纳米CeO2催化剂对柴油机碳烟颗粒和NO降低效果

2017-02-17 02:58刘军恒
农业工程学报 2017年2期
关键词:催化活性转化率表面积

黄 河,孙 平,刘军恒,叶 松



纳米CeO2催化剂对柴油机碳烟颗粒和NO降低效果

黄 河,孙 平,刘军恒※,叶 松

(江苏大学汽车与交通工程学院,镇江 212013)

为采取后处理技术同时控制柴油机颗粒(PM)和一氧化氮(NO)排放,该研究采用沉淀法制备了3组纳米二氧化铈(CeO2)催化剂,通过X射线衍射(XRD)法、BET法测比表面积与孔径、氢气程序升温还原法(H2-TPR)对其性能进行表征,并利用碳烟起燃温度和峰值温度以及NO向N2的转化率分别对催化剂进行活性评价。试验结果表明:3组制备的CeO2催化剂平均粒径依次为7、12和20 nm,明显小于商业级CeO2;自制CeO2相较于商业级CeO2具有较大的比表面积,且比表面积越大催化活性越高;自制的CeO2有3个较明显的H2还原峰,依次对应表面吸附氧、表面晶格氧以及体相晶格氧;CeO2对碳烟颗粒催化氧化的效率由高到低依次为20、12和7 nm,这3组CeO2催化剂较未添加催化剂时起燃温度依次降低了124,109,93 ℃,峰值温度依次降低了185,104,102 ℃;CeO2对NO转化率最高可以达到70%,且温度窗口比较宽。研究结果对CeO2在排放后处理领域的应用具有指导意义。

柴油机;催化剂;排放控制;颗粒物;氮氧化物

0 引 言

柴油机由于具备优良的经济性、动力性和耐久性而得到了普遍的应用。然而,由于柴油机以高温扩散燃烧为主并存在局部过浓区,因此形成了较多的颗粒物(PM)与氮氧化物(NOx),对气候、人体健康及生态环境造成长期的影响[1]。PM主要由碳烟(soot)、可溶性有机物(soluable organic fraction,SOF)及一些硫酸盐和金属物质等组成,且90%多的颗粒物粒径在1m以下[2];NOx主要组成是一氧化氮(NO)与二氧化氮(NO2),其中NO约占90%[3]。柴油机的soot和NOx排放之间存在着此长彼消的Trade-off关系,仅仅依靠机内净化技术而同时控制它们的排放是非常困难的[4]。因此,发展新的柴油机排放控制技术用以有效降低这2种排放物已成为国内外发动机研究者关注的课题。被动再生方法则是采用化学催化技术来减少PM氧化的活化能,减小PM的着火温度,使PM可以通过柴油机排气温度的自身能量而燃烧掉,达到微粒捕集器(diesel particulate filter,DPF)再生的目的[5-8];此外,通过在DPF内涂敷恰当的催化剂能够还原转化尾气中的NOx,最终实现同时减小柴油机NOx和PM排放的目标,而高活性催化剂的选择是被动再生技术的难点。

稀土基催化剂因其具有丰富的电子能级结构,表现出独特的化学物理性质,在现有稀土氧化物中,二氧化铈因其价格低廉、晶体结构独特和Ce3+↔Ce4+可逆转换在催化领域备受关注[9-17],它对碳烟进行氧化催化的同时能将废气中的碳氢化合物(HCS)、CO和NOx转变成H2O、CO2和N2[18-19]。CeO2作为储氧/释氧材料的核心,当尾气中含氧量高时CeO2能够快速把氧储存起来,当含氧量低时能够及时释放氧,具有“氧缓冲器”的功能,这对催化剂活性的提高以及寿命的延长至关重要[20-23]。

