盾构隧道下穿管道施工引起的管道水平位移研究

2020-12-01 07:38管凌霄徐长节可文海丁海滨张高锋虞巍巍
土木与环境工程学报 2020年6期
关键词:轴线夹角盾构

管凌霄,徐长节,2,可文海,丁海滨,张高锋,虞巍巍

(1. 华东交通大学 江西省岩土工程基础设施安全与控制重点实验室,南昌 330013; 2.浙江大学 滨海和城市岩土工程研究中心,杭州 310058;3. 浙江航海城际铁路有限公司,浙江 嘉兴 314000;4.中交一公局集团有限公司,北京 100037)

盾构隧道在掘进过程中会引起地层损失[1],使邻近管道产生变形甚至破坏。城市地下管道是城市的生命线,如何全面分析盾构隧道开挖对邻近管道变形的影响,成了城市地铁工程中亟待解决的热点问题[2-3]。

1 水平向管土相互作用分析

盾构隧道开挖时,邻近土体自由场会产生竖向及水平向位移,由于已有研究多是隧道轴线与管道轴线垂直相交的工况,该工况下盾构隧道开挖引起的土体水平位移对管道的作用转化成了管道的轴力,以至于盾构隧道开挖对邻近管道的影响可忽略。但隧道轴线与管道轴线以非垂直方式相交时,盾构隧道开挖引起的土体水平位移对管道产生的作用为具有一定角度的水平力,具体管道的受力模式见图1。

图1 考虑土体水平位移作用的管道受力示意图Fig.1 Schematic diagram of forces on the pipeline considering horizontal displacement of the soil

图1(a)为盾构隧道开挖引起的土体水平位移示意图。从图1中可以看出,管道与隧道以非垂直的角度相交时,隧道开挖引起的土体水平位移以一定的角度作用在管道上。图1(b)为管道受力示意图,图中P为土体水平位移对管道造成的外力,Px为外力P在X轴方向上的分力(平行于管道),Py为外力P在Y轴方向上的分力(垂直于管道)。从图中可看出,当隧道与管道以非垂直的方式相交时,盾构隧道开挖引起的土体水平位移对管道造成的外力可分解为垂直和平行于管道轴线方向的两个分力,其中,垂直于管道轴线的分力Py会使管道产生水平向的位移。基于此,采用两阶段法对盾构隧道下穿管道施工引起的管道水平位移进行求解。

2 土体水平位移求解

2.1 盾构隧道开挖引起的土体水平位移

1998年Loganathan提出了盾构隧道开挖引起邻近土体位移的解析解,其计算结果与实测值十分吻合。根据Loganathan公式,盾构隧道开挖引起邻近的土体水平位移可以表示为[6]

(1)

式中:R为盾构隧道开挖半径;x为距隧道中心线的水平距离;ε0为盾构隧道开挖引起的周围土体平均损失率;H为隧道轴线埋深;z为距地表的垂直距离;v为土体泊松比。

2.2 邻近管道轴线位置的土体水平位移

图2为简化计算模型,D为管道外直径,z0为管道轴线埋深。隧道开挖引起z=z0处的土体水平位移为Ux(x)。

图2 盾构隧道开挖对既有管线影响模型Fig.2 Simplified model for the influence of the shield tunneling on the existing pipeline

如图3所示,隧道与管道可以以任意角度相交,管道轴线上任意点到隧道轴线的距离为sinθ·x,因此,管道轴线位置的土体水平位移公式需要将隧道与管道的夹角θ引入式(1),得

(2)

图4 Vlasov地基模型Fig.4 Vlasov foundation model

3 管道水平位移的求解

3.1 管道水平位移控制方程

图4为Vlasov地基模型。该模型与Pasternak模型同为双参数模型,但该模型的土体参数可以通过具体的数学公式求得,并且考虑了地基土沿着变形方向上的衰减变形。其中地基水平反力p(x)与管道水平位移u(x)的关系为

