热电厂性能优化中热能动力工程的实践应用

2020-11-27 19:52王东
商品与质量 2020年52期
关键词:动力工程热电厂热能

王东

新疆西部合盛热电有限公司 新疆石河子 832000

热能动力工程即热能和工程间关系下的实体工程。当前,热能动力工程应用范围较广,很多企业都将热能发电机引入到企业供电设备中。另外,还有一些企业将水利电动力工程引入其中,与此同时,还应注意和传统矿物资源相比,水利电动力工程作为相对环保的一种工程,实际造价相对较高。现阶段,国家主要倡导节能环保建设,但水利电动力工程多用在大企业当中。文章提出的锅炉,主要包含热力发电机、热能转换动力机械等技术。

1 热电厂热能动力系统

热能动力系统发电是指利用化石燃料等可燃物燃烧产生热能,然后经过发电动力装置转换为电能。从系统能量转化过程来看,最初为生物化学能,之后依次转化为热能、机械能和电能。在系统运行过程中,受燃烧不充分因素影响,化石能源遭到大量浪费,能量转化程度较低。与此同时,燃烧将产生大量二氧化碳和二氧化硫,如果未经有效处理就排放至空气中,会引发严重环境污染。

在建设热能动力系统时,热电厂需要综合考量各类技术,参照国家、行业技术标准,对各种机械设备进行合理选用和组合,完成系统性能综合分析,在保证系统可靠运行的同时,尽可能提升能量转化率。此外,技术应用方面,要综合考虑技术水平,在保证系统先进性的同时,为日后维护提供便利,使系统建设带来可观经济效益。在系统建设过程中,除了保证设备投资不超预算,还要保证后期产生的损耗费和维修费低于经济效益。近年来,伴随国家节能环保政策推行,热电厂因能源过度损耗和污染治理承担的成本逐渐增加。但目前建设的系统大多关注经济效益,缺少对社会效益的足够考量,最终影响系统运行的经济性。因此,要对系统进行优化和节能改造,提升系统工作质量,为热电厂的可持续发展提供保障[1]。

2 热电厂的热能动力工程应用现状分析

2.1 热能动力工程运行转化分析

热电厂大多都采用火力发电形式转换能量,其中能量转换最为关键。通过热电厂运行工作原理分析可知,热电厂运转过程中,热能与动能间互相转换,动能基于汽轮机发电作用转换为电能,其他能量通过汽轮机输出。在此转换过程中,将会损失部分热能,所以造成热电厂运行能耗快速上升,效率却逐步下降。煤炭是热电厂的主要能源,经过处理会转变为煤灰,基于皮带传输技术向锅炉中输送煤灰,在充分燃烧后便会释放,转化成水蒸气,再次加热后,水蒸气便会进入高压缸。所以为了提升锅炉加热效率,可循环加热处理。在此环节中,可将水蒸气输送于中压缸,如此便可通过中压缸蒸汽驱动汽轮机运转,从而生成电能[2]。

2.2 热能动力工程选址问题分析

在热电厂热能动力工程分析中,还需注重热电厂选址问题。热电厂运行负荷性质与大小等要素与热电厂装机容量密切相关,所以我国热电厂机组运行规模明显小于火力发电厂主流运行机组容量。热电厂主要功能即放热与发电,所以需适度增加锅炉运行容量。而在原料与技术水平限制下,热电厂选址时,应选择在热负荷中心位置与城镇人口密度较大的区域,以确保热电厂供热系统稳定运转,同时还需构建健全的热力管网。

2.3 热能动力工程机组变工分析

在汽轮机正常运行时,功率会持续性变动,而此过程中,蒸汽运行参数也会随锅炉燃料燃耗变化随之变化。而且凝气设备运行工况变化、电网运行频率变化、汽油机流通部分存在污垢等,都会造成热电厂热能动力工程变化。