CeO2应用在柴油机催化方面是近年的研究热点。Ulric等[24]研究表明铈基燃油添加剂在发动机缸内燃烧后对环境的二次污染影响可以忽略。Teraoka等[25]和Shangguan等[26]运用程序升温反应技术以及模拟柴油机尾气组分的方法,探讨了反应器中的CeO2催化剂同干碳烟紧密相接触时温度变化造成的混合物反应过程,并考察了对PM降低的能力。Daturi等[27]利用H2将CeO2表面深度还原,使高浓度表面氧空穴能够在没有还原剂的条件下降解NOx,并通过红外(IR)和质谱(MS)分析证实,降解NOx的活性与CeO2材料表面的氧空穴浓度及交换氧数量密切相关。

以往研究在CeO2对soot催化或者对NOx转化单方面进行了有益的探索,但是针对CeO2同时控制柴油机PM和NOx的排放的理论与实验研究报道较少。本文主要研究纳米CeO2催化同时降低soot和NO。首先制备了3组不同微观结构的CeO2,并通过表征手段分析了CeO2的微观结构;其次以碳烟氧化特性以及NO转换率对3组纳米CeO2催化剂的活性进行了评价,研究其微观结构对催化活性的影响。

1 试验部分

1.1 催化剂制备

本文采用沉淀法制备纳米CeO2催化剂,沉淀法不仅可以使原料细化和均匀混合,且具有工艺简单、煅烧温度低和时间短、产品性能良好等优点。沉淀法制备纳米尺寸CeO2:将原料Ce(NO3)3·6H2O配成一定浓度的盐溶液,把氨水作为沉淀剂,运用正反向沉淀的方法制备出不同微观结构的CeO2;在配制溶液中添加表面活性剂无水乙醇以减弱水分子间的表面张力,从而阻止团聚现象。沉淀过程中,采用超声波震荡分散沉淀的颗粒,同时采用恒温水浴控制反应过程中的温度。将样品置入110 ℃的鼓风式干燥箱中过夜干燥,然后放进马弗炉里并以10 ℃/min进行升温,在450 ℃下焙烧4 h,将制成的样品分别用陶瓷坩埚粗研磨和玛瑙坩埚细研磨后收集待用。

1.2 催化剂表征

在德国Bruker AXS公司D8-advance型X射线衍射仪上开展XRD分析,辐射源使用Cu K(=0.154 18 nm),工作电流为40 mA,电压为40 kV,小角衍射的扫描范围2=0.8°~8°,扫描步幅为0.002°,广角衍射的扫描范围为2=10°~80°,步长为0.02°;样品的N2吸附/脱附曲线在Micromeritics Instrument公司的ASAP 2460型孔径分析仪上进行测定,测定前把样品在真空条件180 ℃下预先脱气不少于6 h;程序升温还原(H2-TPR)测试在Micromeritics Autochem II 1920型化学吸附仪上进行,用氩气预处理,10 ℃/min升到300 ℃保持30 min再降到40 ℃。通氢氩混合气基线稳定,开始10°每分钟升到820 ℃并记录信号。

1.3 催化剂活性测试

进行催化剂活性评价的主要指标为:碳烟的起燃温度T、峰值温度T以及NO向N2的转化率(NO)。其中T是反应完成后失去的质量达到总质量5%时对应的温度,T是最大失重速率对应的温度,认定TT越低,并且NO越高,则催化活性越高。本文采用离线方式分别研究CeO2对柴油机碳烟颗粒和NO气体的降低效果,由于碳烟和NO均与柴油机尾气中一致,因而可以同时降低柴油机的碳烟和NO排放。

试验所用发动机是1台四缸增压中冷电子控制高压共轨柴油机,它的主要技术参数如表1所示。颗粒样品通过AVL公司的SPC472颗粒分析仪采集,按照ESC13工况标准循环及法规对应的权重分配收集颗粒物。采用瑞士METTLER公司的TGA/DSC1型热重分析仪,内置高精度的微克电子天平及温度传感器。热重试验选择质量分数为12%的氧氛围,较为接近柴油排气中氧含量,气体流速为100 mL/min,以高纯度N2作为保护气,升温速率为15 ℃/min,程序温度区间为40~800 ℃,样品重量3 mg。图1为催化剂活性评价工艺示意图。

