离散型Lotka-Volterra捕食-被捕食系统的Marotto混沌

2016-12-23 08:15陈先伟
湖南工业大学学报 2016年5期
关键词:不动点捕食者分形

陈先伟,申 靖

(1. 湖南科技大学 数学与计算科学学院,湖南 湘潭 411201;2. 湖南工业大学 财经学院,湖南 株洲 412007)

离散型Lotka-Volterra捕食-被捕食系统的Marotto混沌

陈先伟1,申 靖2

(1. 湖南科技大学 数学与计算科学学院,湖南 湘潭 411201;2. 湖南工业大学 财经学院,湖南 株洲 412007)

研究了离散型捕食-被捕食Lotka-Volterra系统的Marotto意义下的混沌。通过理论分析给出了系统存在Marotto意义下的混沌的条件,并利用分支图、最大Lyapunov指数(ML)、分形维(FD)、相图进行了数值模拟,验证了理论分析的正确性,同时展示了此系统的复杂动力学行为。结合已有的结论,有利于学者们更完整地了解此类系统的动力学行为。

捕食与被捕食系统;Marotto混沌;最大Lyapunov指数(ML);分形维(FD)

1 研究背景

经典的捕食-被捕食Lotka-Volterra系统[1-2]为

式中:X, Y分别为被捕食者与捕食者的密度;

r0为内在增长率;

k为人口承载能力;

b0为捕食函数,表示每个捕食者在单位时间、单位面积所消耗被捕食者的数量;

d0为捕食者的死亡率;

c为被捕食者转化为捕食者的转化率;

cXY为捕食者数量函数。

当Y=0时,不含捕食者的系统(1)被学者们广泛研究,并得到了一些有趣的结论[1-3]。例如当参数r0和k在其允许范围内取值,若时,系统(1)的所有非负解(常数解除外)收敛于常数解X≡k,即X(t)值随着时间发展趋向于极限k。当Y≠0时,关于捕食-被捕食Lotka-Volterra模型(1)的研究也较多,学者们主要集中研究了该系统的不动点的稳定性、周期性和一些随机行为[1,4-10]。

将欧拉方法[11-13]应用于系统(2),可得

式中 为步长。

关于系统(3)的不动点及其分支已有研究,并得到了系统(3)在空间上产生flip-分支和Hopf-分支的条件[14]。

虽然关于系统(3)的混沌研究较少,但生态系统中混沌现象是一个值得研究的问题。

2 Marrotto意义下的混沌存在性

下面对系统(3)存在Marotto意义下的混沌[15-16]进行讨论,系统(3)的不动点的稳定性见引理1。

3 数值模拟

结合例1,通过分支图、最大Lyapunov指数(maximum lyapunov exponents,ML)[17]、分形维(fractal dimensions,FD)和相图来验证以上理论的正确性。

由Lyapunov指数定义的分形维[17-18]如下

图1 映射(3)的数值模拟图。Fig. 1 Numerical simulation diagram of mapping (3)

4 结语

通过对系统(3)的混沌分析,根据Marotto意义下的混沌定义,得到了Marotto意义下的混沌存在条件。利用分支图、最大Lyapunov指数、分形维和相图验证了理论的正确性。揭示了生态系统中,捕食者与被捕食者数量发生巨变后又迅速回到平稳位置的复杂生态现象。分析结果对数学和生态学都很有意义,再结合前人得到的结论,可以更完整地理解捕食-被捕食系统。

[1]BRAUER F,CASTILLO-CHAVEZ C. Mathematical Models in Population Biology and Epidemiology[M]. New York:Springer Verlag,2001:105-112.

[2]FRODA S,NKURUNZIZA S. Prediction of Predator-Prey Populations Modelled Byperturbed ODEs[J]. Journal of Mathematical Biology,2007,54(3) :407-451.

[3]MURRAY J D. Mathematical Biology[M]. 2nd ed. Berlin:Springer Verlag,1993:85-112.

[4]ROSENZWEIG M L,MACARTHUR R H. Graphical Representation and Stability Conditions of Predator-Prey Interactions[J]. The American Naturalist,1963,97(895) :209-223.

[5]HOSSIAN ERJAEE G,DANNAN F M. Stability Analysis of Periodic Solutions to the Nonstandard Discretized Model of the Lotka-Volterra Predator-Prey System[J]. International Journal of Bifurcation and Chaos,2004,14(12):4301-4308.