(3)

式中:k为地基反力系数;t为土层剪切系数。根据Vlasov公式,k和t可采用如下式(4)计算。

(4a)

(4b)

式中:E土体弹性模量;T为地基弹性层厚度,取T=2.5D[21];h(y)为土体水平位移沿y方向的衰减函数,一般可为线性或指数函数,参考文献[14],采用线性函数的形式。

此时,管道受盾构隧道开挖影响的水平向变形平衡方程为

(5)

整理可得

(6)

3.2 管道水平位移控制方程的求解

为求解式(6),可先令q(x)=0求其通解,得

(7)

由文献[22]、文献[8]可知,为求解管道受分布力作用下的控制方程式(6),可先求解集中力作用下的管道控制方程。即假设无限长管道在x=0的点上受到集中荷载Q,可以得到此时管道的边界条件为

u(±)=0

(8)

(9)

(10)

将上述边界条件代入通解式(7)中,可以解得集中荷载作用下无限长管道的位移方程为

(11)

由图1可知,在盾构隧道开挖的影响下,管道所受到的水平外荷载为土体水平位移在垂直于管道方向产生的作用力,基于Vlasov地基模型得到

(12)

在管道轴线任意点η受到土体位移产生的附加荷载Q=q(η)dη,根据式(11),可得出该荷载在管道轴线上任意点上引起的管道水平位移du(x)

(13)

对式(13)在管道附加荷载分布范围内积分,即可求得由于隧道开挖而引起的管道水平位移

(14)

4 管道竖向位移的求解

在研究盾构隧道下穿管道施工引起的管道竖向位移时,根据Loganathan公式、管道埋深z0、隧道与管道夹角θ同样可以得出盾构隧道开挖引起管道轴线位置的土体竖向位移Uz(x)[23]

(15)

当隧道与管道夹角θ=90°时,式(15)退化成原始的Loganathan公式。

将式(15)的土体竖向位移代入式(12)得到土体竖向位移对管道造成的竖向外荷载qz(x)

(16)

令Q=qz(η)dη,并将Q代入式(13),再按照式(13)与式(14)的计算步骤,便可得出盾构隧道下穿管道施工引起的管道竖向位移uz(x)。

5 算例验证

目前,由于尚没有分析盾构隧道下穿管道施工引起管道水平位移的工程实例,因此,以分析管道竖向位移的工程实例结合有限元模拟来验证所提出的计算方法。

首先,以深圳地铁一期工程益田站至香蜜湖站盾构隧道上方的电缆管道竖向位移监测数据对本文计算管道竖向位移的方法进行验证[24]。该地铁区间盾构隧道施工过程中垂直下穿一条半径r=1.5 m(D=3 m)的混凝土电缆管道,管道壁厚为0.12 m,弹性模量为Ep=2.5×104MPa,管道轴线埋深z0=8.7 m。其中管道竖向位移实测值取管道内东西两排测线的平均值。该实例中其他参数取值参考文献[8],如表1。

表1 管道计算参数Table 1 Parameters for the pipeline

图5 管道竖向位移Fig.5 Vertical displacement of pipeline

表2 管道模型计算参数Table 2 Parameters for the pipeline model

图6为计算结果与有限元模拟结果的对比图。从图6可看出,计算得到的管道最大水平位移值为2.64 mm,略大于有限元模拟的2.35 mm,且两条水平位移曲线基本吻合、曲线变化规律相似,证明了所提出的盾构隧道开挖引起的管道水平变形计算方法的正确性。

图6 管道水平位移Fig.6 Horizontal deformation of pipeline

6 参数分析

为研究管道水平位移与各因素之间的关系,假设地铁盾构隧道以30°夹角下穿地下管道,其中隧道的计算参数为:H=14 m、R=3 m;管道计算参数为:D=0.5 m、t=30 mm、z0=6 m、Ep=2.6×104MPa;土体计算参数为:E=5.2 MPa、v=0.3、ɛ0=1%。在研究某一参数对管道水平位移的影响时,其余参数不变。