表1 YZ4DB1-40型柴油机主要技术参数

将CeO2置于固定床反应器中,反应气体用5%NO+10%O2+85%He模拟柴油机排放气,同时进行程序升温,由模拟尾气中NO浓度([NO]inlet)与出口处N2浓度([N2])计算出各反应温度下NO转换率,并以此数据作为对催化剂活性而进行衡量的一个重要指标,具体计算公式如式(1)。

NO=2[N2]/100[NO]inlet×100% (1)

2 结果与讨论

2.1 催化剂的性能表征

2.1.1 XRD分析结果

CeO2催化剂的XRD图谱如图2所示。图2为分析纯CeO2的特征衍射峰,其谱峰位置为2=28.5°、33.1°、47.5°、56.3°和59.0°。3组催化剂样品均呈现出了立方萤石状结构特征衍射峰,出峰位置与标准卡(JCPDS 34-0394)相同,分别对应CeO2纳米材料立方萤石结构的(111)、(200)、(220)、(311)和(222)晶面,这说明3组CeO2晶体结构均无变化,依然为立方萤石状结构。通过谢乐公式(Scherrer)[28-29]与CeO2(111)的衍射峰半峰宽来计算可得出图中相应CeO2样品的平均粒径依次是7、12和20 nm,明显小于国药购买的商业级CeO2催化剂粒度(100 nm),标记为Comm-CeO2。

2.1.2 BET分析结果

表2是3组不同CeO2样品的孔容积、比表面积与孔径数据。样品的比表面积采用BET(Brunauer- Emmett-Teller)法计算,孔容和孔径由等温线吸附分支采用BJH(Barrett-Joyner-Halenda)模型计算所得,其中孔容用相对压力p/p0= 0.99处的吸附量计算得到。由表中数据可知,自制的CeO2相较于商业级CeO2具有较大的比表面积,由于本研究催化剂颗粒样品仅3种,没有形成明确的数值关系,仅表现出了一种趋势。试验用催化剂粒径比较小,比表面积明显较商用的大,比表面积越大表明单位质量CeO2的表面具有更多活性位,且反应物与催化剂具有更多的接触机会,这对反应物分子的吸附与活化是有利的。

表2 CeO2样品的表面积、孔容、孔径

2.1.3 H2-TPR分析结果

图3为4种CeO2的H2-TPR谱图。由图3可知,沉淀法制备的CeO2有3个较明显的H2还原峰,20 nm的还原峰比较明显,分别对应365、480、726 ℃,其中,365 ℃时的低温还原峰是CeO2的表面吸附氧还原,480 ℃时的中温还原峰为CeO2的表面晶格氧还原,726 ℃的高温还原峰为CeO2的体相晶格氧还原,而Comm-CeO2只有比较微弱的表面晶格氧与体相晶格氧还原峰。CeO2的氧物种,尤其是表面晶格氧与其催化活性直接相关,表面氧物种还原能力越强,催化活性越高。从图中还能看出H2-TPR的结果和BET的结果有较好的对应性。

2.2 活性测试

2.2.1 热重分析

图4是柴油机颗粒在排气模拟气氛中的热重曲线(thermogravimetry,TG)和微商热重曲线(derivative thermogravimetry,DTG)。由图4可见,未添加CeO2颗粒的TG曲线中两段较为显著失重对应DTG曲线中两个峰值。TG曲线在低温段23% SOF组分失重,高温段74%干碳烟氧化失重,氧化终了阶段还剩余3%的硫酸盐与金属。