[6]FREEDMAN H I. Deterministic Mathematical Models in Population Ecology[J]. Biometric,1980,22(7):219-236.

[7]HUANG Y,JIANG X M,ZOU X F. Dynamics in Numerics:On a Discrete Predator-Prey Model[J]. Differential Equations and Dynamical Systems,2008,16 (1/2) :163-182.

[8]LIU B,ZHANG Y J,CHEN L S. Dynamic Complexities in a Lotka-Volterra Predator-Prey Model Concerning Impulsive Control Strategy[J]. International Journal of Bifurcation and Chaos,2005,15(2) :517-531.

[9]TANG S Y,CHEN L S. The Periodic Predator-Prey Lotka-Volterra Model with Impulsive Effect[J]. Journal of Mechanics in Medicine and Biology,2002,2(3/4) :267-296.

[10]WANG W D,LU Z Y. Global Stability of Discrete Models of Lotka-Volterra Type[J]. Nonlinear Analysis Theory Methods and Applications,1999,35(8) :1019-1030.

[11]JING Z J,Chang Y,Guo B L. Bifurcation and Chaos in Discrete FitzHugh-Nagumo System[J]. Chaos, Solitons and Fractals,2004,21(3) :701-720.

[12]JING Z J,YANG J P. Bifurcation and Chaos in Discrete-Time Predator-Prey System[J]. Chaos, Solitons and Fractals,2006,27(1) :259-277.

[13]JING Z J,JIA Z Y,WANG R Q. Chaos Behavior in the Discrete BVP Oscillator[J]. Bifurcation and Chaos,2002,12(3) :619-627.

[14]LIU X L,XIAO D M. Complex Dynamic Behaviors of a Discrete-Time Predator-Prey System[J]. Chaos, Solitons and Fractals,2007,32(1) :80-94.

[15]MAROTTO F R. Snap-Back Repellers Imply Chaos in Rn [J]. Journal of Mathematical Analysis and Applications,1978,63(1) :199-223.

[16]MAROTTO F R. On Redefining a Snap-Back Repeller[J]. Chaos, Solitons and Fractals,2005,25(1) :25-28.

[17]CARTWRIGHT J H E. Nonlinear Stiffness, Lyapunov Exponents, and Attractor Dimension[J]. Physics Letters A,2000,264(4) :298-302.

[18]KAPLAN J L,YORKE J A. A Regime Observed in a Fluid Flow Model of Lorenz[J]. Communications in Mathematical Physics,1979,67(2) :93-108.

(责任编辑:邓光辉)

Marotto Chaos in a Discrete Lotka-Volterra Predator-Prey System

CHEN Xianwei1, SHEN Jing2
(1. School of Mathematics and Computational Science,Hunan University of Science and Technology,Xiangtan Hunan 411201,China;2. School of Finance and Economics,Hunan University of Technology,Zhuzhou Hunan 412007,China)

Marotto chaos in a discrete Lotka-Volterra predator-prey system has been investigated in this paper. A theoretical analysis has been made of the conditions under which Marotto chaos exists with numerical simulations conducted on the bifurcation diagrams, maximum Lyapunov exponents (ML), fractal dimensions (FD), and phase portraits, thus verifying the validity of the theoretical analysis, and displaying the complex dynamical behaviors of this system as well. Combined with the existing conclusions, a more complete understanding of the dynamical behaviors of this system will be obtained for subsequent researchers.

predator-prey system;Marotto chaos;maximum Lyapunov exponents (ML);fractal dimensions (FD)

O415.5

A

1673-9833(2016)05-0087-05

10.3969/j.issn.1673-9833.2016.05.017

2016-07-15

湖南省教育厅高校科研基金资助项目(15C0537)

陈先伟(1978-),男,湖南浏阳人,湖南科技大学副教授,主要研究方向为微分方程动力系统的分支与混沌,E-mail :chenxianwei11@aliyun.com

申 靖(1982-),女,湖南怀化人,湖南工业大学讲师,主要研究方向为经济数学,Email:shenjing41@aliyun.com

猜你喜欢
不动点捕食者分形
Riech型Edelstein不动点定理
非局部扩散Holling-Tanner捕食者-食饵系统的临界与非临界行波解分析
天生的杀手:鲨鱼
感受分形
一类抽象二元非线性算子的不动点的存在性与唯一性
亚纯函数差分的不动点
活用“不动点”解决几类数学问题
分形之美
分形——2018芳草地艺术节
具有Allee效应随机追捕模型的灭绝性