微藻絮凝采收技术研究进展

2021-02-07 02:51薛溪发张红兵曹豪豪秦路桥
安徽农学通报 2021年1期
关键词:微藻

薛溪发 张红兵 曹豪豪 秦路桥

摘 要:当前,能源危机和环境污染的双重压力严重制约着经济发展,开发清洁可再生型生物燃料显得尤为重要。微藻具有易繁殖、富含脂质、不与农作物争地等特点,被认为是极具前景的生物燃料,但微藻采收的高成本是藻类工业化的主要瓶颈。絮凝法是收获微藻生物质高效和优选的方法。该文简述了目前已使用的一些微藻絮凝采收方法,比较了化学絮凝、生物絮凝和物理絮凝等方法的收获效率、能耗及技术可行性,分析了各种方法的絮凝机理和影响因素,旨在为选择适宜的微藻采收方法提供参考。

关键词:微藻;生物燃料;采收;絮凝

中图分类号 X50文献标识码 A文章编号 1007-7731(2021)01-0033-05

Progress in Flocculation Harvesting of Microalgae

XUE Xifa1 et al.

(1College of Biological Science and Engineering, Hebei University of Economics and Business, Shijiazhuang 050061, China)

Abstract: Currently, the development of economy is seriously restricted by the dual pressure of energy crisis and environmental pollution, it is particularly important to develop clean and renewable biofuels.Microalgae is considered to be promising biofuels due to its easy reproduction, fat - rich, and non-competition with crops and so on.However, the high cost associated with microalgae harvesting is a major bottleneck for commercialization of algae-based industrial products.Hence, microalgae harvesting is recognized as an area that needs to be explored and developed.Additionally, flocculation is an efficient and optimal method for harvesting microalgae biomass.This article aims to collate and present an overview of current harvesting strategies such as physical, chemical, biological,methods along with their future prospects.This review also analyzes their flocculation mechanism and influencing factors.In contrast, the use of natural polymer organic flocculants has received more attention, and future research should focus on assessing the economic feasibility on an industrial scale.This review intends to provide guidance for the high-efficiency and low-cost flocculation  recovery technologies in the biofuel industry.

Key words: Microalgae; Biofuel; Harvesting; Flocculation

目前,人类生活所需的能源仍以传统不可再生型化石能源为主,污染严重。常用甘蔗、大豆、油菜籽、玉米、橄榄、非食用麻风树等农作物制备生物燃料,不仅占用耕地多,还可能引发粮食安全风险。因此,微藻作为新能源的来源备受关注。

微藻作为单细胞生物,不仅可以自养固定二氧化碳,也可异养利用并处理生活污水中的有机污染物;同时,微藻生长不占耕地,无需农药,环境友好,真正实现了生物燃料生产与环境污染治理的和谐统一。但是微藻悬浮于水中,收获难度较大,成本居高不下。近年来,研究人员一方面通过过程工程策略、新颖的光生物反应器、优势工程菌株筛选和构建等方式提高微藻产率,另一方面开发低成本、高效率、无污染的收获方式,降低采收成本。目前,微藻采收技术主要有沉降、离心、浮选和过滤等几种物理方法。其中,沉降法不需要消耗能源或化学物质,经济简便,但耗时长,存在微藻生物质腐败变质风险;过滤法不破坏细胞的完整性,过滤介质可重复使用,但适用面小;离心法效率高、速度快、污染小,但消耗能源,成本较高;浮选法成本低、占地少、操作时间短、适用范围广,但能耗高且对藻种有选择性。各种物理收获方法及絮凝法的优缺点比较如表1所示。

鉴于絮凝是收获微藻生物质的高效和优选的方法,本文对几种常见的絮凝方法进行了综述,分析其絮凝机理和影响因素,以期为微藻采收技术研究提供参考。

1 化学絮凝

化學絮凝是指加入化学絮凝剂与藻类细胞表面的电荷相互作用,藻类细胞形成聚集体,导致重力沉降进一步沉淀的过程。根据化学絮凝剂的性质,可分为无机絮凝剂和有机絮凝剂2种类型,无机絮凝剂主要包括带正电的金属离子,有机絮凝剂不仅包括天然有机絮凝剂,还包括合成有机絮凝剂。絮凝通常与沉降等其他收获技术结合使用。通过絮凝可以促使微藻细胞的聚集,从而增加颗粒的大小,提高沉降速度。

微生物絮凝剂涉及微生物的培养和生物絮凝剂的纯化,这种絮凝剂的缺点是生产率低,需要更高的剂量,导致絮凝剂成本高,同时微藻的细胞表面特性引起的生物絮凝剂的物种特异性也限制了应用。

