乳杆菌调节肠道屏障实验模型的研究进展

2016-04-08 14:50许奇王刚田丰伟张秋香刘小鸣印伯星房东升赵建新张灏陈卫
食品与发酵工业 2016年2期
关键词:动物模型

许奇,王刚*,田丰伟,张秋香,刘小鸣,印伯星,房东升,赵建新,张灏,陈卫*

1(江南大学 食品学院,江苏 无锡,214122) 2(扬州市扬大康源乳业有限公司,江苏 扬州,225004)



乳杆菌调节肠道屏障实验模型的研究进展

许奇1,王刚1*,田丰伟1,张秋香1,刘小鸣1,印伯星2,房东升2,赵建新1,张灏1,陈卫1*

1(江南大学 食品学院,江苏 无锡,214122) 2(扬州市扬大康源乳业有限公司,江苏 扬州,225004)

摘要乳杆菌是一类被广泛应用于发酵食品和保健品中的益生菌,因其具有促进肠道屏障发育、调节肠道免疫功能、降低腹泻风险等作用而备受关注。许多研究表明了乳杆菌属的益生菌具有改善肠道屏障的作用,其调节作用主要表现在稳定或加强肠道黏膜屏障,产生拮抗微生物活性物质,增强非特异性免疫应答等。目前针对乳杆菌对肠道健康的调节已有很多模型,该文主要概述了体外实验模型包括Caco-2、HT-29和T-84等细胞模型,以及体内实验模型包括小鼠、肉鸡和仔猪模型。各种模型的建立与优化,为乳杆菌等益生菌影响肠道屏障作用的机理提供了很好的研究手段。

关键词乳杆菌;肠道屏障;细胞模型;动物模型

肠道是消化和吸收营养物质的重要器官,同时又能保护机体免受食物中抗原、病原微生物及其产生的有害代谢产物的损害,是维持体内环境稳定的天然屏障[1-2]。肠道屏障由物理屏障、化学屏障、微生物屏障以及免疫屏障组成,各自具有不同的生物学功能及分子调控机制,通过各自的信号通路有机地结合在一起,共同防御外来病原对机体的侵袭[3-4]。肠道黏膜与共生细菌、外来微生物以及肠上皮紧密联系从而影响宿主免疫系统,其中肠上皮是许多病原体侵袭的入口[5-6]。肠黏膜屏障一旦受损,可能引发肠道炎症反应,如炎症反应进一步放大,则可能导致器官衰竭并发展至多个器官功能障碍综合征,甚至死亡[7]。尽管有很多研究报道乳杆菌能通过调节肠道上皮细胞和细胞间连接从而调节肠上皮屏障,但肠道屏障功能障碍及修复机制仍不清楚[8]。已有充分实验证明一些乳杆菌能提升乳糖消化率,防止在炎症性肠病术后的结肠袋炎复发,另外还有研究证实乳杆菌对儿童感染性肠胃炎及抗生素相关性腹泻疾病有治疗功效[9-11]。此外,乳杆菌还能够参与营养物质跨膜转运和保护肠上皮细胞完整性等肠道屏障功能相关基因的调节[12-14]。由于乳杆菌能够激活宿主细胞的特定基因,因此可以利用多种细胞及动物模型,通过对其基因表达变化的检测筛选一些对肠道屏障具有促进及修复作用的乳杆菌。越来越多的研究建立起了各种细胞及动物模型,为探索乳杆菌等益生菌影响肠道屏障作用的机理提供了很好的研究手段。

1乳杆菌对肠道屏障的调节作用

乳杆菌属的益生菌属于革兰氏阳性无芽孢菌,微需氧,一般为细长的杆状、大多呈链状排列[15]。应用在食品发酵中的主要菌种有:同型发酵乳杆菌,如植物乳杆菌、干酪乳杆菌和鼠李糖乳酸杆菌;异型发酵乳杆菌,如短乳杆菌等[16-17]。乳杆菌通常定植在人或动物的口腔和肠道中,调节机体免疫力,并预防一些胃肠道疾病的发生[18]。因为乳杆菌普遍存在于人的消化道中,且与人类饮食生活密切相关,所以其安全性、保健功能备受关注。

