淀粉分子量的测定及其与物化性质关系的研究进展

2018-01-03 23:04黄峻榕王倩杨麒方晨璐刘凯陆鹏学
食品研究与开发 2018年1期
关键词:物化分子量淀粉

黄峻榕,王倩,杨麒,方晨璐,刘凯,陆鹏学

(1.陕西科技大学食品与生物工程学院,陕西西安710021;2.西安中粮工程研究设计院有限公司,陕西西安710082;3.陕西金中昌信农业科技有限公司,陕西榆林719000)

淀粉分子量的测定及其与物化性质关系的研究进展

黄峻榕1,王倩1,杨麒1,方晨璐1,刘凯2,陆鹏学3

(1.陕西科技大学食品与生物工程学院,陕西西安710021;2.西安中粮工程研究设计院有限公司,陕西西安710082;3.陕西金中昌信农业科技有限公司,陕西榆林719000)

综述淀粉分子量的测定方法,包括凝胶渗透色谱、非对称流场流分离和黏度法。对不同品种原淀粉的分子量分布,改变淀粉分子量的各类改性方法,以及分子量与物化性质的关系进行总结,并对今后淀粉分子量的研究方向进行展望。

淀粉分子量;凝胶渗透色谱;非对称流场流分离;黏度法;物化性质

淀粉不仅是人类食物中最重要的能量物质来源,也是一种常用工业原料。淀粉是由两种结构不同的高聚物组成的混合物,其中,直链淀粉的分子量在105g/mol~106g/mol之间,支链淀粉的分子量大约为108g/mol[1]。两种淀粉分子的分子量都是不均一的,即它们是具有多分散性的物质,因此实际测得的淀粉分子量是统计平均值。

淀粉分子量有4种表示方法:数均(Mn)、重均(Mw)、Z均(Mz)和黏均相对分子量(Mη)。Mn的测定方法有端基分析法、沸点升高和冰点降低法、蒸汽压下降法和膜渗透法等;Mw和Mz的测定方法有光散射技术和超速离心技术等;Mη的测定方法为黏度法。淀粉分子量的多分散性可用多分散系数d(Mw/Mn或Mz/Mw)来表征,d>1,d越大分布越宽。分子量是研究淀粉分子结构的重要基础参数之一,直接影响淀粉的物化性质和用途。

1 不同测定方法及结果

1.1 淀粉分子量的测定方法

目前常用的淀粉分子的分离方法是凝胶渗透色谱、非对称流场流分离和黏度法,三者的比较见表1。

表1 淀粉分子量测定方法的比较[1-4]Table 1 Comparison of determination methods of starch molecular weight

凝胶渗透色谱法(Gel permeation chromatography,GPC)又称体积排阻色谱法(Size exclusion chromatograph,SEC),是基于分子的尺寸大小(或流体力学体积)对淀粉分子进行分离。非对称流场流分离法(Asymmetrical flow field flow fractionation,A4F)是根据作用于样品的外加场力与样品的扩散力相互作用,不同淀粉分子流速的差异对淀粉分子进行分离。当SEC与示差折光检测器(Refractive index detectors,RI)串联时,根据已知分子量标准品和待测样品的结果,可间接获得淀粉样品的分子量。当SEC或A4F与多角度激光光散射仪(Multi-angle laser light scattering,MALLS)串联时,可以直接测定淀粉的Mw、Mn、Mz及平均回转半径(Rz)等数据。黏度法即用黏度计测量稀溶液的特征黏度值,再根据Mark-Houwink经验式(公式1)确定分子量,该方法也需要已知分子量标准品。

