烟草镉低积累材料根系镉吸收动力学特征

2018-05-14 09:36赵明李廷轩黄化刚傅慧杰
中国烟草科学 2018年5期
关键词:根系烟草

赵明 李廷轩 黄化刚 傅慧杰

摘 要:为揭示烟草Cd低积累材料根系Cd吸收特性,本研究采用水培试验,以烟草Cd低积累材料RG11、CF986为研究对象,高积累材料Yuyan5为对照,探讨烟草Cd低积累材料根系Cd吸收动力学特征。结果表明:(1)随培养液Cd浓度升高,两类烟草材料生物量均显著降低(p≤0.05),但RG11、CF986地上部和地下部生物量降幅低于Yuyan5;同时两类烟草材料Cd含量均显著增加(p≤0.05),但RG11、CF986地上部和地下部Cd含量显著低于Yuyan5(p≤0.05)。(2)随Cd处理时间延长,两类烟草材料根系Cd吸收总量呈上升趋势,拟合得到的RG11、CF986直线斜率值小于Yuyan5,为Yuyan5的68.6%和80.0%。相同时间Cd处理下,RG11、CF986根系Cd吸收总量比Yuyan5低8.6%~27.7%。(3)两类烟草材料根系Cd吸收速率随Cd处理浓度的增加而升高。RG11、CF986根系最大吸收速率为Yuyan5的33.4%和48.5%,真实吸收能力比Yuyan5低51.3%和7.9%,直線斜率是Yuyan5的1.3和1.4倍。与高积累材料相比,烟草Cd低积累材料根系Cd吸收能力更弱,根系质外体对Cd的吸附能力更强。

关键词:烟草;镉;低积累;根系;吸收动力学

中图分类号:S572.01 文章编号:1007-5119(2018)05-0040-07 DOI:10.13496/j.issn.1007-5119.2018.05.006

Abstract: Using the low cadmium (Cd) accumulating tobacco lines RG11 and CF986 and the control high Cd accumulating tobacco line Yuyan5, a hydroponic experiment was carried out to investigate Cd uptake kinetic characteristics of the low Cd accumulating lines. The results showed that: (1) The biomass of the two types of tobacco lines decreased significantly with increasing Cd concentrations in hydroponic solutions(p≤0.05). RG11 and CF986 showed lower biomass decline for both shoots and roots than Yuyan5. Cd accumulation in the two types of tobacco lines increased significantly with increasing Cd concentrations in hydroponic solutions(p≤0.05). Cd concentrations in shoots and roots of RG11 and CF986 were significantly lower than those of Yuyan5 (p≤0.05). (2) The total Cd uptake amount by roots of the two types of tobacco lines increased with increasing Cd treatment time. The slopes of the fitting lines of RG11 and CF986 were 68.6% and 80.0% of Yuyan5. The total Cd uptake amounts by roots of RG11 and CF986 were 8.6% and 27.7% lower than that of Yuyan5 under the same Cd treatment time. (3) Cd uptake rates by roots of the two types of tobacco lines increased with the increasing Cd concentrations in hydroponic solutions. The maximum Cd uptake rates of RG11 and CF986 were 33.4% and 48.5% of Yuyan5. The truly Cd uptake ability of RG11 and CF986 were 51.3% and 7.9% lower than Yuyan5. The slopes of the fitting lines of RG11 and CF986 were 1.3 and 1.4 times higher than Yuyan5. Compared with the high Cd accumulating tobacco line, the low Cd accumulating tobacco lines showed lower Cd uptake ability and greater absorption ability by root apoplasts.

Keywords: tobacco; cadmium; low accumulation; roots; uptake kinetic

随着工农业现代化的迅速发展,化肥、农药及污泥的大量施用,土壤镉(Cd)污染问题越来越严重[1-2]。Cd作为毒性强的重金属元素之一,易被植物吸收积累[3-4]。Cd在植物体内的积累与其自身吸收特性密切相关,根系吸收动力学是反映植物根系吸收能力的有效手段[5-6]。水稻(Oryza sativa L.)[7]、玉米(Zea mays L.)[8]、向日葵(Helianthus annuus L.)[9]、生菜(Lactuca sativa L.)[10]等根系吸收Cd的动态变化过程均符合米氏方程。动力学参数随植物品种、生态型或积累型的不同而有所差异。比较不同烟草品种Cd吸收动力学参数发现,云烟85根系最大吸收速率和吸收能力均高于其余品种[11]。Cd高积累水稻品种根系米氏常数Km值显著低于Cd低积累水稻品种[12]。而两类生态型东南景天根系吸收Cd的Km值无明显差异,但超积累型东南景天根系最大吸收速率是非超积累型的两倍[13]。

