Sirtuin—1及SREBP在丙肝进展为肝硬化过程中的变化及临床意义

2018-02-23 02:23董金玲吴天添谢志宏张颖
中国现代医生 2018年29期
关键词:丙肝正常人脂肪肝

董金玲 吴天添 谢志宏 张颖

[摘要] 目的 探討在丙肝病毒(HCV)感染合并脂肪肝及肝硬化的患者中Sirtuin-1和SREBP的变化及其临床意义。方法 选择单纯丙肝患者37例,丙肝合并重度脂肪肝患者34例,丙肝合并肝硬化患者31例,正常志愿者35例,共137例。分别采集各入组者的外周血样本、丙肝合并重度脂肪肝及丙肝后肝硬化患者的肝脏穿刺样本,通过Realtime qPCR及Western Blotting方法检测Sirtuin-1和SREBP的转录和表达水平。 结果 血液中Sirtuin-1转录水平:与正常人比较,单纯丙肝患者下降(P=0.0013);丙肝合并重度脂肪肝患者又较单纯丙肝患者下降(P=0.0006);而在丙肝后肝硬化与丙肝合并重度脂肪肝患者之间无统计学差异(P=0.2741);但丙肝合并肝硬化患者仍较单纯丙肝患者有明显下降(P=0.0026)。血液中SREBP-1c转录水平:单纯丙肝患者较正常人高(P=0.0130);丙肝合并重度脂肪肝较单纯丙肝患者高(P=0.0021);丙肝后肝硬化较丙肝合并重度脂肪肝患者亦有升高(P=0.0481)。血液中Sirtuin-1表达水平:正常人、单纯丙肝患者、丙肝合并重度脂肪肝患者、丙肝后肝硬化患者逐步下降(P分别为0.0003、0.000021、0.0207)。血液中SREBP-1c表达水平:正常人、单纯丙肝患者、丙肝合并重度脂肪肝患者逐步升高(P分别为0.00017、0.0003),而丙肝合并重度脂肪肝与丙肝后肝硬化患者之间则无明显差异(P=0.0814)。SREBP-2在血液中mRNA及蛋白水平表达均无显著统计学差异(P>0.05)。肝穿组织中:Sirtuin-1基因转录与蛋白表达水平,丙肝后肝硬化患者均较丙肝合并重度脂肪肝患者低(P分别为0.0013和0.0001);而SREBP-1c的基因转录与蛋白表达水平,丙肝后肝硬化患者均较丙肝合并重度脂肪肝患者高(P分别为0.0201和0.0083);SREBP-2转录和表达在两组间无差异(P>0.05)。 结论 HCV有可能通过下调Sirtuin-1及上调SREBP-1c的表达加重肝细胞的脂质化及肝硬化的程度。

[关键词] Sirtuin-1;SREBP-1c;SREBP-2;HCV;肝脂肪变性;肝硬化

[中图分类号] R512.63 [文献标识码] A [文章编号] 1673-9701(2018)29-0017-06

Changes and clinical significance of Sirtuin-1 and SREBP in progression of hepatitis C to cirrhosis

DONG Jinling1 WU Tiantian2 XIE Zhihong1 ZHANG Ying1

1.Department of Infectious Diseases, the First People's Hospital of Huzhou in Zhejiang Province, Huzhou 313000, China; 2.Department of General Surgery, the First People's Hospital of Huzhou in Zhejiang Province, Huzhou 313000, China