式中:η为特征黏度值;Mη为黏均分子量;K为比例常数;α是与分子形状有关的经验参数。K和α值与温度、聚合物、溶剂性质有关,也和分子量大小有关。

无论采用哪种方法测定淀粉分子量,一个最重要的前提就是淀粉的完全溶解。90%二甲基亚砜(Dimethyl sulfoxide,DMSO)是目前最普遍使用和公认的溶剂。在DMSO中添加低分子量电解质(NaNO3或LiBr)可作为助溶剂改善淀粉的溶解效果。栾宏飞[5]研究了大米和玉米淀粉的有效溶解体系,结果表明,两种淀粉在50 mmol/L NaNO3/DMSO或50 mmol/L LiBr/DMSO两种配比的溶剂中溶解指数接近90%,NaNO3和LiBr对分散在DMSO中的淀粉都具有良好的增溶效果。Kapelko-Z˙eberska等[6]研究了马铃薯原淀粉和老化淀粉在两种溶剂(DMSO和0.5 mol/L NaOH)中溶解,并利用柠檬酸处理后淀粉分子量的情况,结果表明,所有在DMSO中溶解的淀粉都比在NaOH中溶解的淀粉显示较大的分子量;马铃薯原淀粉在两种溶剂中测定的 Mw分别是 1.66×106g/mol和 1.23×106g/mol。

淀粉的溶解过程需要加热,You等[7-8]是将普通和蜡质大米淀粉分散在氢氧化钠溶液中于50℃加热10min后,再加少量蒸馏水并用盐酸中和,最后置于微波炉中加热使之完全溶解。而Bello-Pérez等[3,9]是将不同淀粉分散在95%DMSO中持续搅拌4 d,再加入乙醇沉淀淀粉,通过离心并干燥后,配置成淀粉水溶液置于微波炉中加热使之完全溶解。

对于直链和支链淀粉分子的分离方法,Demiate等[10]、Ma等[11]和Du等[12]是将不同品种的豆类淀粉分散在90%DMSO中沸水浴加热搅拌1 h,再置于室温下搅拌24 h后,加入乙醇沉淀淀粉并离心,之后将淀粉颗粒重新溶解在沸水中加热搅拌1 h,过膜后用高效体积排阻色谱(High-performance size exclusion chromatograph,HPSEC)系统分离。而Tran等[13]采取的方法是将菠萝蜜种子淀粉乳于96℃水浴锅中加热搅拌1 h,过滤除去不溶成分后,用磷酸盐缓冲液调整溶液pH为6.3,121℃高压灭菌1 h,再于96℃下加热搅拌2 h以分散淀粉分子,之后加入正丁醇,通过离心获得直链淀粉正丁醇络合物,残留在上清液中的支链淀粉则通过加入乙醇沉淀再离心获得。

1.2 淀粉分子量的测定结果

表2是几种常见原淀粉分子量的测定结果。

不同品种豆类[10-12](巴西豆、黑眼豆、鹰嘴豆、绿豆、扁豆、小红豆、小利马豆、花芸豆、红芸豆、黑豆和菜豆)支链淀粉的Mw和Rz的测定结果表明,Mw值越大,对应的Rz值也越大,报道中溶解淀粉样品过程、所选择的流动相以及其他试验参数都基本相同,但出现结果的差异说明了Mw和Rz与淀粉品种有关。Bello-Pérez等[3]和You等[7-8]的测定结果也证实了上述的观点。然而Agama-Acevedo等[14]研究了4种香蕉淀粉的结构特性,结果却显示Mw最小的淀粉有较大的Rz值。这表明Mw和Rz值还受淀粉品种的基因型特征决定。

表2 不同淀粉分子量的测定结果Table 2 Determination of molecular weight of different starches

为使淀粉更适合生产应用的要求,常利用物理、化学和生物(或酶)方法处理淀粉。表3、表4和表5分别是改变淀粉分子量的化学、物理和生物改性方法。

酯化反应、乙酰化反应、酸处理和碱处理都会导致淀粉降解,且分子量随着取代度或作用时间的增加而减小。酸碱处理造成分子量的降低程度比酯化和乙酰化取代反应大,前者为98.5%~99.9%,后者为37.1%~62.7%。而对脱支糯米和脱支蜡质马铃薯淀粉进行酯化反应,结果分子量变大,这可能是因为脱支淀粉链在氢键与羟基、羟基与羧基之间发生交联,和/或淀粉疏水部分之间的疏水性相互作用。