由表2分析可知,随Cd处理浓度升高,两类烟草材料地上部和地下部Cd含量显著增加。相同浓度Cd处理下,两类烟草材料Cd含量均表现为地上部远高于地下部,且RG11、CF986地上部和地下部Cd含量均显著低于Yuyan5,但两个低积累材料间无显著差异。RG11、CF986地上部Cd含量比Yuyan5低22.5%~36.5%和22.4%~36.3%,地下部Cd含量比Yuyan5低16.6%~37.9%和15.2%~33.5%。

2.2 烟草根系Cd吸收时间动力学特征

随Cd处理时间的延长,两类烟草材料根系Cd吸收总量均呈上升趋势(图1)。在Cd处理0.5~6 h间,两类烟草材料根系对Cd的吸收总量随处理时间的增加呈快速增长。当处理时间为8~48 h,两类烟草材料根系Cd吸收总量增长变缓,呈线性特征。RG11、CF986和Yuyan5根系Cd吸收总量随时间变化的拟合方程分别为Y=0.0024X+0.2306(R2=0.96)、Y=0.0028X+0.2765(R2=0.98)和Y=0.0035X+0.2306(R2=0.99)。方程拟合的斜率能反映植物根系对Cd的吸收能力,拟合得到的RG11、CF986直线斜率值小于Yuyan5,分别为Yuyan5的68.6%和80.0%。相同时间Cd处理下,RG11、CF986根系Cd吸收总量均低于Yuyan5,比Yuyan5低8.6%~27.7%。

2.3 烟草根系Cd吸收浓度动力学特征

从图2可知,各材料吸收特征曲线均符合Michaelis-Menten动力学方程,方程相关系数R2均达0.97以上,拟合度较好(表3),吸收曲线可分解得到饱和曲线和直线。两类烟草材料根系Cd吸收速率随Cd处理浓度的升高而增大,当Cd处理浓度大于0.6 mg/L时增加幅度变缓。相同浓度Cd处理下,RG11、CF986根系Cd吸收速率均低于Yuyan5,比Yuyan5低9.3%~62.4%。此外,两类烟草材料根系米氏常数Km值差异不大(表3),RG11、CF986根系对Cd的最大吸收速率Vmax为26.05和37.84 μg/(g·h),仅为Yuyan5的33.4%和48.5%,根系α值也比Yuyan5低51.3%和7.9%。RG11、CF986非饱和曲线分解的直线斜率a值大于Yuyan5,分别为Yuyan5的1.3倍和1.4倍。

3 讨 论

不同植物或同一植物不同积累型其根系吸收Cd的时间变化过程不同,但都表现为两个阶段[24]。相关研究指出,在Cd处理前期,生菜对Cd的吸收快速上升,后期增长速度变缓[10]。不同Cd积累型油菜品种根系对Cd的吸收均在Cd处理前1 h呈线性快速增长,随后上升速度变缓[25]。本研究中出现了相同的现象,在Cd处理0.5~6 h,两类烟草材料根系对Cd的吸收呈快速增长,随后增长变缓。植物根系对Cd的吸收能力差异,可通过研究不同时间Cd处理下植株Cd吸收总量变化得到[26]。本研究指出,不同时间Cd处理下,两类烟草材料根系Cd吸收总量随处理时间的延长而增加,RG11、CF986根系Cd吸收总量均低于Yuyan5,当处理時间为8~48 h,RG11、CF986根系Cd吸收总量随时间变化的直线斜率低于Yuyan5,表明烟草Cd低积累材料根系Cd吸收能力弱于高积累材料,是其叶部Cd积累低的原因之一。然而,不同时间Cd处理下,油菜Cd低积累品种根系Cd吸收能力强于高积累品种,木质部对Cd的运输能力则弱于高积累品种[25],可见木质部Cd运输能力是影响不同Cd积累型油菜品种地上部Cd 积累的关键因素,因此后期有必要开展烟草Cd低积累材料Cd转运的相关研究。