6.1 不同管道隧道夹角下管道水平位移

为研究管道与隧道夹角变化对管道位移的影响,分别取夹角为75°、60°、45°、30°及15°进行分析。

当管道以不同角度与隧道相交时,其轴线位置处的土体水平位移如图7所示。由图7可知,管道轴线位置上发生土体水平位移最大的点随着夹角的减小而逐渐远离隧道与管道的交点(x=0),但土体水平位移的最大值并没有改变。这是因为土体最大水平位移值只与隧道的参数有关。

图7 不同夹角的土体水平位移Fig.7 Soil horizontal deformation at different intersection angles

图8为管道与隧道以不同夹角相交时的管道水平位移曲线。由图8可知,管道与隧道的夹角从75°逐渐减小至15°时,管道水平位移值随之增大,同时发生最大位移的点逐渐远离隧道与管道的交点。其原因是,管道与隧道的夹角减小时,隧道开挖引起的土体水平位移对垂直于管道轴线方向产生的作用力增加(由图1可知,Py=P·cosθ,当θ减小时,cosθ增大),因此,管道水平位移值随之增大。结合图8可看出,管道发生最大位移的点与土体位移最大值位置的变化规律一致。

图8 不同夹角的管道水平位移Fig.8 Pipeline horizontal deformation at different intersection angles

同时,从图8可以看出,管道水平位移关于原点(x=0)对称,原点两侧的管道最大水平位移大小相等但方向相反,所以,此时应该以这两点的相对水平位移来判定管道是否处于安全状态。

表3列出了不同夹角下管道发生的最大相对位移(包括水平与竖向)。结合表3可以看出,随着夹角的减小,管道水平与竖向的最大相对位移值都在增大,但水平最大相对位移值增大的比较明显,说明管道的水平位移受隧道与管道夹角的影响较大。在θ=15°时管道水平最大相对位移值达到了8.988 mm,此时,竖向最大相对位移与其的比值为2.16,即水平位移为竖向位移的46.28%,说明在管道与隧道夹角较小时,盾构隧道开挖引起的管道变形中水平位移不应被忽略。

表3 不同夹角下的管道最大相对位移Table 3 The maximum pipeline relative displacement at different intersection angles

6.2 不同直径管道水平位移

为研究管道直径变化对管道水平位移的影响,取D=0.5 m(t=30 mm)、D=1 m(t=60 mm)、D=1.5 m (t=90 mm)及D=2 m(t=120 mm)5组管道直径进行分析。

当盾构隧道下穿不同直径管道时,引起的管道水平位移曲线如图9所示。从图9可以看出,直径更大的管道产生的水平位移更小,原因是管道直径变大引起了管道弯曲刚度的增大,使得土体位移对管道的影响程度减弱。除此之外,随着管道半径增加,管道上产生最大水平位移的位置逐渐远离原点,但此时土体产生最大水平位移的位置是没有变化。分析认为,由于管道的水平位移关于原点对称,当两个最大水平位移点靠得更近时,管道的变形程度更加剧烈。而在管道直径增加引起管道弯曲刚度增加时,增大的弯曲刚度必然会使得这样的变形程度减弱,所以,管道直径的增加不仅会使管道产生的水平位移减小,还会使最大水平位移产生的位置远离原点(x=0),即管道的水平变形程度减弱。

图9 不同直径管道的水平位移Fig.9 Pipeline horizontal deformation with different pipeline diameter

表4列出了不同直径管道在盾构隧道斜下穿施工时所产生的相对位移最大值。从表4可以看出,随着管道直径的增大,管道的竖向最大相对位移与水平最大相对位移变化一致,都呈逐渐减小的趋势。