为了探究CeO2不同微观结构参数对颗粒的催化氧化性能影响规律,将相同质量的3组CeO2与等量柴油机颗粒混合进行热重试验,每组颗粒失重量均以百分数计量,得到3组不同的TG与DTG曲线如图4中虚线所示。由DTG曲线可以看出,颗粒在CeO2催化状态下出现了3个峰值失重率,可以归结为SOF中低沸点HC组分挥发、高沸点HC氧化及干碳烟氧化燃烧。颗粒添加CeO2与纯颗粒DTG曲线相比,峰值温度降低说明CeO2加入促进了SOF中部分组分氧化燃烧及干碳烟氧化燃烧。

对于干碳烟的催化氧化,随着3组CeO2的加入,TT都呈现出不同程度的降低。相应的DTG曲线向低温段迁移,且添加20 nm CeO2的TT最低,这与上述比表面积及H2-TPR分析结果一致。3组CeO2对碳烟颗粒催化氧化的效率依次为:20 nm>12 nm>7 nm,T依次降低了124、109、93 ℃,T依次降低了185、104、102 ℃。

碳烟通常是柴油分子在高温缺氧环境下热分解而形成的。由于CeO2具有优良的储氧/释氧性能,即能在含氧量低时及时释放氧从而促进碳烟的进一步氧化。缸内燃烧生成的碳烟部分可以通过CeO2催化反应氧化成CO2,其燃烧化学方程见式(2)和(3)[28]。

4CeO2↔2Ce2O3+O2(2)

C(soot)+O2→CO2(3)

2.2.2 NO转化率

图5为CeO2催化剂对NO的转化率曲线。由图可见,自制的3组CeO2催化剂对NO的转化率明显高于Comm-CeO2,NO转化率随着温度升高均呈现出先增加后减小的趋势,其中20 nm CeO2对NO气体的转化率在350 ℃时达到的最大值为70%。3组CeO2催化剂在400~520 ℃间的转化率均大于68%,表明CeO2温度窗口是较宽的。

Ce2O3在初始燃烧增强后能够保持高催化活性并能够被再次氧化成CeO2,以此来降低NOx排放。NO被降低并转化成N2的具体化学方程如式(4)所示[30]。因此,添加CeO2催化剂可以在一定程度上抑制NOx排放,与此同时CeO2可以进行再生。

2Ce2O3+NO→4CeO2+N2(4)

3 结 论

以制备的3组不同微观结构的纳米CeO2催化剂为研究对象,通过一系列表征手段详细研究了纳米CeO2的微观结构对其催化活性的影响,并以soot的起燃温度、峰值温度以及NO转化率作为评价指标。研究结果表明:

1)本文采用的沉淀法制备的纳米CeO2催化剂粒径分别为7、12、20 nm,远小于商业级CeO2,且比商业级CeO2具有较大的比表面积,并能很好改善碳烟颗粒氧化特性并能有效转换NO;

2)制备的3组CeO2对soot颗粒催化氧化的效果依次为:20 nm >12 nm >7 nm,且这3组CeO2催化剂较未添加催化剂时起燃温度依次降低了124、109、93 ℃,峰值温度依次降低了185、104、102 ℃;

3)在制备的3组CeO2粒径都比较小的情况下粒径对催化活性的影响微乎其微,催化活性跟比表面积有很大关系,比表面积越大的催化剂催化活性越高;

4)3组CeO2具有对NO较高的转化率,其中20 nm CeO2对NO气体的转化率在350 ℃时达到的最大值为70%;3组CeO2催化剂在400~520 ℃间的转化率均大于68%,具有较宽的温度窗口。

[1] Chatterjee S, Conway R, Viswanathan S, et al. NOxand PM control from heavy duty diesel engines using a combination of low pressure EGR and continuously regenerating diesel particulate filter[J]. Sae World Congress, 2003, 17(3): 73-86.

[2] Stanmore B R, Brilhac J F, Gilot P. The oxidation of soot: A review of experiments, mechanisms and models[J]. Carbon, 39(15): 2247-2268.

[3] Heywood, John B.Internal combustion engine fundamentals[M]. New York: McGraw-Hill, Inc, 1988.