1.1植物乳杆菌

研究表明,植物乳杆菌在肠道的定植能力相比于伊氏乳杆菌、格氏乳杆菌和敏捷乳杆菌等其他乳杆菌更强[19]。2/3从口腔和直肠分离得到的植物乳杆菌菌株,能够表达甘露糖特异性黏附素,增强其对人结肠细胞系HT-29粘附能力,该特性优于其他肠道乳杆菌[20]。因此,这类植物乳杆菌能够与致病菌(包括大肠杆菌)竞争甘露糖特异性受体,从而减少致病菌对肠道上皮细胞的粘附,防止肠道感染[21]。研究发现,从人体唾液中分离的植物乳杆菌 NCIMB 8826在正常小鼠体内不会引起组织炎症反应以及穿越肠道屏障的反常易位,而且给患有结肠炎的小鼠喂食植物乳杆菌 NCIMB 8826之后能够减少肠道固有微生物的易位[22]。另有研究表明,在人体肠道微生态模拟环境中,植物乳杆菌 E98能抑制革兰氏阴性厌氧菌的生长,除了具有很强的粘附能力,还有调节肠道屏障的功能[23]。据报道,从发酵食品中分离的植物乳杆菌137(HK-LP)能够诱导小鼠白细胞介素-12的强烈表达,从而抑制结肠癌的发生以及肿瘤细胞在小鼠体内的转移。而给小鼠饲喂HK-LP的实验证明其抑制了免疫球蛋白IgE的产生,缓解由食物中过敏原导致的过敏反应,还可增强肠道屏障功能[24]。此外,给小鼠饲喂植物乳杆菌 WH 13-1后,其机体非特异性免疫功能得到增强[25]。而植物乳杆菌CRL 778则能诱导小鼠肠上皮的IgM+细胞和派伊尔结(Peyer patch)中的免疫细胞成熟,并增强肠道和支气管中IgA+和CD4+T细胞的免疫功能[26]。而在基因水平的研究表明,植物乳杆菌MB452能够影响肠道屏障中紧密连接蛋白的基因表达量,如改变Occludin蛋白的相关基因[27]。

1.2干酪乳杆菌

部分研究表明,肠道上皮细胞受到病原体细菌感染时,一些益生菌株能促进机体产生病原体特异性和非特异性的sIgA,但并不提高机体对这些益生菌有特异性的sIgA的分泌量。如干酪乳杆菌能够使小鼠IgA和白细胞介素-6的分泌量增加,但并不使小鼠产生对干酪乳杆菌特异性的抗体[28]。Kononkx等[29]的研究发现,干酪乳杆菌W56通过产生热休克蛋白70(Hsp70),不仅提高了肠道屏障细胞跨膜电阻值,还修复了由沙门氏菌引起的肠道黏膜损伤。ZUZANA等[30]的研究发现,灌胃干酪乳杆菌可显著降低由葡聚糖硫酸酯钠(DSS)导致的BALB/C小鼠结肠炎,但在SCID小鼠中并未有此结果。进一步的研究指出干酪乳杆菌提高了肠系膜淋巴结中CD4+FoxP3+的数量,减少促炎症因子肿瘤坏死因子-α、干扰素-γ和在派伊尔结及大肠中白细胞介素-10的产生,同时改变了肠道微生物群组成。此外,干酪乳杆菌还可以通过抑制NF-κB信号通路以阻止RAW 264.7细胞中由脂多糖诱导的肿瘤坏死因子-α的表达[31-33]。

1.3 鼠李糖乳杆菌

鼠李糖乳杆菌LGG在肠道中黏着率高,已证明其能够耐受动物消化道环境并定植于肠道中,克罗恩病人口服鼠李糖乳杆菌,有防止由炎症反应引起的肠道屏障损伤的作用,减少肠道感染,预防和治疗腹泻[34]。有研究发现,鼠李糖乳杆菌对于猪的肠道黏膜粘附,能够竞争性地抑制病原体如大肠杆菌等对肠道黏膜的黏附,并通过调节免疫因子表达量及针对有害菌抗体的分泌量,显著地降低断奶仔猪腹泻的发生率[35]。在健康的受试体试验中发现,鼠李糖乳杆菌可提高白细胞介素-10的表达量,从而抑制肠道细菌刺激CD4+T细胞分泌产生的肿瘤坏死因子-α,白细胞介素-6和干扰素-γ等细胞因子所引起的肠上皮屏障功能损害[36]。而ANTONELLA等[37]的实验结果则表明,LGG能抑制由醇溶蛋白诱导的毒性作用从而起到预防或者治疗胃肠道疾病的作用,其机制是通过参与诱导表皮防御和提高乳果糖通量及Zonulin蛋白表达量,值得注意的是,只有活的LGG与醇溶蛋白才能显著地上调ZO-1、Claudin-1和Occludin的基因表达。LIU等[38]通过猪的体内实验发现鼠李糖乳杆菌能通过上调猪的肠道上皮细胞中Toll样受体的表达、下调炎症因子白细胞介素-6的产生和MUC3黏蛋白的合成,降低了细胞炎症以及轮状病毒菌的侵染。而另外的实验也证明了鼠李糖乳杆菌可以抑制T-84细胞和人结肠腺癌HT-29细胞的炎症反应,且有调节肠上皮细胞屏障的功能[39]。

2研究乳杆菌调节肠道屏障功能的细胞模型

由于宿主机体及肠道内菌群构成复杂,研究肠道内微生物与宿主之间的相互作用难度很大,体外模型可以在一定程度上避免这些困难。如Caco-2人结肠腺癌细胞株和HT-29、SW620等人结肠癌细胞株已经被广泛应用,其中肠上皮细胞培养技术已被广泛用于研究益生菌对肠道屏障调节功能的研究,然而严格厌氧的微生物在适合黏膜上皮细胞培育的环境中却难以生存,因而导致益生菌活性失效,所以在实验研究中必须采取特殊的预处理[40]。肠上皮细胞是消化道中消化、吸收营养物质的主要功能性细胞,主要抵御病原菌入侵宿主或者防止致炎性物质刺激,在维持宿主肠道黏膜天然和获得性免疫系统中起着重要的作用。目前体外培养肠上皮细胞已成为深入研究动物肠道功能、病理及细胞分化的重要途径。