表3 改变淀粉分子量的化学改性方法Table 3 Chemical modification methods for changing starch molecular weight

表4 改变淀粉分子量的物理改性方法Table 4 Physical modification methods for changing starch molecular weight

表5 改变淀粉分子量的生物改性方法Table 5 Biological modification methods for changing starch molecular weight

续表5 改变淀粉分子量的生物改性方法Continue table 5 Biological modification methods for changing starch molecular weight

淀粉经超声波、超高压、微波、脉冲电场、高速喷气、线性偏振可见光(一种电磁辐射方式)、湿热、退火和氧气辉光等离子体(利用气体电离产生的等离子体)处理后,分子量同样随着作用强度和作用时间的增加而降低,这是由于上述处理导致淀粉分子链的断裂。超声波和微波处理对分子量的降低程度最大(>91.4%),高速喷气和氧气辉光等离子体处理对分子量的降低程度在64.3%~88.9%之间,超高压、脉冲电场、线性偏振可见光、湿热和退火处理的降低程度最小(20%左右)。另外,氮气和氦气辉光等离子体处理却得到相反的结果,表明这些处理方法诱导淀粉分子间发生聚合和/或交联,导致分子量变大,且处理后造成分子量的增大程度为58.6%~70.2%。

酶作用会引起淀粉分子量减小,其中水解酶、脱支酶和普鲁兰酶对其降低作用最大,酶量和反应时间越大,分子量越小,变化程度>97.8%。糙米和小麦淀粉在预发芽和发芽过程中分子量的降低程度只有20%~36%左右,而大麦在发芽过程中(0~48 h)分子量逐渐增加,这表明发芽机制取决于谷物的植物来源。

2 淀粉分子量与物化性质的关系

目前,对于淀粉分子量与物化性质关系的研究已有较多报道。Zortéa-Guidolin等[53]研究表明巴西松子支链淀粉的Mw和Rz与糊化温度和崩解值呈显著负相关。Kowittaya等[54]的研究结果表明,大米支链淀粉的分子量与特征黏度值、糊化温度、谷值黏度、最终黏度、回生值和溶解度呈显著负相关,与峰值黏度、崩解值、膨胀能力和透光率呈正相关。而Park等[55]的研究表明大米支链淀粉的长链分子量与直链淀粉含量和峰值温度呈正相关,与峰值黏度呈负相关。以上报道中分子量与崩解值和峰值黏度的关系出现了不同的结果,可能与淀粉的品种有关。

对于凝胶质构和流变学特性,刘佳等[56]研究了小麦A、B型淀粉的凝胶质构特性与分子结构的关系,结果发现A型淀粉更易形成有序结构,使其凝胶硬度增强,B型淀粉更易形成网状结构,有利于凝胶的弹性及内聚性增强。Sikora等[57]和Krystyjan等[58]根据不同浓度和糊化程度,分别研究普通和蜡质马铃薯淀粉糊的流变学特性,得出普通马铃薯淀粉的分子量下降了近一半,且随着糊化温度升高颗粒的损伤程度增加,所有淀粉糊均属于非牛顿流体,经剪切变稀,流变性不稳定;但对于蜡质马铃薯淀粉,分子量的增加可能是由于已经开始糊化时小分子淀粉葡聚糖聚集造成的。糊化温度显著影响糊状物的流变学参数,使其具有触变性,抗触变性或混合触变性/抗触变性。

综上所述,分子量是研究淀粉分子结构的重要基础参数之一,它直接影响淀粉的糊化温度、特征黏度、玻璃化转变温度、凝胶质构特性和流变学特性等物化性质,影响着淀粉的深加工及用途。