[Abstract] Objective To explore the changes and clinical significance of Sirtuin-1 and SREBP in hepatitis C virus(HCV) infected patients with fatty liver and liver cirrhosis. Methods A total of 137 patients, including 37 patients with HCV alone, 34 patients with HCV with severe fatty liver, 31 patients with HCV and cirrhosis, 35 patients with normal volunteers, were selected. The peripheral blood samples of the enrolled patients, liver puncture samples from patients with HCV with severe fatty liver and those with HCV and cirrhosis were collected. Transcription and expression of Sirtuin-1 and SREBP was detected by Realtime qPCR and Western Blotting. Results Compared with that of normal people, the Sirtuin-1 transcription level in blood in patients with hepatitis C decreased(P=0.0013). The Sirtuin-1 transcription level in patients with HCV and severe fatty liver was lower than that of patients with hepatitis C(P=0.0006). While there was no significant difference in the Sirtuin-1 transcription level between patients with HCV and severe fatty liver and those with HCV and cirrhosis(P=0.2741). However, the Sirtuin1 transcription level in patients with hepatitis C and liver cirrhosis was still significantly lower than that of patients with only hepatitis C(P=0.0026). SREBP-1c transcription level in blood in hepatitis C patients was higher than that of normal people(P=0.0130). The SREBP-1c transcription level in patients with HCV and severe fatty liver was higher than that of patients with hepatitis C(P=0.0021). And SREBP-1c transcription level in patients with HCV and cirrhosis was also higher than that of patients with HCV and severe fatty liver(P=0.0481). The expression level of Sirtuin1 in blood was gradually decreased in normal subjects, patients with hepatitis C only, patients with hepatitis C and severe fatty liver, and patients with hepatitis C and cirrhosis(P=0.0003, 0.000021, and 0.0207, respectively). The SREBP-1c expression level in blood was increased gradually in normal subjects, patients with hepatitis C only, and patients with hepatitis C and severe fatty liver(P=0.00017, 0.0003, respectively). There was no significant difference between patients with hepatitis C and severe fatty liver and those with hepatitis C and liver cirrhosis in the SREBP-1c expression level(P=0.0814).There was no significant difference in mRNA and protein expression of SREBP-2 in blood(P>0.05). Sirtuin-1 gene transcription and protein expression level in liver perforation tissue of post-hepatitis C liver cirrhosis patients were lower than that of patients with hepatitis C combined with severe fatty liver(P=0.0013 and 0.0001, respectively). SREBP-1c gene transcription and protein expression level in patients with hepatic cirrhosis after hepatitis C were higher than that of patients with severe fatty liver and hepatitis C(P=0.0201 and 0.0083, respectively). There was no significant difference in SREBP-2 transcription and expression between the two groups(P>0.05). Conclusion HCV may increase the degree of hepatocyte lipidation and cirrhosis by down-regulating Sirtuin-1 and up-regulating SREBP-1c expression.

[Key words] Sirtuin-1; SREBP-1c; SREBP-2; HCV; Liver steatosis; Liver cirrhosis

丙型肝炎病毒属黄病毒科单链RNA病毒,具有高度的变异性,分Ⅰ~Ⅵ型及各亚型,在全球范围内主要流行者为Ⅰ型,占HCV的70%以上[1],而Ⅲa型HCV病毒引起的肝脂肪变性比率最高,约为74%,脂肪肝程度亦最重,是其他病毒型的3倍左右[2]。现世界范围内约有1.8亿人感染丙肝病毒,且有80%转为慢性感染[3]。HCV对感染者肝脏的毒性作用主要为病毒对机体的直接毒性及机体对病毒的免疫应答。另外,嗜酒、高脂血症、胰岛素抵抗等也会加重HCV对肝脏的毒性作用[4]。丙肝后肝硬化的发生率日益增高,由丙肝所致肝癌的比率逐年增加,仅次于乙肝[5]。

沉默信息调节因子1(Sirtuin-1)位于人染色体10q21.3,不具有剪辑变异性,有高度保守性[6]。其在人体成熟组织中广泛存在,属于烟酰胺腺嘌呤二核苷酸(NAD+)依赖性Sirtuin去乙酰化家族[7],是在Sirtuin家族中被研究的最透彻的一种蛋白,在肝脏中通过过氧化物酶增殖物激活受体-α(PPAR-α)来进行脂质代谢[8]。有研究证实,HCV可下调SIRT-1-磷酸腺苷(AMP)激活的蛋白激酶(AMPK)通路,导致肝细胞能量及糖、脂代谢紊乱,从而增加HCV的复制[9,10]。另有文献支持,HCV可破坏肝窦内皮细胞(LSEC),使肝脏微循环障碍,但具体机制不详[11]。

固醇调节元件结合蛋白(SREBP)是调节肝脏脂质代谢的重要蛋白,分为SREBP-1a、SREBP-1c、SREBP-2三个亚型,而在肝脏中,SREBP-1c、SREBP-2两种蛋白占主导地位,SREBP-1a在成年人肝脏中几乎无表达[12]。HCV核心蛋白可以通过激活SREBP-1c及其下游靶基因影响肝脂肪变的发生发展过程[13],但具体机制不详。有文献证明,SREBP-1c主要调控脂肪酸相关代谢,而SREBP-2主要调控胆固醇相关代谢[14,15]。