2.1Caco-2细胞模型

人体结肠腺癌细胞Caco-2分离自人的结肠腺癌,可进行多次传代培养,成熟的 Caco-2 能在体外培养的条件下自发进行肠样上皮分化,分化后的细胞间形成紧密连接结构,与小肠上皮细胞相似,表现出与小肠上皮细胞相似的肠腔顶端绒毛和底端肠壁侧,并能够表达一些标志性酶,随着培养时间增长容易出现极性,特别适合用于检测跨膜电阻值[41]。由于 Caco-2 细胞的这些特性,已被作为一种成熟的细胞模型及有效的研究工具被广泛应用,成为研究外源性化学物体外应答的人体肠道模型系统[42]。利用Caco-2细胞模型系统,Seth等[43]研究发现,鼠李糖乳杆菌分泌的p40和p75具有保护上皮细胞紧密连接和缓解H2O2诱导的肠道屏障紊乱的作用。

2.2HT-29细胞模型

HT-29具有肠道上皮细胞的一些特性,并且能够形成粘液层,而相比之下Caco-2细胞单层模型则不具有粘液层,所以通常作为评价乳杆菌等益生菌在人体肠道中黏附力的实验模型细胞[44]。SUN等[45]用活菌数为108CFU/mL的嗜酸乳杆菌Bar 13益生菌,在HT-29细胞模型中发现其可以通过抑制白细胞介素-8的合成,从而抑制肠道急性炎症反应。而O'Hara等[46]则采用婴儿双岐杆菌35624和唾液乳杆菌UCC118预处理HT-29细胞,发现NF-κB的活化程度被减弱以及白细胞介素-8的合成被减少,从而减缓由鼠伤寒沙门氏杆菌引起的促炎症反应。RESTA等[47]的研究发现,嗜酸乳杆菌可通过维持或增强细胞骨架蛋白以及提高紧密连接蛋白的磷酸化而提高HT-29细胞的跨膜电位。

2.3T-84细胞模型

由于T-84细胞免疫专一性强,所以MICHAIL等[48]选择将肠上皮T-84单层细胞与植物乳杆菌共培养,用于研究肠道屏障受到乳杆菌刺激后产生的免疫反应。研究结果显示,植物乳杆菌不仅降低了致病性大肠杆菌对上皮细胞的黏附,还减少了中性粒细胞的迁移。SHERMAN[49]的研究显示,嗜酸乳杆菌和鼠李糖乳杆菌可以竞争性黏附于T-84细胞,减少细胞表面的黏附位点,从而阻止如致病性大肠杆菌等病原微生物的黏附及入侵。另外,NEBOT等[50]建立了基础和炎症性T84细胞模型来评价植物乳杆菌对肠道屏障的影响,发现植物乳杆菌抑制了由革兰氏阴性细菌如大肠杆菌、痢疾杆菌和霍乱弧菌等的脂多糖所导致的肠道通透性增加,降低了肿瘤坏死因子与TLR-4的表达量,同时上调了肠道屏障中紧密连接蛋白ZO-1和occludin的表达量。

3研究乳杆菌调节肠道屏障功能的动物模型

近年来,人们生活压力提升以及饮食结构改变,导致炎症性肠病(inflammatory bowel disease,IBD)在全世界的患病率正逐年上升,该病是消化系统自身免疫性慢性炎症性疾病,其发病机理和对肠道健康的影响尚未完全清楚,因此引起了广大研究人员的关注[51]。随之,IBD动物模型的实验也已广泛开展,这些动物模型在新药物评价方面起到重要作用,同时也是用来研究肠道屏障破坏机制的很好的模型。其中动物模型主要分为以下五类[52]:基因敲除型、转基因型、诱导结肠炎型、自发性结肠炎型和过继性转移型,前三种模型因动物容易获取且价格合适、肠炎的发生与肠道菌群关系密切,所以在研究中应用较多。