3 结语

凝胶渗透色谱、多角度激光光散射仪和示差折光检测器串联的方法是目前测定淀粉分子量最广泛采用的方法,但由于测定过程中分析条件的不同,以及溶解、分离、检测和数据处理等方面仍存在一些问题和困境(如淀粉样品的溶解不完全,淀粉分子的降解或聚集,溶剂与分离和检测仪器的不完全匹配,非淀粉成分的去除不完全等)使测定结果的准确性和重现性不佳,进而Mw和Rz的结果也可能受到用于淀粉分散,溶解、分离和数据拟合模型方法的影响,并影响到分子量与物化性质相关性的研究。因此,精确测定淀粉分子质量的方法有待进一步研究与改进。

[1]RÜBSAM H,KROTTENTHALER M,GASTL M,et al.An overview of separation methods in starch analysis:The importance of size exclusion chromatography and field flow fractionation[J].Starch/Stärke,2012,64(9):683-695

[2]MALIK M I,PASCH H.Field-flow fractionation:New and exciting perspectives in polymer analysis[J].Progress in Polymer Science,2016,63(1):42-85

[3]HOYOS-LEYVA J D,BELLO-PÉREZ L A,ALVAREZ-RAMIREZ J,et al.Structural characterization of aroid starches by means of chromatographic techniques[J].Food Hydrocolloids,2017,69(1):97-102

[4]DOU H,ZHOU B,JANG H D,et al.Study on antidiabetic activity of wheat and barley starch using asymmetrical flow field-flow fractionation coupled with multiangle light scattering[J].Journal of Chromatography A,2014,1340(8):115-120

[5]栾宏飞.淀粉有效溶剂的选择及支链淀粉分支结构研究方法的优化[D].无锡:江南大学,2011:11-18

[6]KAPELKO-Z˙EBERSKA M,BUKSA K,SZUMNY A,et al.Analysis of molecular structure of starch citrate obtained by a well-stablished method[J].LWT-Food Science and Technology,2016,69(1):334-341

[7]YOU S Y,LIM S T,LEE J H,et al.Impact of molecular and crystalline structures on in vitro digestibility of waxy rice starches[J].Carbohydrate Polymers,2014,112(112C):729-735

[8]YOU S Y,OH S K,KIM H S,et al.Influence of molecular structure on physicochemical properties and digestibility of normal rice starches[J].InternationalJournalofBiologicalMacromolecules,2015,77(3):375-382

[9]BELLO-PÉREZ L A,RODRIGUEZ-AMBRIZ S L,LOZANO-GRANDE M A.Molecular characterization of starches by AF4-MALSRI:An alternative procedure[J].Journal of Cereal Science,2017,75(1):132-134

[10]DEMIATE I M,FIGUEROA A M,GUIDOLIN M E B Z,et al.Physicochemical characterization of starches from dry beans cultivated in Brazil[J].Food Hydrocolloids,2016,61(1):812-820

[11]MA M T,WANG Y J,WANG M X,et al.Physicochemical properties and in vitro digestibility of legume starches[J].Food Hydrocolloids,2017,63(1):249-255

[12]DU S K,JING H X,AI Y F,et al.Physicochemical properties and digestibility of common bean (Phaseolus vulgaris L.)starches[J].Carbohydrate Polymers,2014,108(1):200-205

[13]TRAN P L,NGUYEN D H D,DO V H,et al.Physicochemical properties of native and partially gelatinized high-amylose jackfruit(Artocarpus heterophyllus Lam.)seed starch[J].LWT-Food Science and Technology,2015,62(2):1091-1098

[14]AGAMA-ACEVEDO E,NUÑEZ-SANTIAGO M C,ALVAREZRAMIREZ J,et al.Physicochemical,digestibility and structural characteristics of starch isolated from banana cultivars[J].Carbohydrate Polymers,2015,124(1):17-24

[15]PASCOAL A M,DI-MEDEIRO M C B,BATISTA K A,et al.Extraction and chemical characterization of starch from S.lycocarpum fruits[J].Carbohydrate Polymers,2013,98(2):1304-1310