3 热电厂性能优化中热能动力工程的实践应用

3.1 基于工况科学选择调配方式

平行运行机组在外界负荷变化与电网频繁变动时,会根据自身差异化动态特性,适度增减负荷以自动运转,进而保持电网周波,此过程便为一次调频,其具有频率调节速度快的特性,然而发电机组因为调整量不同存在一定差异,且调整量相对有限,导致调度人员难以控制。而电力系统负荷与电力变化过大时,一次调频根本无法恢复常规频率,这就需要二次调频。一般二次调频分为自动调频与手动调频,自动调频不仅便捷,且使用范围广泛。在热电厂工作过程中,通过充分了解并网运行机组情况,以选择合适的调配方式,防止由于调配方式失误造成热能动力工程应用效率下降,进而实现设备运行能力有效提升。与此同时,汽轮机工况与焓降变化之间息息相关,在全开第一阀,工况流量增多的情况下,压力会增大,相比焓降,需适度调小调节级,反之则调大调节级。在关闭第二阀,第一阀全开的情况下,相比焓降,调节级需高达最大中间级,此时工况变化,焓降与中间级压力比可始终保持不变,还可为调节实际工况提供有力参考,基于实际需求所获的焓降变化,可基于此调整工况,满足热能动力工程在热电厂性能优化中应用的具体需求[3]。

3.2 补水技术应用

在蒸汽机组运行的过程中,要采取抽凝式补水方式不断提供水资源,保证系统设备正常运转。系统冷凝器用于使汽轮机出口维持真空,提高汽轮机功率。而在冷凝器位置安装补水雾化装置,能够使排汽余热得到充分利用,在减少冷源损失的同时,提高机组热能的经济性。对系统进行节能改造,可以通过化学补水方式提高设备运行效果。具体来讲,就是在除氧器或凝结器中补加化学水,使排气废热得到回收利用,改善凝结器真空状态,节约能源。该技术需要加强水温控制。在补水不足时,利用余热装置提升水温,使水快速进入凝结器。采取喷雾式方式,利用低压加热器对补水进行逐级加热,能够增强补水效果,使高位能蒸汽量得到有效控制,满足系统节能改造要求[4]。

3.3 供热调节

在燃煤过程中,系统供热时容易出现热力平衡差,存在流量大、温差小的问题。为加强蒸汽过热度控制,人们需要将供热蒸汽热量传送至系统,实现热度转化。为使供热系统达到平衡,减少热量损失,还要对热力管网进行改造,在完成采暖地沟敷设的同时,在部分区域新建地沟进行循环输泵改造。通过安装水泵变频器,加强供热系统计量,人们能够对系统进行变流量控制,结合设备负荷曲线对温度进行设定,促使水温得到有效控制。采暖供热方面,设置恒温阀进行调节,使温度维持稳定。应用热能动力系统供热,运行温度变化也将引起能源损耗,要结合设备实际带负载情况进行控制阀调节,对控制单元输出信号进行控制。通过动力操作,调节介质的压力、流量等,使系统维持可靠运行。结合火电厂建设经验,通常上半年将进行单阀运行,下半年采用顺序阀进行系统运行调整,使系统保持最佳运行状态,提高系统能源利用率。

3.4 视频监控系统优化设计

在智慧电厂建设发展的过程中,应逐渐实现自动化、综合化、智能化以及集中化管理,视频监控系统的优化设计能够为管理提供有效保障。结合当前智慧电厂视频监控中普遍存在的问题,需要建构一套完善的视频监控系统,以实现对不同监控设备情况的及时了解和掌控,也能够针对具体情况作出快速反应,从而显著提升电厂的生产效率及质量。在优化设计时,要尽可能保留原有前端,以降低资金投入,同时基于网络化需求,合理增加摄像机和后端管理设备,并注重提升视频监控系统的可拓展性,从而针对不同系统有效实现信息互联,也有利于后期自由增加监控点数据及摄像机数据,在电厂内部有效实现网络互联互通[5]。

3.5 提高汽轮机的给水温度

在对汽轮机的运行情况进行优化改进的过程中,需要对相关的工程热力学知识进行了解和掌握。在汽轮机的运行过程中为了提升汽轮机的循环效率,必须提高循环的初参数。而汽轮机与锅炉形成发电厂的热力循环系统,导致给水温度会对汽轮机的运行效率产生极大影响。为了降低汽轮机在运行过程中的损耗,需要提高汽轮机的给水温度。因此,要调整高压加热系统,可以采取两点措施:一是重视对高压加热器的维护工作。在高压加热器的运行过程中,需要加强对高压加热器的维护,特别是在汽轮机正常运行之前,需要重视高压加热器的日常检查工作,确保高压加热器能够稳定运行。二是加强对高压加热器运行水位的检查力度。高压加热器运行过程中的水位会在很大程度上影响热力循环系统的运行效益,因此在高压加热器的日常运行过程中,要加强对水位的监测工作,防止水位过高或者过低而对电站设备的安全性产生不利影响。