表4 不同直径管道的最大相对位移Table 4 The maximum pipeline relative displacement with different pipeline diameter

6.3 不同隧道埋深下管道水平位移

为研究在盾构隧道开挖过程中隧道轴线埋深不同的情况下管道的水平位移,取5组隧道轴线埋深进行分析,分别为14、15、16、17、18 m。

图10为不同轴线埋深的盾构隧道施工时所引起的管道水平位移曲线。从图10可以看出,随着隧道轴线埋深的增加,管道产生的最大水平位移逐渐减小,且管道的变形程度也逐渐减弱。这是因为管道轴线埋深一定时,隧道埋深的增加会使得隧道与管道的距离逐渐增加,这时盾构隧道的施工对管道的影响减弱,即引起的管道水平变形程度减弱。

表5列出了轴线埋深不同的盾构隧道施工时所引起的管道相对位移最大值。从表5可以看出,随着隧道的埋深逐渐增加,管道的竖向最大相对位移也逐渐减少,说明对于同一管道隧道与其相对距离的增加,可以减弱隧道施工对管道的影响。

图10 不同隧道半径的管道水平位移Fig.10 Pipeline horizontal deformation with different tunnel depth

表5 不同埋深隧道引起的管道最大相对位移Table 5 The maximum pipeline relative displacement with different tunnel depth

6.4 盾构隧道开挖引起的管道应变分析

取初始计算模型,分别计算出盾构隧道下穿管道施工引起的管道水平向应变及竖向应变,并进行比较分析。

图11为盾构隧道开挖引起的管道应变曲线图,图中正、负值分别对应管道的拉应变及压应变。其中,水平向最大拉、压应变皆为15.533με,竖向最大拉应变为34.249με,竖向最大压应变为9.007με。对比可知,管道的水平向最大拉应变达到了竖向最大拉应变的45.4%,而且水平向最大压应变超过了竖向最大压应变,达到了1.72倍。当管道材质对压应变非常敏感时,便可能由于水平向压应变过大而导致管道破坏。由此进一步说明了盾构隧道斜下穿管道施工时,管道的水平变形特性不应被忽略。

图11 管道应变Fig.11 Strain induced in the pipeline

7 结论

改进Loganathan公式计算了盾构隧道开挖引起邻近管道轴线位置处的土体水平位移,基于考虑土中剪力传递的Vlasov模型得出了土体自由场中管道的水平位移解析解,经过分析得出以下结论:

1)盾构隧道开挖方向与管道轴线的夹角对管道水平位移的影响比较显著。随着夹角角度的逐渐减小,盾构隧道开挖引起的水平位移逐渐增大。

2)在θ=15°时管道水平最大相对位移值可达到了8.988 mm,为竖向最大相对位移的46.28%,说明在管道与隧道相交角度较小时,盾构隧道开挖引起的管道水平位移不应被忽略。

3)控制其余参数不变,管道直径的增加会导致管道的变形程度减弱、相对位移(包括竖向及水平)最大值的减小;隧道埋深的增加会减弱盾构施工对管道造成的影响。

4)从管道的弯曲应变来看,盾构隧道下穿管道施工时,引起的管道水平向最大压应变超过了竖向最大压应变。因此,对于极限压应变较小的管道,更应关注管道的水平向变形特性。

猜你喜欢
轴线夹角盾构
利用轴线交错修整砂轮凸度曲线的方法探讨
小直径双模式盾构机在复合地层中的施工应用与实践
水泥回填土技术在盾构出洞加固中的应用及改善方法
复杂建筑群项目的建筑轴线相关性分析
盾构穿越既有建筑物施工关键技术研究
探究钟表上的夹角
空铁联运+城市轴线,广州北“珠江新城”崛起!
大咖妙语论道!于轴线之上开启广州城央最宜居的大未来!
求解异面直线夹角问题的两个路径
新型盾构机刀圈用6Cr5Mo2V钢力学性能研究