[16]ZHENG Y,HU L L,DING N,et al.Physicochemical and structural characteristics of the octenyl succinic ester of ginkgo starch[J].International Journal of Biological Macromolecules,2017,94(Pt A):566-570

[17]BELLO-FLORES C A,NUÑEZ-SANTIAGO M C,SAN MARTÍNGONZALEZ M F,et al.Preparation and characterization of octenylsuccinylated plantain starch[J].International Journal of Biological Macromolecules,2014,70(8):334-339

[18]KLAOCHANPONG N,PUNCHA-ARNON S,UTTAPAP D,et al.Octenyl succinylation of granular and debranched waxy starches and their application in low-fat salad dressing[J].Food Hydrocolloids,2017,66(1):296-306

[19]SUN S L,ZHANG G W,MA C Y.Preparation,physicochemical characterization and application of acetylated lotus rhizome starches[J].Carbohydrate Polymers,2016,135(2):10-17

[20]SUN B H,TIAN Y Q,WEI B X,et al.Effect of reaction solvents on the multi-scale structure of potato starch during acid treatment[J].International Journal of Biological Macromolecules,2017,97(1):67-75

[21]LIN J H,SINGH H,CHEN F B,et al.Changes in swelling and rheological properties of corn starches after acid-methanol degradation[J].Food Hydrocolloids,2015,45(1):361-368

[22]BORDENAVE N,JANASWAMY S,YAO Y.Influence of glucan structure on the swelling and leaching properties of starch microparticles[J].Carbohydrate Polymers,2014,103(1):234-243

[23]ISRAKARN K,NAKORNPANOM N N,HONGSPRABHAS P.Physicochemical properties of starches and proteins in alkali-treatedmungbeanandcassavastarch granules[J].Carbohydrate Polymers,2014,105(5):34-40

[24]JUNA S,HUBER A.Formation of nano-and micro-structures of various botanical sources of native starches investigated employing asymmetrical flow field-flow fractionation[J].Starch/Stärke,2013,65(1):1029-1037

[25]CHANG Y J,YAN X X,WANG Q,et al.High efficiency and low cost preparation of size controlled starch nanoparticles through ultrasonic treatment and precipitation[J].Food Chemistry,2017,227(1):369-375

[26]GUO Z B,ZENG S X,LU X,et al.Structural and physicochemical properties of lotus seed starch treated with ultra-high pressure[J].Food Chemistry,2015,186(1):223-230

[27]YANG Q Y,QI L,LUO Z G,et al.Effect of microwave irradiation on internal molecular structure and physical properties of waxy maize starch[J].Food Hydrocolloids,2017,69(1):473-482

[28]ZENG S X,WU X T,LIN S,et al.Structural characteristics and physicochemical properties of lotus seed resistant starch prepared by different methods[J].Food Chemistry,2015,186(1):213-222

[29]JUNA S,HAYDEN S,DAMM M,et al.Influence of temperature on the apparent molar masses and sizes of pregelatinized wx corn in aqueous media determined using asymmetrical flow field-flow fractionation[J].Starch/Stärke,2013,65(11/12):954-961

[30]JUNA S,HAYDEN S,DAMM M,et al.Microwave mediated preparation of nanoparticles from wx corn starch employing nanoprecipitation[J].Starch/Stärke,2014,66(3/4):316-325

[31]JUNA S,HAYDEN S,DAMM M,et al.Nanoprecipitation of native pea starches treated in alkaline media at various temperatures employing a dedicated microwave reactor[J].Starch/Stärke,2014,66(1/2):124-131

[32]ZENG F,GAO Q Y,HAN Z,et al.Structural properties and digestibility of pulsed electric field treated waxy rice starch[J].Food Chemistry,2016,194(1):1313-1319

[33]FU Z,LUO S J,BEMILLER J N,et al.Effect of high-speed jet on flow behavior,retrogradation,and molecular weight of rice starch[J].Carbohydrate Polymers,2015,133(1):61-66