3 电絮凝

电解絮凝的机理是基于带负电荷的微藻向阳极运动,失去电荷后形成聚集体,期间不需要添加任何絮凝剂,适合于藻类的分离过程。E. Poelman[26]从悬浮液中絮凝微藻,然后使藻类絮体漂浮,结果不同藻类类群的去除率可达95%以上,而耗電量仅为0.3kWh/m 3左右。近年来,基于阳极通过水电解产生的氢气泡与在阴极的电凝工艺耦合,电凝浮选(ECF)成为重要的电凝聚技术,是一种经济的收获方法。如Wong使用优化的ECF捕集器,通过使用带正电的极板中和微藻表面电荷,对微藻生物量进行了电凝聚浮选。目前,ECF已用于收获淡水藻(小球藻)和海洋微藻(三角褐指藻)。当电流密度为3mA/cm2时,沉淀时间为30min,在pH值4、6下,小球藻和三角褐指藻的最高回收率分别为80%、95%[27]。影响ECF的因素有电极板材料、电极板数量、电极电荷、电解质浓度和培养液的pH值等。电絮凝是一种不依赖于菌种、无化学物质添加的方法。但在整个收获过程中高功率电流可能会损害细胞的完整性。

4 磁性颗粒絮凝

磁性颗粒絮凝是在磁场作用下,利用微米或纳米尺寸的磁性颗粒直接作用于微藻细胞表面并诱导其絮凝。通常是通过裸露的和表面功能化的2种类型的磁性粒子收获微藻[28],在裸磁性粒子存在的情况下,带负电的藻类细胞和带正电的磁性粒子之间通过静电相互作用,导致微藻聚集。胡等[29]用聚乙烯亚胺(PEI)对Fe3O4磁性纳米粒子进行改性,降低了能量消耗,提高了收获效率和水的回收利用率,对小球藻的采收效率达95%以上。影响磁性颗粒絮凝的因素有磁性纳米颗粒粒径、搅拌速度、搅拌时间、纳米颗粒与微藻的质量比等[30]。上述过程对藻类细胞生长及其培养基无任何不利影响[31],具有降低藻类燃料生产成本的潜力。但是磁性颗粒絮凝的缺点是这些纳米颗粒价格昂贵,还需要特殊设备才能回收。

5 展望

微藻作为一种具有广泛应用前景的生物质资源,可用于污水处理、生产生物燃料(例如生物乙醇、生物柴油、生物甲烷和生物氢)和饲料添加剂。为了降低生产成本和收获时的能源能耗,开发一种或多种有效的絮凝方法十分重要。

使用无机絮凝剂可有效回收藻类,但金属离子会污染生物质。而使用天然高分子有机絮凝剂无毒、可生物降解并且不会影响下游脂质中的提取,在未来的研究中应评估其在大规模培养中的经济可行性。生物絮凝剂节能、环保、安全,但消耗碳源、在絮凝过程中不受控制。应选择合适的絮凝微生物减少污染、优化培养条件以及需要深入研究生物絮凝剂的基本特性(生物之间的关系、活性等),以确定其是否能用于大规模采收微藻。电絮凝和磁性颗粒絮凝是无絮凝剂收获微藻的方法,需要较高的成本,其应用需指向具有高价值的产品。另外,通过基因工程对富含脂质的微藻进行改造,以增强自絮凝作用也是一个较好的策略。正在进行的研究应旨在根据微藻的物理特性、培养基的化学成分和最终产品的质量,开发经济高效的收获方式。最后,通过各种技术的整合,实现利用微藻处理生活废水与生物燃料生产的有机结合,达到环境保护和经济发展的和谐统一。

参考文献

[1]ROY M,MOHANTY K.A comprehensive review on microalgal harvesting strategies:Current status and future prospects[J].Algal Research,2019,44:101683.

[2]VU H P,NGUYEN L N,LESAGE G,et al.Synergistic effect of dual flocculation between inorganic salts and chitosan on harvesting microalgae Chlorella vulgaris[J].Environmental Technology & Innovation,2020,17:100622.

[3]彭超,苏会波,熊强,等.絮凝剂对雨生红球藻采收的影响[J].生物加工过程,2017,15(02):1-6.

[4]冯辰辰,闫谨,唐娜,等.五种絮凝剂采收小球藻的研究[J].应用化工,2020,49(04):904-908.

[5]CHEN C Y,YEH K L,AISYAH R,et al.Cultivation,photobioreactor design and harvesting of microalgae for biodiesel production:a critical review[J].Bioresour Technol,2011,102(1):71-81.

[6]HARUN R,SINGH M,FORDE G M,et al.Bioprocess engineering of microalgae to produce a variety of consumer products[J].Renewable and Sustainable Energy Reviews,2010,14(3):1037-1047.

[7]ZHU L,LI Z,HILTUNEN E.Microalgae Chlorella vulgaris biomass harvesting by natural flocculant:effects on biomass sedimentation,spent medium recycling and lipid extraction[J].Biotechnol Biofuels,2018,11:183.

[8]YUE Q Y,GAO B Y,WANG Y,et al.Synthesis of polyamine flocculants and their potential use in treating dye wastewater[J].J Hazard Mater,2008,152(1):221-227.