本试验通过Real-time qPCR、Western Blot方法,探讨丙肝合并重度脂肪肝、丙肝合并不同程度肝硬化患者肝组织中Sirtuin-1、SREBP-1c、SREBP-2的转录及表达情况;研究正常受试者、丙肝、丙肝合并重度脂肪肝、丙肝合并不同程度肝硬化患者血清中Sirtuin-1、SREBP-1c、SREBP-2的转录及表达情况。探讨上述基因在丙肝患者进展为肝硬化过程中的作用及临床意义。

1资料与方法

1.1 一般资料

选取2015年1月~2017年12月在我院门诊及住院的单纯丙肝患者、丙肝合并重度脂肪肝患者、丙肝合并肝硬化患者及体检的正常人共137例。其中单纯丙肝患者37例,丙肝合并重度脂肪肝患者34例,丙肝合并肝硬化患者31例,正常志愿者35例。所有丙肝患者均未经过抗病毒治疗,且各组之间性别、年龄、BMI指数等均无统计学差异,见表1。

1.1.1入选标准 (1)丙肝抗体和丙肝病毒RNA均阳性,且未行抗病毒治疗的患者。(2)B超检测 在丙肝确诊的基础上,根据《非酒精性脂肪性肝病诊疗指南》[16]:①肝区近场回声弥漫性增强(强于肾脏和脾脏),远场回声逐渐衰减;②肝内管道结构显示不清;③肝脏轻至中度肿大,边缘角圆钝;④彩色多普勒血流显像提示肝内彩色血流信号减少或不易显示,但肝内血管走向正常;⑤肝右叶包膜及横膈回声显示不清或不完整。第①项、第②~④中的其中两项以及第⑤项达到标准即为重度脂肪肝[17]。(3)CT和肝脏穿刺活检在丙肝的基础上,根据《非酒精性脂肪性肝病诊疗指南》[16]:CT值低于23HU的且肝/脾CT值比值≤0.5的判别为重度脂肪肝。肝脏变小,密度高低不均,局灶性低密度区,或者密度高低相间的结节状改变。脾肿大、腹水、门脉主干扩张,脾门附近、食管下端和胃的贲门区域侧支血管建立、扩张和扭曲[18]。各种脂肪肝的基础上出现的肝硬化征象,并由肝穿刺活检确诊的丙肝后肝硬化患者。

1.1.2 排除标准 通过血液RNA检测,排除甲、乙、丁、戊型肝炎患者;排除长期饮酒以及应用免疫调节药物等患者;排除药物性肝病、肠外营养、肝豆状核变性等可导致脂肪肝的原发疾病;排除肥胖、血脂紊乱、高血压等代谢综合征;排除肝癌、肝脏转移性肿瘤等肝脏恶性肿瘤。

1.2 Sirtuin-1、SREBP的检测方法

1.2.1 Sirtuin-1、SREBP的Real-time qPCR检测 抽取正常志愿者、单纯丙肝患者、丙肝+重度脂肪肝患者以及丙肝+肝硬化患者血液样本,提取血液中的总DNA,而后Real-time qPCR检测Sirtuin-1、SREBP-1c和SREBP-2的mRNA转录水平;对丙肝+重度脂肪肝患者和丙肝+肝硬化患者两个组的患者进行肝脏细针穿刺活检,分别做病理和组织Real-time qPCR检测Sirtuin-1、SREBP-1c和SREBP-2的mRNA转录水平。各基因序列见表2,Real-time qPCR试剂Power SYBR GREEN PCR Master Mix购自Life Technologies公司。

1.2.2 Sirtuin-1、SREBP的Western Blotting检测和比较 同样对四组患者予抽取血液样本,提取血液中的总蛋白,Western Blotting法检测Sirtuin-1、SREBP-1c和SREBP-2的蛋白表达水平;对丙肝+重度脂肪肝和丙肝+肝硬化两组的患者进行肝穿活检,所取组织分别做病理及WB试验。

1.2.3 丙肝RNA含量检测 检测和比较各组患者血液丙肝RNA含量。

1.3统计学方法

使用SPSS20.0进行统计学分析,受试对象性别采用卡方检验,年龄和BMI指数差异采用t检验进行各组间两两比较。四组间血液中Sirtuin-1、SREBP转录和表达水平用t检验进行各组间两两比較;两组间肝脏穿刺活检组织中Sirtuin-1、SREBP转录和表达水平用t检验进行比较。