植物根系吸收Cd的过程包括共质体吸收和质外体吸附两种途径[27],在研究植物根系对Cd的共质体吸收时,需同时考虑根细胞质外体对Cd离子的吸附,可用改进后的米氏方程表征[28]。本研究中,在Cd处理0.5~6 h,两类烟草材料拟合曲线与纵轴的交点高出原点,可见两类材料在解析过程中均有部分Cd吸附在根系质外体上未被解析下来,RG11、CF986吸附量小于Yuyan5,在YAMAGUCHI等[29]的研究中也出现了相同的现象。

动力学参数可用于定量判断植物根系吸收离子能力的大小,对揭示不同植物对离子的吸收差异有重要意义[30-31]。本研究发现,两类烟草材料根系米氏常数Km值差异不大,说明两者根系细胞膜上载体对Cd离子的亲和力接近,与罗洁文等[32]对类芦Cd、Pb吸收特征的研究结果一致。最大吸收速率Vmax可表征植物根系对Cd的最大内在吸收潜力。HE等[7]研究发现,Cd敏感型突变体水稻根系Vmax值显著高于野生水稻,导致Cd敏感型水稻根系Cd吸收潜力更强,同时也是其Cd敏感性更强的原因之一。本研究中,烟草Cd低积累材料RG11、CF986根系最大吸收速率Vmax小于高积累材料Yuyan5,表明烟草Cd低积累材料根系对Cd的吸收潜力更弱,可能是烟草Cd低积累材料根系质膜上Cd相应运输载体数量较少或活性较弱所致[13]。Vmax/Km即α值表示Cd进入植物根系的速率,可反映根系对Cd的真实吸收能力[9,33]。STRITSIS等[34]发现菠菜、亚麻根系Cd吸收能力α值是玉米、向日葵的两倍,可能是菠菜、亚麻地上部Cd含量显著高于玉米、向日葵的原因。苏柳172根系最大吸收速率Vmax是垂柳的20倍,但根系α值却低于垂柳,说明垂柳根系Cu2+吸收能力强于苏柳172[6]。本研究中,RG11、CF986根系α值小于Yuyan5,表现出与最大吸收速率Vmax相同的趋势,可见烟草Cd低积累材料根系Cd吸收能力弱于高积累材料。然而,RG11、CF986非饱和曲线分解的直线斜率a值大于Yuyan5,说明烟草Cd低积累材料根系质外体对Cd的吸附能力更强。这一现象可能与烟草Cd低积累材料根系细胞壁对Cd的固定有关,从而限制Cd向地上部的转移,导致其叶部Cd积累能力弱于高积累材料。因此,今后可从根系细胞壁固定这一方面来探讨烟草Cd低积累材料根系对Cd的固持,进一步明晰烟草Cd低积累材料的低积累机制。

4 结 论

两类烟草材料根系Cd吸收动力学参数存在差异。与高积累材料相比,烟草Cd低积累材料根系Cd吸收能力更弱,根系质外体对Cd的吸附能力更强,是其叶部Cd积累低的原因之一。

参考文献

[1]LUO H F, ZHANG J Y, JIA W J, et al. Analyzing the role of soil and rice cadmium pollution on human renal dysfunction by correlation and path analysis[J]. Environmental Science and Pollution Research, 2017, 24(2): 2047-2054.

[2]AMJAD ALI, DI GUO, MAHAR A, et al. Mycoremediation of potentially toxic trace elements—a biological tool for soil cleanup: A review[J]. Pedosphere, 2017, 27(2): 205-222.

[3]ZHU Q H, HUANG D Y, LIU S L, et al. Accumulation and subcellular distribution of Cd in ramie (Boehmeria nivea L. Gaud.) planted on elevated soil Cd contents[J]. Plant Soil and Environment, 2013, 59(2): 57-61.

[4]XIN J, DAI H, HUANG B. Assessing the roles of roots and shoots in the accumulation of cadmium in two sweet potato cultivars using split-root and reciprocal grafting systems[J]. Plant and Soil, 2017, 412(1-2): 413-424.

[5]ISIAM M S, SAITO T, KURASAKI M. Phytofiltration of arsenic and cadmium by using an aquatic plant, Micranthemum umbrosum: Phytotoxicity, uptake kinetics, and mechanism[J]. Ecotoxicology and Environmental Safety, 2015, 112(2): 193-200.