3.1 小鼠模型

有研究使用自发肠腺瘤ApcMin/+小鼠模型研究肠道屏障紊乱。该模型在Apc基因引入一个无义突变,由于Apc蛋白功能缺失,这种小鼠易自发肠道多发性腺瘤。研究使用FITC标记的右旋糖酐的渗透率来检测肠道屏障的完整性,酶检测法测定血糖和甘油三酯以及酶联免疫吸附测定法检测白细胞介素-6,结论是多发性腺瘤的发展与肠道屏障功能障碍、肠系膜淋巴结肥大以及血浆内毒素浓度增大密切相关[53]。研究表明,将选择性定植的植物乳杆菌LP299v连续4周灌胃无菌IL-10基因敲除型小鼠,只能轻度地激活小鼠免疫系统。若预先用植物乳杆菌LP299v灌胃IL-10-/-无菌小鼠,再将小鼠移入SPF级环境,并继续灌胃LP299v,能明显减轻小鼠结肠的炎性反应,这可能与植物乳杆菌预先占据肠道粘附位点和调节肠道内菌群结构从而增强了肠黏膜的屏障功能有关[54]。而LKHAGVADORJ等[55]将临床分离得到的耐甲氧苯青霉素金黄色葡萄球菌灌胃小鼠,建立致病小鼠模型,使用短双歧杆菌联合卡那霉素与头孢菌素治疗,发现益生菌治疗组致病菌向肠淋巴结和肝脏移位明显减少,益生菌可抑制致病菌在肠道的定植,减轻致病菌毒力、增强抗生素的治疗效果。VIDAL[56]等在万古霉素耐药肠球菌感染大鼠模型中使用鼠李糖乳杆菌Lcr35,结果显示乳杆菌能有效地降低多重耐药菌在肠道的定植,提高治愈率。另外,化学诱导型动物模型已经被用来研究益生菌对急性和慢性肠炎的作用,其中DSS小鼠模型的应用最为广泛。大量研究表明乳杆菌属益生菌对DSS诱导的肠炎小鼠肠道屏障损伤有改善作用[57]。以上研究表明小鼠模型可以用来研究乳杆菌等益生菌对肠道屏障功能的影响,但是采用常规的动物在研究过程中容易受到动物模型自身肠道复杂菌群的影响,为了更好地研究益生菌与宿主之间的相互作用,提出了建立肠道微生态可控动物模型。已有研究报道定植在无菌小鼠内的多形拟杆菌可影响包括与黏膜屏障,肠道屏障发育、转换异源物质以及营养质物的吸收等相关功能基因的表达[58]。

3.2 肉鸡模型

通过禽类动物模型的建立,得到并鉴定了许多具有调节家禽肠道微生态、拮抗病原感染功能的益生菌株。肉鸡模型是最常用的模型,已有报道在鸡饲料里添加乳杆菌培养物能显著降低肉鸡沙门氏菌的感染率[59]。目前,在肉鸡饲料中添加乳杆菌的研究呈现增加的趋势,如有研究表明,用添加最小剂量为108CFU/g益生菌制剂(含嗜酸乳杆菌和干酪乳杆菌)的肉仔鸡日粮进行饲养,可显著降低肉鸡肠道中空肠弯曲杆菌的数量[60]。另外,一些从健康的肉鸡肠道分离出的益生菌,如双歧杆菌、唾液乳杆菌和罗伊氏乳杆菌等,通过将其添加到饮水及饲料中进行饲喂,一方面提高肉鸡体重并促进生长,这种作用类似于灌胃药物阿维霉素的效果;另一方面这些乳杆菌调节盲肠中微生物菌群结构和细菌糖酵解酶的活性,起到提高肠道屏障功能的作用[61]。有研究显示,饲料中添加乳杆菌比通过饮水饲喂对于肉鸡的增重效果更为显著。此外,在雏鸡时饲喂乳杆菌可调节肠道上皮细胞基因表达,促进鸡肠道屏障发育[62]。

3.3 仔猪模型

仔猪肠道屏障功能正常是食物正常消化吸收的基础,其中仔猪肠道受应激损伤的程度可以通过检测肠绒毛的发育程度来反映,同时,也作为评定乳杆菌等益生菌是否能减轻应激损伤和促进肠道修复的较为灵敏的指标,了解乳杆菌对仔猪肠道屏障的调节机制有助于预防和控制仔猪断奶应激综合症,也可以运用于配制乳仔猪饲料[63]。研究表明,乳杆菌培养物能够降低新生仔猪的死亡率以及粪便中肠毒性大肠杆菌的数量。肠炎沙门氏菌感染的仔猪用乳酸杆菌灌胃后,后肠段及粪便中病原体的数量显著降低。而鼠李糖乳酸杆菌则被证明能有效缓解大肠杆菌k88引起的断奶后仔猪腹泻,这种作用可能是通过调节肠道微生态、宿主细胞因子水平以及提高宿主针对有害菌的抗体的产生量实现的[64-65]。BOCOURT等[66]的研究显示,鼠李糖乳杆菌可以提高乳猪胸腺和小肠的重量,对仔猪肠道屏障稳定性具有显著促进作用。另据GIANGA等[67]的研究,乳杆菌复合制剂能够改善断奶仔猪的肠道屏障功能并降低腹泻程度,作用机制与回肠和结肠中乳酸与乙酸含量的提高有关。