2结果

2.1各组间血清Sirtuin-1、SREBP基因转录水平比较

将各组Real-time qPCR数值转化成2-△△Ct后进行比较。将正常组2-△△Ct值设为1,其余各组与正常组进行比较得相对值。结果表明,单纯丙肝患者Sirtuin-1转录水平较正常人下降(P=0.0013);丙肝合并重度脂肪肝患者较单纯丙肝患者明显下降(P=0.0006);而Sirtuin-1在丙肝合并肝硬化与丙肝合并重度脂肪肝患者之间无统计学差异(P=0.2741);但丙肝合并肝硬化患者Sirtuin-1较单纯丙肝患者有明显下降(P=0.0026)。对于SREBP-1c,单纯丙肝患者较正常人高(P=0.0130);丙肝合并重度脂肪肝较单纯丙肝患者高(P=0.0021);丙肝合并肝硬化较丙肝合并重度脂肪肝患者亦有升高(P=0.0481)。SREBP-2各组间均无统计学差异,P值均大于0.05(单纯丙肝患者与正常人P=0.3744,丙肝合并重度脂肪肝与单纯丙肝患者P=0.1380,丙肝合并肝硬化与丙肝合并重度脂肪肝患者P=0.2911,丙肝合并重度脂肪肝患者与正常人P=0.0831,丙肝合并肝硬化患者与正常人P=0.0620,单纯丙肝与丙肝合并肝硬化患者P=0.1329)。见图1。

2.2 各组间血清中Sirtuin-1、SREBP蛋白表达水平比较

WB结果用同法,将正常人灰度值设为1,其他组作同比换算。与正常人相比较,单纯丙肝患者Sirtuin-1蛋白表达量下降(P=0.0003),丙肝合并重度脂肪肝患者Sirtuin-1蛋白表达量较单纯丙肝患者下降(P=0.000021),丙肝合并肝硬化患者较丙肝合并重度脂肪肝患者Sirtuin-1表达量亦有下降(P=0.0207)。而SREBP-1c在单纯丙肝患者中,则较正常人升高(P=0.00017);丙肝合并重度脂肪肝患者较单纯丙肝患者,其SREBP-1c有明显升高(P=0.0003);而丙肝合并重度脂肪肝与丙肝合并肝硬化患者之间,SREBP-1c则无明显差异(P=0.0814)。与基因转录水平相似,SREBP-2蛋白表达量在各组间则无明显变化,P均>0.05(单纯丙肝患者与正常人P=0.2518,丙肝合并重度脂肪肝与单纯丙肝患者P=0.1027,丙肝合并肝硬化与丙肝合并重度脂肪肝患者P=0.0923,丙肝合并重度脂肪肝患者与正常人P=0.3792,丙肝合并肝硬化患者与正常人P=0.1583,单纯丙肝与丙肝合并肝硬化患者P=0.0901),与RT-PCR实验结果相一致。见图2。

2.3 Sirtuin-1、SREBP在丙肝合并重度脂肪肝与肝硬化两组患者肝组织中的变化

对丙肝合并重度脂肪肝及丙肝合并肝硬化两组患者进行肝穿刺活检,所取组织为肝脏结节样组织,且经病理证实(封三图2)。所取组织分别提取RNA及总蛋白,进行Real-time qPCR及Western Blotting检测。结果发现Sirtuin-1基因的转录水平,丙肝合并肝硬化患者显著低于丙肝合并重度脂肪肝患者,差异有统计学意义(P=0.0013);Sirtuin-1蛋白表达水平亦有差异,丙肝合并肝硬化患者更低(P=0.0001)。SREBP-1c基因转录水平及蛋白表达水平,丙肝合并肝硬化患者均高于丙肝合并重度脂肪肝患者(P值分别为0.0201和0.0083)。两组间SREBP-2基因转录及蛋白表达均无统计学差异(P值分别为0.0716和0.1905)。