[4] Mescia D, Caroca J C, Russo N, et al. Towards a single brick solution for the abatement of NOxand soot from diesel engine exhausts[J]. Catalysis Today, 2008, 137(2/3/4): 300-305.

[5] Issa M, Petit C, Brillard A, et al. Oxidation of carbon by CeO2: Effect of the contact between carbon and catalyst particles[J]. Fuel, 2008, 87(6): 740-750.

[6] Fino D, Specchia V. Open issues in oxidative catalysis for diesel particulate abatement[J]. Powder Technology, 2008, 180(1/2): 64-73.

[7] 杨曦,张昭良,王仲鹏,等. 柴油机燃料添加型催化剂研究进展[J]. 环境科学与技术,2010,33(7):68-70.

Yang Xi, Zhang Zhaoliang, Wang Zhongpeng, et al. Progress in fuel borne catalysts for the purification of diesel exhaust[J]. Environmental Science & Technology, 2010, 33(7): 68-70. (in Chinese with English abstract)

[8] 刘少康,孙平,刘军恒,等. 铈基燃油催化剂改善柴油机颗粒物捕集器再生效果[J]. 农业工程学报,2016,32(1):112-117.

Liu Shaokang, Sun Ping, Liu Junheng, et al. Ce-based fuel borne catalyst enhancing regenerative effect of diesel particulate filter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 112-117. (in Chinese with English abstract)

[9] Kaspar J, Fomasiero P, Graziani M. Use of CeO2-based oxides in the three-way catalysis[J]. Catalysis Today, 1999, 50(2): 285-298.

[10] Li G R, Qu D L, Wang Z L, et al. Ceria-terbia solid solution nanobelts with high catalytic activities for CO oxidation[J] Chemistry Common, 2009, 48(48): 7557-7559.

[11] Sugiura M, Ozawa M, Suda A, et al. Development of innovative three-way catalysts containing ceria-zirconia solid solutions with high oxygen storage/release capacity[J]. Bulletin of the Chemical Society of Japan, 2005, 78(5): 752-767.

[12] Shi Z M, Liu Y, Yang W Y, et al. Evaluation of cordierite-ceria composite ceramic with oxygen storage capacity[J]. Journal of the European Ceramic Society, 2002, 22(8): 1251-1256.

[13] Murota T, Hasegawa T, Aozasa S, et al. Production method of cerium oxide with high storage capacity of oxygen and its mechanism[J]. Journal of Alloys and Compounds, 1993, 193(1/2): 298-299.

[14] Aneggi E, Boaro M, Litenburg C, et al. Insights into the redox properties of ceria-based oxides and their implications in catalysis[J]. Journal of Alloys and Compounds, 2006, 37(18): 1096-1102.

[15] Dutta G, Waghmare U V, Baidya T, et al. Origin of enhanced reducibility/oxygen storage capacity of Ce1-xTixO2compared to CeO2or TiO2[J]. American Chemical Society, 2006, 18(143): 3249-3256.

[16] Koranne M, Egami T, Tyagi S, et al. Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia[J]. Journal of Physical Chemistry B, 2000, 104(47): 11110-11116.

[17] Mai H X, Sun L D, Zhang Y W, et al. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods and nanocubes[J]. Journal of Physical Chemistry B, 2005, 109(51): 24380-24385.

[18] 邬齐敏,孙平,梅德清,等. 纳米燃油添加剂CeO2提高柴油燃烧效率减少排放[J]. 农业工程学报,2013,29(9):64-69.

Wu Qimin, Sun Ping, Mei Deqing, et al. Nano-fuel additive CeO2on promoting efficient combustion and reducing emissions of diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(9): 64-69. (in Chinese with English abstract)

[19] 坐青松,鄂加强,龚金科,等. 基于铈-锰基催化剂的微粒捕集器微粒的燃烧特性[J]. 中南大学学报:自然科学版,2013,44(8):3527-3532.