4 展望

研究显示,乳杆菌属的几种益生菌能够增强肠道上皮的屏障功能。肠上皮屏障功能增强的机制包括多个方面:诱导黏液蛋白的分泌、促进紧密连接结构形成、上调具有细胞保护功能的热休克蛋白表达及防止上皮细胞凋亡[68]。许多研究证明,益生菌是通过与肠道黏膜免疫系统的交互作用来增强肠道上皮屏障功能,尽管乳杆菌对上皮细胞发挥保护作用的一些信号途径已经被揭示,但乳杆菌发挥调节作用的具体机制如受体等仍不完全清楚,有关乳杆菌调节肠道上皮屏障的作用机制仍有待进一步的深入研究,实验模型也有待进一步开发[69]。另外,借助新的分子生物学技术,研究者能够更准确地识别肠道微生物区系并且发现新的有益肠道共生菌。这些新的研究手段的运用,有助于开发对人体肠道屏障有益的乳杆菌制剂[70]。虽然乳杆菌对肠道屏障功能影响的研究进展迅速,但仍有许多亟待解决的问题:乳杆菌引发上皮细胞迁移的具体机制仍不清楚,进一步研究乳杆菌引起肠上皮迁移的信号通路,有助于研究者寻找适当的措施以提高肠道屏障的完整性;乳杆菌如何耐受人体胃酸、胆汁酸及胰液,以确保有足够数量的活菌到达肠道发挥作用;此外乳杆菌调节肠道屏障的效应分子仍不清楚,因此将其相关效应分子分离、纯化并确定功能,可以进一步深入揭示乳杆菌对肠道健康影响的分子机制[71]。

参考文献

[1]BOURL Loux P,KOLETZKO B,GUARNER F. The intestine and its microflora are partners for the protection of the host[J].American Journal of Clinical Nutrition,2003,78(4):675-682.

[2]HIROSHI A,MICHINAGA O,MINSOO K,et al. Bacteria and host interactions in the gut epithelial barrier[J].Nature Chemical Biology,2012,8:36-45.

[3]MACPHERSON A J,HARRIS N L.Interactions between commensal intestinal bacteria and the immune system[J].Nature Reviews Immunology,2004,4:478-485.

[4]THUIJLS G,de HAAN JJ,DERIKX JP,et al.Intestinal cytoskeleton degradation precedes tight junction loss following hemorrhagic shock[J].Shock,2009,31(2):164-169.

[5]ISOLAURI E,SALMINEN S.PROBIOTICS, gut inflammation and barrier function[J].Gastroenterology Clinics of North America,2005,34(3):437-451.

[6]CHEROUTRE H,MADAKAMUTIL L.Acquired and natural memory T cells join forces at the mucosal front line[J].Nat Rev Immunol,2004,4(4):290-300.

[7]ASHIDA H,OGAWA M,KIM M.Bacteria and host interactions in the gut epithelial barrier[J].Nature Chemical Biology,2012,8(01):36-45.

[8]QIN H,ZHANG Z,HANG X,et al.L.plantarumpreventsEnteroinvasiveEscherichiacoli-induced tight junction proteins changes in intestinal epithelial cells[J].BMC Microbiol,2009,9:63.

[9]WEIZMAN Z.Probiotics therapy in acute childhood diarrhoea[J].Lancet,2010,376(9737):233.

[10]KUHBACHER T,OTT S J,HELWI G U,et al. Bacterial and fungal microbiota in relation to probiotic therapy (VSL #3) in pouchitis[J].Gut, 2006,55(6):833-841.

[11]GAUDIER E,MICHEL C,SEGAIN J P,et al.The VSL #3 probiotic mixture modifies microflora but does not heal chronic dextran-sodium-sulfate-induced colitis or reinforce the mucus barrier in mice[J].Journal of Nutrition,2005,135(12):2 753-2 761.

[12]MOLLICA A,STEFANUCCI A,COSTANTE R.Role of formyl peptide receptors (FPR) in abnormal inflammation responses involved in neurodegenerative diseases[J].Anti-inflammatory & Anti-allergy Agents in Medicinal Chemistry,2012,11(1):20-36.

[13]SHIMAZU T,VILLENA J,TOHNO M,et al.ImmunobioticLactobacillusjenseniielicits anti-inflammatory activity in porcine intestinal epithelial cells by modulating negative regulators of Toll-like receptor signaling pathway[J].Infection and Immunity,2012,80(1):276-288.

[14]BIBILONI R,FEDORAK R N,TANNOCK G W,et al.VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis[J].American Journal of Gastroenterol,2005,100:1 539-1 546.

[15]LEBEER S,VANDERLEYDEN J,DE K,et al.Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens[J].Nature Reviews Microbiology,2010,8(3):171-184.

[16]ZHAO J F,XU L Y,WANG Y Z.Homofermentative production of optically pureL-lactic acid from xylose by genetically engineeredEscherichiacoliB[J].Microbial Cell Factories,2013,12:57.

[17]PATRICIA B,FACUNDO C,MERCEDESMILESI.Technological and probiotic role of adjunct cultures of non-starter lactobacilli in so cheeses[J].Food Microbiology,2012,30(1):45-50.

[18]RUBIO R,JOFRE A,MARTIN B.Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages[J].Food Microbiology,2014,38:303-311.