[9]馮闪闪,吴幸强,王纯波,等.阳离子淀粉制备条件优化及其对野外蓝藻的絮凝效果[J].环境科学与技术,2018,41(05):37-42.

[10]LETELIER-GORDO C O,HOLDT S L,De FRANCISCI D,et al.Effective harvesting of the microalgae Chlorella protothecoides via bioflocculation with cationic starch[J].Bioresour Technol,2014,167:214-218.

[11]KIM D Y,LEE K,LEE J,et al.Acidified-flocculation process for harvesting of microalgae:Coagulant reutilization and metal-free-microalgae recovery[J].Bioresour Technol,2017,239:190-196.

[12]HAN S F,JIN W,TU R,et al.Microalgae harvesting by magnetic flocculation for biodiesel production:current  status and potential[J].World J Microbiol Biotechnol,2020,36(7):105.

[13]CHEN L,WANG C,WANG W,et al.Optimal conditions of different flocculation methods for harvesting Scenedesmus sp.cultivated in an open-pond system[J].Bioresour Technol.,2013,133:9-15.

[14]GERCHMAN Y,VASKER B,TAVASI M,et al.Effective harvesting of microalgae:Comparison of different polymeric flocculants[J].Bioresour Technol,2017,228:141-146.

[15]C. G. GOLUEKE J A W J. Surface Properties and Ion Exchange in Algae Removal [J]. Water Pollution Control Federation,2016,228:304-314.

[16]赵飞燕.共培养促进微藻自絮凝沉降的研究[D].昆明:昆明理工大学,2019.

[17]VANDAMME D,FOUBERT I,MUYLAERT K.Flocculation as a low-cost method for harvesting microalgae for bulk biomass production[J].Trends Biotechnol,2013,31(4):233-239.

[18]TRAN N T,SEYMOUR J R,SIBONI N,et al.Photosynthetic carbon uptake induces autoflocculation of the marine microalga Nannochloropsis oculata[J].Algal Research,2017,26:302-311.

[19]UMMALYMA S B,MATHEW A K,PANDEY A,et al.Harvesting of microalgal biomass:Efficient method for flocculation through pH modulation[J].Bioresour Technol,2016,213:216-221.

[20]LI S,HU T,XU Y,et al.A review on flocculation as an efficient method to harvest energy microalgae:Mechanisms,performances,influencing factors and perspectives[J].Renewable and Sustainable Energy Reviews,2020,131:110005.

[21]GUO H,HONG C,ZHENG B,et al.Bioflocculants' production in a biomass-degrading bacterium using untreated corn  stover as carbon source and use of bioflocculants for microalgae harvest[J].Biotechnol Biofuels,2017,10:306.

[22]TAN J S,LEE S Y,CHEW K W,et al.A review on microalgae cultivation and harvesting,and their biomass extraction processing using ionic liquids[J].Bioengineered,2020,11(1):116-129.

[23]LEE A K,LEWIS D M,ASHMAN P J.Energy requirements and economic analysis of a full-scale microbial flocculation system for microalgal harvesting[J].Chemical Engineering Research and Design,2010,88(8):988-996.

[24]VANDAMME D,PONTES S C,GOIRIS K,et al.Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae[J].Biotechnol Bioeng,2011,108(10):2320-2329.

[25]ZHOU W,CHENG Y,LI Y,et al.Novel Fungal Pelletization-Assisted Technology for Algae Harvesting and Wastewater Treatment[J].Applied Biochemistry and Biotechnology,2012,167(2):214-228.

[26]E.POELMAN N D P B.Potential of electrolytic flocculation for recovery of micro-algae[J].Conservation and Recycling,1997,19(1):1-10.

[27]VANDAMME D,PONTES S C,GOIRIS K,et al.Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae[J].Biotechnol Bioeng,2011,108(10):2320-2329.

[28]PROCHAZKOVA G,SAFARIK I,BRANYIK T.Harvesting microalgae with microwave synthesized magnetic microparticles[J].Bioresour Technol,2013,130:472-477.

[29]HU Y R,GUO C,XU L,et al.A magnetic separator for efficient microalgae harvesting[J].Bioresour Technol.,2014,158:388-391.

[30]劉雨熹.磁絮凝法收获城市污水中藻体的研究[D].哈尔滨:哈尔滨工业大学,2019.

[31]ABO M A,LLIMOS-TURET J,FERRER I,et al.The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater[J].Water Res.,2019,159:490-500.

(责编:张宏民)

猜你喜欢
微藻
碳酸酐酶胞外酶影响下的岩溶湖泊微藻碳汇研究
代食品运动中微藻的科研与生产
富油微藻分离鉴定技术研究进展
絮凝法采收生物燃料微藻的研究进展
微藻——小身材,大能量
微藻生物技术
微藻生物技术产业的发展
巴斯夫和Solazyme推出首款商用微藻衍生甜菜碱表面活性剂
微藻对低温响应的Ca2+信号传导途径研究进展
微藻贴壁培养技术可大幅提高能源微藻产率