3讨论

丙型肝炎感染后容易出现急性黄疸型肝炎,15%的患者会有急性症状[19],初发时可无特殊症状,80%的患者易转化为慢性丙型肝炎、脂肪肝[20],甚至肝硬化、肝癌[21,22]。而慢性肝脂肪变性是丙型肝炎最重要的病理学变化[23]。且慢性丙肝患者較正常人,甚至乙肝患者,患脂肪肝的概率更高[24]。有研究显示,HCV核心蛋白是介导肝脂肪变的主要因素[25]。其中,Ⅲ型丙肝发生肝脂肪变的概率更高,但机制尚未明确。从最早的理论“受HCV感染的肝细胞载脂蛋白分泌受损”,到既往的“肝细胞脂肪酸氧化功能丧失”,到现今的“HCV核心蛋白通过各种信号通路影响脂质相关基因的转录和表达”,HCV导致肝脂肪变性的机制被一步步阐明[25-27]。从脂肪肝到肝硬化,是一个不可逆的过程,甚至在肝移植后,HCV复发患者仍有1/3~1/4会再发肝硬化,而这些移植后丙肝肝硬化患者有42%会在一年内发展为肝硬化失代偿期[28],HCV病毒致丙肝肝硬化的机制仍在进一步研究中。

Sirtuin广泛分布于机体成熟组织、胚胎早期组织及生殖细胞之中。在胎儿和成人的脑组织、肾、心脏、骨骼肌及睾丸中分布尤为多[27]。7个型中Sirtuin-1型研究的最为透彻。有研究表明,Sirtuin-1蛋白可去乙酰化叉头蛋白盒转录因子1(FOXO1,forkhead-box transcription factors 1),抑制氧化应激过程,减少细胞损伤[29]。甚至还可以通过与解耦联蛋白2(UCP2,uncoupling protein 2)基因启动子结合,抑制 UCP2 表达,来调节胰岛素的分泌,间接调节糖、脂代谢。另一方面,它还能保护延长细胞寿命和促进细胞存活的功能[30],但机制尚不明确。而有细胞学试验报道,Sirtuin-1激动剂白藜芦醇能降低转化生长因子TGF-β1的表达[31]。而TGF-β1则能引起诸如人四型胶原(ColⅣ),以及肝纤维化四项指标中的Ⅲ型前胶原氨基端肽(PⅢNP)、层粘连蛋白(HA)和透明质酸酶(LN)这些具代表性的肝纤维化指标表达量的增加[32]。

SREBP有三种亚型,但只有SREBP-1c对肝脏脂质的代谢起着重要的作用。HCV的核心蛋白可上调SREBP-1c表达,其中Ⅲ型HCV核心蛋白上调SREBP-1c的能力最强,可引发脂质堆积的程度是Ⅰ型HCV的3倍[33]。且SREBP-1c受葡萄糖、胰岛素、胰高血糖素、瘦素等调控,激活升脂基因的转录与表达[34]。SREBP-2的转录及表达变化,则与胆固醇浓度相关[35]。而SREBP与肝纤维化与肝硬化的关系则少有文献报道。

本試验发现,随着丙型肝炎病程的加重,发展至脂肪肝,甚至肝硬化期间,患者血液中及肝脏中Sirtuin-1、SREBP-1c的含量有着显著的变化。HCV有可能通过下调Sirtuin-1、上调SREBP-1c来加重肝细胞的脂质化及肝硬化的程度,而SREBP-2在正常人、丙肝患者、丙肝重度脂肪肝及丙肝后肝硬化的患者中均一致。脂肪肝被认为是肝硬化独立的诱发因素[36],而Sirtuin-1及SREBP-1c在本试验中被验证与脂肪肝的严重程度相关,增加Sirtuin-1的表达及控制SREBP-1c的增加可延缓脂肪肝及肝硬化的进程,但肝硬化与此两种基因的相关性则未见文献报道。有文献报道,SREBP-1c可维持肝脏脂代谢内环境的稳定,其适度升高有利于缓解肝脏的脂毒性,然而,SREBP-1c 的持续增高则引起脂质过度堆积[37]。本试验的样本量偏小,未发现上述SREBP与脂肪肝的关系。Sirtuin-1及SREBP-1c的变化趋势可预测丙肝患者的严重程度,但具体的生物学机制仍需进一步研究,将其应用到临床是否经济可行,也有待进一步的推广。

[参考文献]

[1] Sarrazin C,Zeuzem S. Resistance to direct antiviral agents in patients with hepatitis C virus infection[J]. Gastroenterology,2010,138(2):447-462.