[19]SIEZEN R J,VAN E F H,KLEEREZEM M,et al.Genome data mining of lactic acid bacteria:the impact of bioinformatics[J].Current Opinion in Cardiology,2004,15:105-115.

[20]KLEEREBEZEM M,BOEKHORST J,VAN K R,et al.Complete genome sequence ofLactobacillusplantarumWCFS1[J].Proceedings of the National Academy of Sciences of the United States of America,2003,100(4):1 990-1 995.

[21]Ahrne S,NOBAEK S,JEPPSSON B,et al.The normalLactobacillusfloraof healthy human rectal and oral mucosa[J].Journal of Applied Microbiology,1998,85(1):88-94.

[22]PAVAN S,DESREUMANUX P,MERCENIER A.Use of mouse models to evaluate the persistence, safety, and immune modulation capacities of lactic acid bacteria[J].Clinical and Diagnostic Laboratory Immunology,2003,10(4):696-701.

[23]FUMIKO H,MASAFUMI,TOMOKAZU A,et al. Improvement of constipation and liver function by plant-derived lactic acid bacteria: A double-blind randomized trial[J].Nutrition,2010,26(4):367-374.

[24]HIROSE Y,MUROSAKI S,FUJIKI T.Lipoteichoic acids onLactobacillusplantarumcell surfaces correlate with induction of interleukin-12p40 production[J].Microbiology and Immunology,2010,54(3):143-151.

[25]YANPING W,NV X,AODENG X,et al.Effects ofLactobacillusplantarumMA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet[J].Applied Microbiology and Biotechnology,2009,84(2):341-347.

[26]DALLAGNOL A M,CATALAN C A N,MERCADO M I.Effect of biosynthetic intermediates and citrate on the phenyllactic and hydroxyphenyllactic acids production byLactobacillusplantarumCRL 778[J].Journal of Applied Microbiology,2011,111(6):1 447-1 455.

[27]UKENA S N,SINGH A,DRINGENBERG U,et al.ProbioticEscherichiacoliNissle 1917 inhibits leaky gut by enhancing mucosal integerity[J].Plos One,2007,2(12):e1308.

[28]GALDEANO C M,PERDIGON G.The probiotic bacteriumLactobacilluscaseiinduces activation of the gut mucosal immune system through innate immunity[J].Clinical and Vaccine Immunology,2006,13(2):219-226.

[29]KONONKX J F J G,PETER C J,JOSHUA J M,et al.Probiotic bacteria induced improvement of the mucosal integrity of enterocyte-like Caco-2 cells after exposure toSalmonellaenteritidis857[J].Journal of Funcitional Foods,2010,161(52):372-382.

[30]ZAKOSTELSKA Z,KVERKA M,KLIMESOVA K.Lysate of ProbioticLactobacilluscaseiDN-114 001 Ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment[J].Plos One,2011,6(11):1-11.

[31]MILETI E,MATTEOLI G,ILIEV ID,et al.Comparison of the immunomodulatory properties of three probiotic strains ofLactobacilliusing complex culture systems: prediction for in vivo efficacy[J].PLoS One,2009,4:e7056.

[32]LEE JM,HWANG KT,JUN WJ,et al.Antiinflammatory effect of lactic acid bacteria: inhibition of cyclooxygenase-2 by suppressing nuclear factor-kappa B in Raw264.7 macrophage cells[J].Journal of Microbioly and Biotechnoly,2008,18:1 683-1 688.

[33]MATSUMOTO S,HARA T,HORI T.Probiotic Lactobacillus-induced improvement in murine chronic inflammatory bowel disease is associated with the down-regulation of pro-inflammatory cytokines in lamina propria mononuclear cells[J].Clinical And Experimental Immunology,2005,140(3):417-426.

[34]DONATO KA,GAREAU MG,WANG YJ,et al.LactobacillusrhamnosusGG attenuates interferon-γ and tumour necrosis factor-α-induced barrier dysfunction and pro-inflammatory signalling[J].Microbiology,2010,156: 3 288-3 297.

[35]ZHANG Lu,XU Yong-qian,LIU Hao-yu,et al.Evaluation ofLactobacillusrhamnosusGG using anEscherichiacoliK88 model of piglet diarrhoea: Effects on diarrhoea incidence, faecal microflora and immune responses[J].Veterinary Microbiology,2010,141(1-2):142-148.

[36]SCHULTZ M,LINDE H J,LEHN N.Immunomodulatory consequences of oral administration ofLactobacillusrhamnosusstrain GG in healthy volunteers[J].Journal of Dairy Research,2003,70(2):165-173.

[37]ORLANDO A,LINSALATA M,NOTARNICOLA M.LactobacillusGG restoration of the gliadin induced epithelial barrier disruption: the role of cellular polyamines[J].BMC Microbiology,2014,14:19.

[38]LIU Fang-ning,LI Guo-hua,WEN Ke,et al.Porcine small intestinal epithelial cell line (IPEC-J2) of rotavirus infection as a new model for the study of innate immune responses to rotaviruses and probiotics[J].Viral Immunology,2010,23(2):135-149.