[6]陈彩虹,刘治昆,陈光才,等. 苏柳172和垂柳对Cu2+的吸收特性及有机酸影响[J]. 生态学报,2011,31(18):5255-5263.

CHEN C H, LIU Z K, CHEN G C, et al. Uptake kinetic characteristics of Cu2+ by Salix jiangsuensis CL J-172 and Salix babylonica Linn and the influence of organic acids[J]. Acta Ecologica Sinica, 2011, 31(18): 5255-5263.

[7]HE J Y, REN Y F, WANG F J, et al.Characterization of cadmium uptake and translocation in a cadmium- sensitive mutant of rice(Oryza sativa L. ssp. japonica)[J]. Archives of Environmental Contamination and Toxicology, 2009, 57(2): 299-306.

[8]REDJALA T, ZELKO I, STERCKEMAN T, et al. Relationship between root structure and root cadmium uptake in maize[J]. Environmental and Experimental Botany, 2011, 71(2): 241-248.

[9]CORNU J Y, BAKOTO R, BONNARD O, et al. Cadmium uptake and partitioning during the vegetative growth of sunflower exposed to low Cd2+ concentrations in hydroponics[J]. Plant and Soil, 2016, 404(1-2): 263-275.

[10]TANG X, PANG Y, JI P, et al. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.)[J]. Ecotoxicology and Environmental Safety, 2016, 125(2): 102-106.

[11]劉双营,李彦娥,赵秀兰. 不同品种烟草镉吸收的动力学研究[J]. 中国农学通报,2010,26(5):257-261.

LIU S Y, LI Y E, ZHAO X L. Kinetic characteristics of cadmium uptake by different tobacco cultivars[J]. Chinese Agricultural Science Bulletin, 2010, 26(5): 257-261.

[12]王龙,高子平,李文华,等. 水稻幼苗镉吸收动力学特性的遗传多样性分析[J]. 植物生理学报,2016,52(1):125-133.

WANG L, GAO Z P, LI W H, et al. Genetic diversity of cadmium absorption kinetic characteristics in rice (Oryza sativa) seedlings[J]. Plant Physiology Journal, 2016, 52(1): 125-133.

[13]LU L L, TIAN S K, YANG X E, et al. Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii[J]. Journal of Experimental Botany, 2008, 59(11): 3203-3213.

[14]雷丽萍,陈世宝,夏振远,等. 烟草对污染土壤中镉胁迫的响应机制及影响因素研究进展[J]. 中国烟草科学,2011,32(4):87-93.

LEI L P, CHEN S B, XIA Z Y, et al. Tolerance and accumulation of cadmium by tobacco plants and the influence factors in polluted soils: a review[J]. Chinese Tobacco Science, 2011, 32(4): 87-93.

[15]陈丽鹃,周冀衡,李强,等. 镉对烟草的毒害及烟草抗镉机理研究进展[J]. 中国烟草科学,2014,35(6): 93-97.

CHEN L J, ZHOU J H, LI Q, et al. Advance in cadmium toxicity to tobacco and its resistance mechanism[J]. Chinese Tobacco Science, 2014, 35(6): 93-97.

[16]WANG F Y, WANG L, SHI Z Y, et al. Effects of AM inoculation and organic amendment, alone or in combination, on growth, P nutrition, and heavy-metal uptake of tobacco in Pb-Cd-contaminated soil[J]. Journal of Plant Growth Regulation, 2012, 31(4): 549-559.

[17]王浩浩,刘海伟,石屹,等. 烤烟品种对镉吸收累积敏感性差异研究[J]. 中国烟草科学,2013,34(6):64-68.

WANG H H, LIU H W, SHI Y, et al. Sensibility variation of cadmium uptake and accumulation among flue-cured tobacco varieties[J]. Chinese Tobacco Science, 2013, 34(6): 64-68.

[18]劉登璐,李廷轩,余海英,等. 不同烟草材料镉积累差异评价[J]. 农业环境科学学报,2016,35(11):2067-2076.

LIU D L, LI T X, YU H Y, et al. Evaluation of differential cadmium accumulation ability in different tobacco species[J]. Journal of Agro-environment Science, 2016, 35(11): 2067-2076.

[19]刘登璐,黄有胜,李廷轩,等. 镉胁迫下烟草镉低积累材料的镉积累分配特征[J]. 中国烟草科学,2017,38(5):69-76.