[2] Asselah T,Rubbia-Brandt L,Marcellin P,et al. Steatosis in chronic hepatitis C:Why does it really matter?[J]. Gut,2006,55(1):123.

[3] Hanafiah KM,Groeger J,Flaxman AD,et al. Global epidemiology of hepatitis C virus infection:New estimates of age-specific antibody to HCV seroprevalence[J]. Hepatology,2013,57(4):1333-1342.

[4] Hwang SJ,Lee SD. Hepatic steatosis and hepatitis C:Still unhappy bedfellows?[J]. Journal of Gastroenterology & Hepatology,2011,26(Supplement s1):96-101.

[5] Conti F,Buonfiglioli F,Scuteri A,et al. Early occurrence and recurrence of hepatocellular carcinoma in HCV-related cirrhosis treated with direct-acting antivirals[J]. Journal of Hepatology,2016,65(4):727-733.

[6] Sim V,Bernstein MP,Frangos SG,et al. Cloning,chromosomal characterization and mapping of the NAD-dependent histone deacetylases gene sirtuin-1[J]. International Journal of Molecular Medicine,2006,17(1):59-67.

[7] Kazuhiko H,Hyun KS,Ryun JS,et al. Correction:Effects of Resveratrol and SIRT1 on PGC-1α Activity and Mitochondrial Biogenesis:A Reevaluation[J]. PLoS Biology,2013, 12(1):e1001603.

[8] Corbi G,Conti V,Russomanno G,et al. Adrenergic signaling and oxidative stress:a role for sirtuins?[J]. Front Physiol,2013,4:324.

[9] Sun LJ,Zhao YH,Li SC,et al. Inhibition of silent information regulator-1 in hepatocytes induces lipid metabolism disorders and enhances hepatitis C virus replication[J]. Chinese Journal of Hepatology,2013,21(11):834-839.

[10] Yu JW,Sun LJ,Zhao YH,et al. Inhibition of silent information regulator 1 induces glucose metabolism disorders of hepatocytes and enhances hepatitis C virus replication[J].Hepatology Research,2013,43(12):1343.

[11] Cheluvappa R,Cogger VC,Kwun SY,et al. Liver sinusoidal endothelial cells and acute non-oxidative hepatic injury induced by Pseudomonas aeruginosa pyocyanin[J]. International Journal of Experimental Pathology,2008,89(6):410-418.

[12] Mcpherson S,Jonsson JR,Barrie HD,et al. Investigation of the role of SREBP-1c in the pathogenesis of HCV-related steatosis[J]. Journal of Hepatology,2008,49(6): 1046-1054.

[13] Khan M,Jahan S,Khaliq S,et al. Interaction of the hepatitis C virus(HCV) core with cellular genes in the development of HCV-induced steatosis[J]. Archives of Virology,2010,155(11):1735-1753.

[14] Goldstein JL,Rawson RB,Brown MS. Mutant Mammalian Cells as Tools to Delineate the Sterol Regulatory Element-Binding Protein Pathway for Feedback Regulation of Lipid Synthesis[J]. Archives of Biochemistry & Biophysics,2002,397(2):139-148.

[15] Rong S,Mcdonald J,Engelking L. Cholesterol auxotrophy and intolerance to ezetimibe in mice with SREBP-2 deficiency in the intestine[J]. Journal of Lipid Research,2017,58(10):M077610.

[16] 中華医学会肝病学分会脂肪肝和酒精性肝病学组. 非酒精性脂肪性肝病诊疗指南(2010年修订版)[J]. 胃肠病学和肝病学杂志,2010,18(6):167-170.

[17] Chen SM,Liu CY,Li SR,et al. Effects of Therapeutic Lifestyle Program on Ultrasound-diagnosed Nonalcoholic Fatty Liver Disease[J]. Journal of the Chinese Medical Association,2008,71(11):551-558.

[18] Chalasani N,Younossi Z,Lavine JE,et al. The diagnosis and management of nonalcoholic fatty liver disease:Practice guidance from the American Association for the Study of Liver Diseases[J]. American Journal of Gastroenterology,2012,55(6):811-826.

[19] Maheshwari A,Ray S,Thuluvath PJ. Acute hepatitis C[J]. Lancet,2008,372(9635):321-332.