3.6 合理利用机组内节流调节性能

节流调节不存在调节级,所以在第一级时,便可实现全周进汽,而工况变化,各级温度便会降低,负荷适应性良好,同时适用于小容量机组与基本负荷大机组,但是经济性较差,节流损失严重。热电厂日常运转过程中,可利用弗留格尔公式提高热能动力工程利用率,并基于公式应用要求计算相同流量视域下,各级压差与比焓降,以明确零件受力状态与功率,并监控汽轮机流通情况。简言之,在既知流量下,根据运行时组前各级压力公式负荷情况,详细评估流动部分面积变化状态。在引进弗留格尔公式之后,可确保机组内节流调节,以此为热能动力工程在热电厂性能优化中的应用创造良好条件。

3.7 优化集控运行外部环境

(1)需要重视信号干扰问题。因为在监控系统运行过程中,信号干扰会在很大程度上对整体运行效率产生影响。如果系统本身并没有采取有效的电缆屏蔽措施或者在安装过程中接地不良,很容易导致集控系统在运行时受其他信号的干扰,可能会导致系统发出错误信号,会影响系统的整体运行效果。

(2)空气调节设备安装不当。通常情况下,在集控运行系统的电子室以及控制室会共用一套空调体系,但是在电子室安装空调只具备温度调节功能,不能对外部环境进行的湿度进行调节。如果空气的湿度较大,控制室内的机组设备很容易出现结露情况,而空气比较干燥时很容易发生静电问题。上述问题都会对集控系统的运行产生一定影响。因此,在对集控系统的外部环境条件进行改善的过程中,需要注意对空调系统进行科学选择,确保空调系统的功能全面。只有加强对集控运行系统外部环境条件的控制以及管理,防止外部环境因素导致集控系统出现问题,才能降低集控系统在运行过程中出现故障的可能性,保证集控系统运行安全可靠。

4 热电厂热能动力实现长远发展的有效措施

4.1 重视重热现象的应用

重热现象在热能高效循环利用中发挥着关键性作用。目前我国电厂依旧以火力发电为主,在电力生产时,如何基于热能动力工程,同时实现电力生产与热能产生,为生产提供循环热能载体,可有效提高电厂发电效率,节约能源。重热现象的应用依赖于技术研发,也就是在热电厂能量转换时,如何将多级汽轮机生成的上级热能损失在后续汽轮机运行中实现回收利用,以此最大程度上降低上级热能损耗,将大多数热能转换为动能。此外,重热现象极易导致热电厂电能失范,降低电能功率稳定性,这也需要通过技术研发与利用切实解决。

4.2 提高热能动力技术研发水平

热电厂热能动力发展的重要载体为技术,只有充分掌握核心技术,才可进一步推动热电厂热能动力长远稳定发展。现阶段,热电厂热能动力技术研究应侧重于电厂锅炉热能动力发展领域,尤其是锅炉内部热能转化为机械能的相关技术。尽管锅炉在热能动力技术后填充燃料的方式转换为自动化技术层面,基于双角叉限幅控制技术、空燃比里连续控制技术等促进锅炉内部热能动力发展,然而依旧受技术因素限制,这就需在热电厂热能动力发展中就实际生产需求,进行热能动力发展技术分析与应用,从而提高电厂热能动力发展成效。

5 结语

总而言之,在现代化工业发展中,热电厂价值不断突显,而在热电厂运转过程中,科学合理利用热能动力工程,可有效降低能耗,优化资源配置,提高工作效率。而且创新既有产出模式,设计可行运行模式,不仅可为热能动力功能发展创造价值,还可有效解决一系列疑难杂题,进而为热电厂带来良好经济效益与社会效益。

猜你喜欢
动力工程热电厂热能
湖南人文科技学院国家级一流本科专业建设点简介:能源与动力工程
一种疏水箱热能回收再利用装置
热能来自何处
火电厂中热能与动力工程的改进探讨
某热电厂风机电机节能技术改造
论热电厂中热能与动力工程的改进方向
关于改进热电厂热能与动力工程的有效措施分析
看,光电家居
岩浆转化机