[34]KHACHATRYAN G,KRZEMINSKA-FIEDOROWICZ L,NOWAK E,et al.Molecular structure and physicochemical properties of Hylon V and Hylon VII starches illuminated with linearly polarised visible light[J].LWT-Food Science and Technology,2014,58(1):256-262

[35]TAN X Y,LI X X,CHEN L,et al.Effect of heat-moisture treatment on multi-scale structures and physicochemical properties of breadfruit starch[J].Carbohydrate Polymers,2017,161(1):286-294

[36]BIAN L,CHUNG H J.Molecular structure and physicochemical properties of starch isolated from hydrothermally treated brown rice flour[J].Food Hydrocolloids,2016,60(1):345-352

[37]ZENG F,MA F,KONG F S,et al.Physicochemical properties and digestibility of hydrothermally treated waxy rice starch[J].Food Chemistry,2015,172(1):92-98

[38]ZHANG B J,XIONG S X,LI X X,et al.Effect of oxygen glow plasma on supramolecular and molecular structures of starch and related mechanism[J].Food Hydrocolloids,2014,37(2):69-76

[39]ZHANG B J,CHEN L,LI X X,et al.Understanding the multi-scale structure and functional properties of starch modulated by glowplasma:A structure-functionality relationship[J].Food Hydrocolloids,2015,50(1):228-236

[40]PINKAEW H,WANG Y J,NAIVIKUL O.Impact of pre-germination on amylopectin molecular structures,crystallinity,and thermal properties of pre-germinated brown rice starches[J].Journal of Cereal Science,2017,73(1):151-157

[41]YOU S Y,OH S G,HAN H M,et al.Impact of germination on the structures and in vitro digestibility of starch from waxy brown rice[J].International Journal of Biological Macromolecules,2016,82(4):863-870

[42 WU C S,ZHOU X,TIAN Y Q,et al.Hydrolytic mechanism of αmaltotriohydrolase on waxy maize starch and retrogradation properties of the hydrolysates[J].Food Hydrocolloids,2017,66(1):136-143

[43]JO A R,KIM H R,CHOI S J,et al.Preparation of slowly digestible sweet potato Daeyumi starch by dual enzyme modification[J].Carbohydrate Polymers,2016,143(1):164-171

[44]MIAO M,XIONG S S,YE F,et al.Development of maize starch with a slow digestion property using maltogenic α-amylase[J].Carbohydrate Polymers,2014,103(1):164-169

[45]MIAO M,XIONG S S,JIANG B,et al.Improved the slow digestion property of maize starch using partially β-amylolysis[J].Food Chemistry,2014,152(1):128-132

[46]MIAO M,LI R,HUANG C,et al.Impact of β-amylase degradation on properties of sugary maize soluble starch particles[J].Food Chemistry,2015,177(1):1-7

[47]MIAO M,LI R,HUANG C,et al.Structural modification and characterisation of a sugary maize soluble starch particle after double enzyme treatment[J].Carbohydrate Polymers,2015,122(1):101-107

[48]KITTISUBAN P,LEE B H,SUPHANTHARIKA M,et al.Slow glucose release property of enzyme-synthesized highly branched maltodextrins differs among starch sources[J].Carbohydrate Polymers,2014,107(1):182-191

[49]ZENG F,MA F,GAO Q Y,et al.Debranching and temperature-cycled crystallization of waxy rice starch and their digestibility[J].Carbohydrate Polymers,2014,113(113):91-96

[50]ZENG F,CHEN F Q,KONG F S,et al.Structure and digestibility of debranched and repeatedly crystallized waxy rice starch[J].Food Chemistry,2015,187(1):348-353

[51]LIU W,HONG Y,GU Z B,et al.In structure and in-vitro digestibility of waxy corn starch debranched by pullulanase[J].Food Hydrocolloids,2017,67(1):104-110