[20] Nelson PK,Mathers BM,Cowie B,et al. Global epidemiology of hepatitis B and hepatitis C in people who inject drugs:results of systematic reviews[J]. Lancet,2011, 378(9791):571-583.

[21] Hajarizadeh B,Grebely J,Dore GJ. Epidemiology and natural history of HCV infection[J]. Nat Rev Gastroenterol Hepatol,2013,10(9):553-562.

[22] Gemma S,Brogi S,Novellino E,et al. HCV-targeted antivirals:current status and future challenges[J]. Current Pharmaceutical Design,2014,20(21):3445.

[23] Cross TJ,Rashid MM,Berry PA,et al. The importance of steatosis in chronic hepatitis C infection and its management:A review[J]. Hepatology Research,2010,40(3):237-247.

[24] Noureddin M,Wong MM,Todo T,et al. Fatty liver in hepatitis C patients post-sustained virological response with direct-acting antivirals[J]. World Journal of Gastroenterology, 2018,24(11):1269-1277.

[25] Moriya K,Yotsuyanagi H,Shintani Y,et al. Hepatitis C virus core protein induces hepatic steatosis in transgenic mice[J]. Journal of General Virology,1997,78(4):1527-1531.

[26] Gawlik K,Gallay PA. HCV core protein and virus assembly:What we know without structures[J]. Immunologic Research,2014,60(1):1.

[27] Wang J,Kang R,Huang H,et al. Hepatitis C virus core protein activates autophagy through EIF2AK3 and ATF6 UPR pathway-mediated MAP1LC3B and ATG12 expression[J]. Autophagy,2014,10(5):766-784.

[28] Manns MP,Wedemeyer H,Singer A,et al. Glycyrrhizin in patients who failed previous interferon alpha-based therapies:biochemical and histological effects after 52 weeks[J]. Journal of Viral Hepatitis,2012,19(8):537-546.

[29] Yang Y,Hou H,Haller EM,et al. Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation[J].Embo Journal,2005,24(5):1021-1032.

[30] Singh P,Hanson PS,Morris CM. SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinsons disease[J]. Bmc Neuroscience,2017, 18(1):46.

[31] Guo P,Sun X,Feng X,et al. Transforming growth factor-β1 gene polymorphisms with liver cirrhosis risk:A meta-analysis[J]. Infection Genetics & Evolution Journal of Molecular Epidemiology & Evolutionary Genetics in Infectious Diseases,2017,58:164.

[32] Yuan J,Liu W,Zhu H,et al. Curcumin inhibits glial scar formation by suppressing astrocyte-induced inflammation and fibrosis in vitro and in vivo[J]. Brain Research,2016.

[33] Abid K,Pazienza V,Gottardi AD,et al. An in vitro model of hepatitis C virus genotype 3a-associated triglycerides accumulation[J]. Journal of Hepatology,2005,42(5):744-751.

[34] Reijo L,Karin MT,Hannu P,et al. Genetic variant of the SREBF-1 gene is significantly related to cholesterol synthesis in man[J]. Atherosclerosis,2006,185(1):206.

[35] Tang H,Yu R,Liu S,et al. Irisin Inhibits Hepatic Cholesterol Synthesis via AMPK-SREBP2 Signaling[J]. Ebiomedicine,2016,6:139-148.

[36] Haga Y,Kanda T,Sasaki R,et al. Nonalcoholic fatty liver disease and hepatic cirrhosis:Comparison with viral hepatitis-associated steatosis[J]. World Journal of Gastroenterology, 2015,21(46):12989-12995.

[37] Ferré P,Foufelle F. Hepatic steatosis:a role for de novo lipogenesis and the transcription factor SREBP-1c[J]. Diabetes Obesity & Metabolism,2010,12(s2):83-92.

(收稿日期:2018-05-24)

猜你喜欢
丙肝正常人脂肪肝
瘦人也会得脂肪肝
脂肪肝 不简单
王迎春:非肥胖脂肪肝
脂肪肝治疗误区须谨防
人-人嵌合抗丙肝抗体检测阳性对照品的研制及应用
miRNA-122与丙肝病毒感染及肝癌关系的研究进展
靠脸吃饭等
史上最强虐心考眼力
正常人视交叉前间隙的MRI形态特征
正常人大脑皮层言语分区结构性不对称研究