[39]GHADIMI D,VRESE M,HELLER K J,et al.Effect of natural commensal-origin DNA on toll-like receptor 9 (TLR9) signaling cascade, chemokine IL-8 expression, and barrier integritiy of polarized intestinal epithelial cells[J].Inflammatory Bowel Diseases,2010,16(3): 410-427.

[40]SCHWANK G,KOO B K,SASSELLI V.Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients[J].Cell Stem Cell,2013,13(6):653-658.

[41]CAO Xue-fei,LIN hai-xia,MUSKHELISHVILI L.Tight junction disruption by cadmium in aninvitrohuman airway tissue model[J].Respiratory research,2015,16(1):191.

[42]SAMBUY Y,ANGELIS I,RANALDI G,et al.The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics[J].Cell Biology and Toxicology,2005,21(1):1-26.

[43]SETH A,YAN F,POLK D B,et al.Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism[J].American Journal of Physiology Gastrointestinal and Liver Physiology,2008,294(4): G1 060-1 069.

[44]SONG Tae-Suk,KIM Ji-Youn,KIM Ki-Hwan,et al.Invitroevaluation of probiotic lactic acid bacteria isolated from dairy and non-dairy environments[J].Food Science and Biotechnology,2010,19(1):19-25.

[45]SUN J,Le G W,SHI Y H.Factors involved in binding ofLactobacillusplantarumLp6 to rat small intestinal mucus[J].Letter in Applied Microbiology,2007,44(1):79-85.

[46]O HARA A M,O REGAN P,FANNING A.Functional modulation of human intestinal epithelial cell responses byBifidobacteriuminfantisandLactobacillussalivarius[J].Immunology,2006,118(2):202-215.

[47]RESTA L S,DAS S,BATRA SK.Muc17 protects intestinal epithelial cells from enteroinvasiveE.coliinfection by promoting epithelial barrier integrity[J].American Journal of Physiology-Gastrointestinal and Liver Physiology,2011,300(6):G1 144-G1 155.

[48]MICHAIL S,ABERNATHY F.Lactobacillusplantaruminhibits the intestinal epithelial migration of neutrophils Induced by enteropathogenicEscherichiacoli[J].Journal of Pediatric Gastroenterology and Nutrition,2003,36:385- 391.

[49]SHERMAN P M,OSSA J C,JOHNSON H K.Unraveling mechanisms of action of probiotics[J].Nutrition in Clinical Practice,2009,24:10-14.

[50]NEBOT V M,HARKAT C,BZIOUECHE H.Multispecies probiotic protects gut barrier function in experimental models[J].World Journal of Gastroenterology,2014,20(22):6 832-6 843.

[51]LEVESQUE B G,SANDBORN W J,Ruel J.Converging goals of treatment of inflammatory bowel disease from clinical trials and practice[J].Gastroenterology,2015,148(1):37-U455.

[52]JURJUS A R,KHOURY N N,REIMUND J M.Animal models of inflammatory bowel disease[J].Journal of Pharmacological and Toxicological Methods,2004,50(2):81-92.

[53]PUPPA M J,WHITE J P,SATO S C.Gut barrier dysfunction in the ApcMin/+ mouse model of colon cancer cachexia[J].Biochimica et Biophysica Acta,2011,1812(12):1 601-1 606.

[54]SCHULTZ M,VELTKAMP C,DIELEMAN LA.Lactobacillusplantarum299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient mice[J].Inflammatory Bowel Diseases,2002,8(2):71-80.

[55]LKHAGVADORJ E,NAGATA S,WADA M,et al.Anti-infectious activity of synbiotics in a novel mouse model of methicillin-resistantStaphylococcusaureusinfection[J].Microbiol Immunol,2010,54(5):265-275.

[56]VIDAL M,FORESTIER C,Charbonnel N,et al.Probiotics and intestinal colonization by vancomycin-resistant enterococci in mice and humans[J].Journal of Clinical Microbiology,2010,48(7):2 595-2 598.

[57]VETRANO S,CORREALE C,BORRONI E M.Colifagina, a novel preparation of 8 lysed bacteria ameliorates experimental colitis[J].International Journal of Immunopathology and Pharmacology,2008,21(2):401-407.

[58]BACKHED F,DING H,WANG T.The gut microbiota as an environmental factor that regulates fat storage[J].Proceedings of the National Academy of Sciences,2004,101(44):15 718-15 723.

[59]HIGGINS SE,HIGGINS J P,WOLFENDEN A D,et al.Evaluation of a Lactobacillus-based probiotic culture for the reduction ofSalmonellaenteritidisin neonatal broiler chicks[J].Poultry Sciences,2008,87(1):27-31.

[60]WILLIS WL,REID L.Investigating the effects of dietary probiotic feeding regimens on broiler chicken production andCampylobacterjejunipresence[J].Poultry Sciences,2008,87(4):606-611.