Zuo Qingsong, E Jiaqiang, Gong Jinke, et al. Character- istics of particle combustion based on MnOx-CeO2cataly sts for diesel particulate filter[J]. Journal of Central South University: Science and Technology, 2013, 44(8): 3527-3532. (in Chinese with English abstract)

[20] Chen Z H, Zhang W, Chen G S, et al. Influence of exhaust temperature and catalytic substrate properties on diesel exhaust[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 30(9): 42-49.

[21] 王海丰. 环境催化中稀土及过渡金属催化材料作用机制的第一性原理研究[D].上海:华东理工大学,2011.

Wang Haifeng. The First Principles Study on the Mechanism of Rare Earth and Transition Metal Catalytic Materials in Environmental Catalysis[D]. Shanghai: East China University of Science and Technology, 2011. (in Chinese with English abstract)

[22] 龚金科,龙罡,蔡皓,等. 基于铈基添加剂的颗粒捕集器催化再生研究[J]. 内燃机学报,2011(6):515-519.

Gong Jinke, Long Gang, Cai Hao, et al. Study on diesel particulate filter catalytic regenerating with ceria-based additive[J]. Transactions of CSISE, 2011(6): 515-519. (in Chinese with English abstract)

[23] Trovarelli A. Catakytic properties of ceria and CeO2-containing

materials[J]. Catalysis Reviews, 1996, 38(4): 439-520.

[24] Ulrich A, Wichser A. Analysis of additive metals in fuel and emission aerosols of diesel vehicles with and without particle traps[J]. Anal & Bioanal Chem, 2003, 377(1): 71-81.

[25] Teraoka Y, Nakano K, Kagawa S, et al. Simultaneous removal of nitrogen oxides and diesel soot particulates catalyzed by perovskite-type oxides[J]. Applied Catalysis B: Environmental, 1995, 5(3): 181-185.

[26] Shangguan W F, Teraoka Y, Kagawa S. Simultaneous catalytic removal of NOxand diesel soot particulates over ternary AB2O4spinel-type oxides[J]. Appl. Catal. B Environ, 1996, 8(2): 217-227.

[27] Daturi M, Bion N, Saussey J, et al. Evidence of a lacunar mechanism for deNOx activity in ceria-based catalysts[J]. Physical Chemistry Chemical Physics, 2001, 3(3): 252-255.

[28] Liao S Y, Yao R, Chen X Y, et al. Structure refinement and up-conversion of Ho3+/Er3+Co-doped 12CaO·7Al2O3[J]. Materials &Design,2016, 108(5): 93-105.

[29] Zyoud A, Campet G, Park D H, et al. Enhanced PEC characteristics for CdSe polycrystalline film electrodes prepared by combined electrochemical/chemical bath depositions[J]. J Electroanal Chem, 2016, 774(1): 7-13.

[30] Bozek F, Huzlik J, Mares J, et al. Emissions of selected pollutants while appling of specific additive enviroxtm TM[J]. Waeas Transactions on Environment & Developme, 2011, 7(8): 233-243.

Reducing soot and NO emission from diesel engine exhaust catalyzed by nano-CeO2

Huang He, Sun Ping, Liu Junheng※, Ye Song

(,212013,)