LIU D L, HUANG Y S, LI T X, et al. The characteristics of Cd accumulation in low-Cd accumulating tobacco cultivars exposed to Cd[J]. Chinese Tobacco Science, 2017, 38(5): 69-76.

[20]李合生. 现代植物生理学[M]. 北京:高等教育出版社,2005:62-64.

LI H S. Modern plant physiology[M]. Beijing: Higher Education Press, 2005: 62-64.

[21]LIU Y, ZENG G, WANG X, et al. Cadmium accumulation in Vetiveria zizanioides and its effects on growth, physiological and biochemical characters[J]. Bioresource Technology, 2010, 101(16): 6297-6303.

[22]ZHAO F J, JIANG R F, DUNHAM S J, et al. Cadmiumuptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri[J]. New Phytologist, 2006, 172(4): 646-654.

[23]LI J, LU H, LIU J, et al. The influence of flavonoid amendment on the absorption of cadmium in Avicennia marina roots[J]. Ecotoxicology and Environmental safety, 2015, 120(5): 1-6.

[24]LI L Z, TU C, WU L H, et al. Pathways of root uptake and membrane transport of Cd2+ in the Zn/Cd hyperaccumulating plant Sedum plumbizincicola: Cadmium flux at the root of a hyperaccumulator[J]. Environmental Toxicology and Chemistry, 2017, 36(4): 1038-1046.

[25]WU Z, ZHAO X, SUN X, et al. Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus)[J]. Chemosphere, 2015, 119(2): 1217-1223.

[26]YOSHIHARA T, SUZUI N, ISHII S, et al. A kinetic analysis of cadmium accumulation in a Cd hyper-accumulator fern, Athyrium yokoscense and tobacco plants[J]. Plant Cell & Environment, 2014, 37(5): 1086-1096.

[27]LIU H, WANG H, MA Y, et al. Role of transpiration and metabolism in translocation and accumulation of cadmium in tobacco plants (Nicotiana tabacum L.)[J]. Chemosphere, 2016, 144(2): 1960-1965.

[28]ZHAO Y, ZHANG S J, WEN N, et al. Modeling uptake of cadmium from solution outside of root to cell wall of shoot in rice seedling[J]. Plant Growth Regulation, 2017, 82(1): 11-20.

[29]YAMAGUCHI N, MORI S, BABA K, et al. Cadmium distribution in the root tissues of solanaceous plants with contrasting root-to-shoot Cd translocation efficiencies[J]. Environmental and Experimental Botany, 2011, 71(2): 198-206.

[30]WAN Y, YU Y, WANG Q, et al. Cadmium uptake dynamics and translocation in rice seedling: Influence of different forms of selenium[J]. Ecotoxicology and Environmental Safety, 2016, 133(7): 127-134.

[31]SONG Y, JIN L, WANG X. Cadmium absorption and transportation pathways in plants[J]. International Journal of Phytoremediation, 2017, 19(2): 133-141.

[32]羅洁文,黄玫英,殷丹阳,等. 类芦对铅镉的吸收动力特性及亚细胞分布规律研究[J]. 农业环境科学学报,2016,35(8):1451-1457.

LUO J W, HUANG M Y, YIN D Y, et al. Uptake kinetic characteristics and subcellular distribution of Pb2+ and Cd2+ in Neyraudia reynaudiana[J]. Journal of Agro-environment Science, 2016, 35(8): 1451-1457.

[33]SATO Y, HIRANO T, NIWA K, et al. Phenotypic differentiation in the morphology and nutrient uptake kinetics among Undaria pinnatifida, cultivated at six sites in Japan[J]. Journal of Applied Phycology, 2016, 28(6): 1-12.

[34]STRITSIS C, CLAASSEN N. Cadmium uptake kinetics and plants factors of shoot Cd concentration[J]. Plant and Soil, 2013, 367(1-2): 591-603.

猜你喜欢
根系烟草
不“亲近”的智慧
“无烟烟草””(大家拍世界)
首次揭示不同植物的根系如何争夺地下生存空间
烟草产品展厅设计
沙地柏根系抗拉力学特性研究
不同播期对甘草根系生长特性的影响
紫花苜蓿根系拉拔试验研究
一地烟草,半世孤独
全国首次青少年烟草调查