal.Differential impairment of regulatory T cells rather than effector T cells by paclitaxel-based chemotherapy[J].Clin Immunol,2008,129(2):219-229.

[16]Liu N, Zheng Y, Zhu Y,etal. Selective impairment of CD4+CD25+Foxp3(+)regulatory T cells by paclitaxel is explained by Bcl-2/Bax mediated apoptosis[J]. Int mmunopharmacol,2011,11(2):212-219.

[17]Garnett CT, Schlom J, Hodge JW. Combination of docetaxel and recombinant vaccine enhances T-cell responses and antitumor activity: effects of docetaxel on immune enhancement[J]. Clin Cancer Res,2008,14(11):3536-3544.

[18]Reinartz S, Pfisterer J, du Bois A,etal. Suppressive activity rather than frequency of FoxP3(+)regulatory T cells is essential for CA-125-specific T-cell activation after abagovomab treatment[J]. Hum Immunol,2010,71(1):36-44.

[19]Banissi C, Ghiringhelli F, Chen L,etal. Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model[J]. Cancer Immunol Immunother,2009,58(10):1627-1634.

[20]Ridolfi L, Petrini M, Granato AM,etal. Low-dose temozolomide before dendritic-cell vaccination reduces (specifically) CD4+CD25+Foxp3(+)regulatory T-cells in advanced melanoma patients[J]. J Transl Med,2013,11:135.

[21]Correale P, Cusi MG, Tsang KY,etal. Chemo-immunotherapy of metastatic colorectal carcinoma with gemcitabine plus FOLFOX 4 followed by subcutaneous granulocyte macrophage colony-stimulating factor and interleukin-2 induces strong immunologic and antitumor activity in metastatic colon cancer patients[J]. J Clin Oncol,2005,23(35):8950-8958.

[22]Galustian C, Meyer B, Labarthe MC,etal. The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells[J]. Cancer Immunol Immunother,2009,58(7):1033-1045.

[23]Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer[J]. J Immunol,2009,182(8):4499-4506.

[24]Vincent J, Mignot G, Chalmin F,etal. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity[J]. Cancer Res,2010,70(8):3052-3061.

[25]Kodumudi KN, Woan K, Gilvary DL,etal. A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers[J]. Clin Cancer Res,2010,16(18):4583-4594.

[26]Kodumudi KN, Weber A, Sarnaik AA,etal. Blockade of myeloid-derived suppressor cells after induction of lymphopenia improves adoptive T cell therapy in a murine model of melanoma[J]. J Immunol,2012,189(11):5147-5154.

[27]Michels T, Shurin GV, Naiditch H,etal. Paclitaxel promotes differentiation of myeloid-derived suppressor cells into dendritic cellsinvitroin a TLR4-independent manner[J]. J Immunotoxicol,2012,9(3):292-300.

[28]Alizadeh D, Trad M, Hanke NT,etal. Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer[J]. Cancer Res,2014,74(1):104-118.

[29]Mikysková R, Indrová M, Vlková V,etal. DNA demethylating agent 5-azacytidine inhibits myeloid-derived suppressor cells induced by tumor growth and cyclophosphamide treatment[J]. J Leukoc Biol,2014,95(5):743-753.

[30]Mikysková R, Indrová M, Pollaková V,etal. Cyclophosphamide-induced myeloid-derived suppressor cell population is immunosuppressive but not identical to myeloid-derived suppressor cells induced by growing TC-1 tumors[J]. J Immunother,2012,35(5):374-384. KN, Weber A, Sarnaik AA,etal. Blockade of myeloid-derived suppressor cells after induction of lymphopenia improves adoptive T cell therapy in a murine model of melanoma[J]. J Immunol,2012,189(11):5147-5154.

[27]Michels T, Shurin GV, Naiditch H,etal. Paclitaxel promotes differentiation of myeloid-derived suppressor cells into dendritic cellsinvitroin a TLR4-independent manner[J]. J Immunotoxicol,2012,9(3):292-300.

[28]Alizadeh D, Trad M, Hanke NT,etal. Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer[J]. Cancer Res,2014,74(1):104-118.

[29]Mikysková R, Indrová M, Vlková V,etal. DNA demethylating agent 5-azacytidine inhibits myeloid-derived suppressor cells induced by tumor growth and cyclophosphamide treatment[J]. J Leukoc Biol,2014,95(5):743-753.

[30]Mikysková R, Indrová M, Pollaková V,etal. Cyclophosphamide-induced myeloid-derived suppressor cell population is immunosuppressive but not identical to myeloid-derived suppressor cells induced by growing TC-1 tumors[J]. J Immunother,2012,35(5):374-384.

[本文编辑]李睿旻