[52]SORNDECH W,SAGNELLI D,MEIER S,et al.Structure of branching enzyme-and amylomaltase modified starch produced from welldefined amylose to amylopectin substrates[J].Carbohydrate Polymers,2016,152(1):51-61

[53]ZORTÉA-GUIDOLIN M E B,DEMIATE I M,GODOY R C B,et al.Structural and functional characterization of starches from Brazilian pine seeds(Araucaria angustifolia)[J].Food Hydrocolloids,2017,63(1):19-26

[54]KOWITTAYA C,LUMDUBWONG N.Molecular weight,chain profile of rice amylopectin and starch pasting properties[J].Carbohydrate Polymers,2014,108(7):216-223

[55]PARK I,KIM S H,CHUNG I M,et al.Effect of amylopectin long chains on measured amylose content and their correlation with pasting properties[J].Starch/Stärke,2013,65(3/4):227-235

[56]刘佳,陈玲,李琳,等.小麦A B淀粉凝胶质构特性与分子结构的关系[J].高校化学工程学报,2011,25(6):1033-1038

[57]SIKORA M,ADAMCZYK G,KRYSTYJAN M,et al.Thixotropic properties of normal potato starch depending on the degree of the granules pasting[J].Carbohydrate Polymers,2015,121(1):254-264

[58]KRYSTYJAN M,SIKORA M,ADAMCZYK G,et al.Thixotropic properties of waxy potato starch depending on the degree of the granules pasting[J].Carbohydrate Polymers,2016,141(1):126-134

Research Progress on Determination of Molecular Weight and the Relationship with Physicochemical Properties of Starch

HUANG Jun-rong1,WANG Qian1,YANG Qi1,FANG Chen-lu1,LIU Kai2,LU Peng-xue3
(1.School of Food and Biological Engineering,Shaanxi University of Science and Technology,Xi'an 710021,Shaanxi,China;2.Xi'an COFCO Engineering Research and Design Institute Co.Ltd.,Xi'an 710082,Shaanxi,China;3.Shaanxi Jinzhong Changxin Agricultural Science and Technology Co.Ltd.,Yulin 719000,Shaanxi,China)

The determination methods of starch molecular weight,including gel permeation chromatography,asymmetrical flow field flow fractionation and viscosity methods were reviewed.The molecular weight distribution of different native starches,the modification methods of starch molecular weight,and the relationship between molecular weight and physicochemical properties were summarized.Future research directions on molecular weight of starch were prospected.

starchmolecularweight;gelpermeationchromatography;asymmetricalflowfieldflowfractionation;viscosity method;physicochemical property

黄峻榕,王倩,杨麒,等.淀粉分子量的测定及其与物化性质关系的研究进展[J].食品研究与开发,2018,39(1):182-188

HUANG Junrong,WANG Qian,YANG Qi,et al.Research Progress on Determination of Molecular Weight and the Relationship with Physicochemical Properties of Starch[J].Food Research and Development,2018,39(1):182-188

10.3969/j.issn.1005-6521.2018.01.036

国家自然科学基金项目(31371786);陕西省科技统筹创新工程计划项目(2016KTCL02-23)

黄峻榕(1971—),女(汉),教授,博士,研究方向:淀粉结构研究。

2017-10-16

猜你喜欢
物化分子量淀粉
从人工合成淀粉说开去
加入超高分子量聚合物的石墨烯纤维导电性优异
物化-生化工艺处理页岩气采出水的工程实践
MMT/淀粉-g-PAA的制备及其对铬(Ⅵ)的吸附
古木硅化处理对其物化性能的影响
改良的Tricine-SDS-PAGE电泳检测胸腺肽分子量
不同对照品及GPC软件对右旋糖酐铁相对分子量测定的影响
重看图形界面“扁平化”与“拟物化”之争——关于设计思维的探讨
低分子量丙烯酰胺对深部调驱采出液脱水的影响
蕉藕淀粉与薯类淀粉特性对比研究