Nitrogen oxide (NOx) and particulate matter (PM) are the main emissions for diesel engines. Because of their contradictory relationship of generation mechanisms, only using the internal purification technology is very difficult to meet the increasingly stringent diesel emissions regulations. Development and application of after-treatment technology with low cost, high efficiency and high adaptability will be more promising, which should be utilized to control both NOxand PM emissions. Rare-earth-based catalysts have rich electronic structure, and show the unique physical and chemical properties. In existing rare earth oxides, cerium oxide has been paid much attention in the field of catalysis because of its low price, unique crystal structure and reversible transformation of trivalent ion (Ce3+) and tetravalent ion(Ce4+). In the recent years, the application of cerium dioxide (CeO2)in after-treatment technology for diesel engine is a hot research topic. In this study, 3 groups of nano-CeO2were prepared using the coprecipitation method in order to reduce the PM and NOxemissions from diesel engine through the after-treatment technology. The samples were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and hydrogen temperature programmed reduction (H2-TPR). What was more, the activity of catalysts was evaluated by ignition temperature and peak temperature of soot combustion as well as conversion ratio from nitric oxide (NO) to nitrogen (N2). The experimental results showed that CeO2crystal structure had not been changed, and continued to be the cubic fluorite structure. The average particle diameters of the prepared CeO2were 7, 12 and 20 nm, respectively, which were much smaller than that of commercial CeO2. Compared with commercial CeO2, the prepared CeO2had larger specific surface area, which indicated that there were more active sites on the surface of CeO2for the unit mass. Furthermore, there were more opportunities for the catalyst to be exposed to the reactants, which was beneficial for adsorption and activation of the reactant molecules. The prepared CeO2had 3 obvious H2reduction peaks, corresponding to the surface absorbed oxygen, surface lattice oxygen and bulk lattice oxygen, respectively. Oxygen species, especially the surface lattice oxygen, had direct relation with catalytic activity. The reduction property of surface oxygen species was stronger, and the catalytic activity was higher. The results of H2-TPR had correspondence with the results of BET. For the efficiency of catalytic oxidation, the order of nano-CeO2particle size from high to low was 20, 12 and 7 nm, successively. The ignition temperatures of soot combustion were reduced by 124, 109 and 93 ℃, and the peak temperatures were reduced by 185, 104 and 102 ℃ respectively with the 3 groups of CeO2catalysts. With the increase of temperature, the conversion ratio of NO firstly increased and then decreased. The conversion ratio of NO with 20 nm CeO2reached the highest value of 70% at 350 ℃. The conversion ratio of the 3 groups of CeO2catalysts was higher than 68% at 400-520 ℃, which indicated that CeO2has a wide temperature window. The experimental results can provide a reference for optimum design and application of CeO2catalyst in the field of diesel exhaust after-treatment system.

diesel engine; catalysts; emission control; PM; NOx

10.11975/j.issn.1002-6819.2017.02.008

TK421+.5

A

1002-6819(2017)-02-0056-05

2016-05-19

2016-11-21

江苏省高校自然科学研究重大项目合同(14KJA470001);内燃机燃烧学国家重点实验室开放基金资助项目(K2016-05);江苏省普通高校研究生科研创新计划项目(KYLX_1038);江苏省自然科学基金(BK20160538)。

黄河,博士生,主要从事内燃机代用燃料及排放控制。镇江 江苏大学汽车与交通工程学院,212013。Email:394807515@qq.com。

刘军恒,博士,讲师,主要从事发动机排放控制。镇江 江苏大学汽车与交通工程学院,212013。Email:liujunheng365@163.com。

黄 河,孙 平,刘军恒,叶 松. 纳米CeO2催化剂对柴油机碳烟颗粒和NO降低效果[J]. 农业工程学报,2017,33(2):56-60. doi:10.11975/j.issn.1002-6819.2017.02.008 http://www.tcsae.org

Huang He, Sun Ping, Liu Junheng, Ye Song. Reducing soot and NO emission from diesel engine exhaust catalyzed by nano-CeO2[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 56-60. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.02.008 http://www.tcsae.org

猜你喜欢
催化活性转化率表面积
我国全产业领域平均国际标准转化率已达75%
巧求表面积
Fe3O4@SiO2@TiO2@Ag粒子的表面增强拉曼光谱监测有机染料分子的光催化降解过程
天然锰矿低温NH3-SCR烟气脱硝催化活性研究
求正方体的表面积
基于对铂纳米粒子过氧化物模拟酶活性的抑制检测碘离子
银耳状FeNC复合催化剂的制备及催化氧还原性能研究
表面积是多少
曲料配比与米渣生酱油蛋白质转化率的相关性
表面积是多少