[61]MOUNTZOURIS K C,TSIRTSIKOS P,KALAMARA E,et al.Evaluation of the efficacy of a probiotic containingLactobacillus,Bifidobacterium,Enterococcus, andPediococcusstrains in promoting broiler performance and modulating cecal microflora composition and metabolic activities[J].Poultry Sciences,2007,86(2):309-317.

[62]TIMMERMAN H M,VELDMAN A,van den ELSEN E,et al.Mortality and growth performance of broilers given drinking water supplemented with chicken-specific probiotics[J].Poultry Sciences,2006,85(8):1 383-1 388.

[63]TANG M,LAARVELD B,VAN K A G,et al.Effect of segregated early weaning on postweaning small intestinal development in pigs[J].Journal of Animal Science,1999,77(12):3 191-3 200.

[64]GENOVESE K J,ANDERSON R C,HARVEY R B,et al.Competitive exclusion ofSalmonellafrom the gut of neonatal and weaned pigs[J].Journal of Food Protection,2003,66(8):1 353-1 359.

[65]ZHANG Lu,XU Yong-qian,LIU Hao-yu,et al.Evaluation ofLactobacillusrhamnosusGG using anEscherichiacoliK88 model of piglet diarrhoea: Effects on diarrhoea incidence, faecal microflora and immune responses[J].Veterinary Microbiology,2010,141(1-2):142-148.

[66]BOCOURT R,LOURDES S,JUANA D.Effect of the probiotic activity ofLactobacillusrhamnosuson physiological indicators of suckling pigs[J].Cuban Journal of Agricultural Science,DEC 2004a,38(4):403-408.

[67]GIANG H H,VIET O T,OGLE B,et al.Effects of different probiotic complexes of lactic acid bacteria on growth performance and gut environment of weaned piglets[J].Livestock Science,2010,133(1-3):182-184.

[68]DELCENSERIE V,MARTEL D,LAMOUREUX M.Immunomodulatory effects of probiotics in the intestinal tract[J].Current Issues in Molecular Biology,2008,10:37-53.

[69]NEBOT-VIVINUS M,HARKAT C,BZIOUECHE H.Multispecies probiotic protects gut barrier function in experimental models[J].World Journal of Gastroenterology,2014,20(22):6 832-6 843.

[70]WALKER W A,GOULET O,MORELLI L.Progress in the science of probiotics: from cellular microbiology and applied immunology to clinical nutrition[J].European Journal of Nutrition,2006,45(1):1-18.

[71]OKANO K,TANAKA T,OGINO C.Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives and limits[J].Applied Microbiology and Biotechnology,2010,85(3):413-423.

Current progress in research models for influence ofLactobacilluson intestinal barrier

XU Qi1,WANG Gang1*,TIAN Feng-wei1,ZHANG Qiu-xiang1,LIU Xiao-ming1,YIN Bo-xing2,FANG Dong-sheng2,ZHAO Jian-xin1,ZHANG Hao1,CHEN Wei1*

1( School of Food Science and Technology, Jiangnan University, Wuxi 214122,China)2( Kangyuan Dairy Co. Ltd., Yangzhou University, Yangzhou 225004,China )

ABSTRACTLactobacillus is a kind of probiotics which has been widely used in fermented foods and health foods for its function of promoting the development of intestinal barrier, regulating the intestinal immune function, reducing the risk of diarrhea and so on. Many studies have shown that the Lactobacillus has the role of improving the intestinal barrier such as stabling or strengthening the intestinal mucosal barrier, producing antagonistic microbial active substances, and enhancing non-specific immune response. There are many models established for the evaluation of the regulation effects of Lactobacillus on intestinal barrier. The experimental models in vitro including Caco-2, HT-29 and T-84 cell model, as well as experimental models in vivo including mouse, chicken and pigs model were reviewed in this article. Establishment and optimization of various models provide a good tool for researches on the mechanism of the influence on intestinal barrier by Lactobacillus.

Key wordsLactobacillus; intestinal barrier; cell model; animal model

收稿日期:2015-09-24,改回日期:2015-11-10

基金项目:国家自然科学基金-青年科学基金项目(项目编号31301407)

DOI:10.13995/j.cnki.11-1802/ts.201602043

第一作者:硕士研究生(王刚副教授,陈卫教授为通讯作者,E-mail:wanggang@jiangnan.edu.cn,chenwei66@jiangnan.edu.cn)。

猜你喜欢
动物模型
基于网络药理学和动物模型验证研究泻白散治疗新型冠状病毒肺炎的潜在作用
肥胖中医证候动物模型研究进展
胃癌前病变动物模型复制实验进展
湿热证动物模型造模方法及评价研究
溃疡性结肠炎动物模型研究进展
猕猴子宫腺肌病动物模型建立初探
胆石症实验动物模型及其中药治疗研究进展
糖尿病性视网膜病变动物模型研究进展
卵巢功能早衰动物模型的建立及其评价指标的研究进展
定喘止哮颗粒对支气管哮喘动物模型的影响