重复经颅磁刺激干预中枢神经系统疾病的生物标志物研究进展

2021-07-27 01:01杨娅婕赵宁曹玉婷王桂喜
湖南中医药大学学报 2021年3期
关键词:标志物海马帕金森病

杨娅婕 赵宁 曹玉婷 王桂喜

〔摘要〕 生物标志物对于医学的合理发展至关重要,在科学研究与临床实践中具有重要意义。本文就近年来重复经颅磁刺激治疗中枢神经系统疾病研究中基于生物标志物分析的文献进行总结,发现治疗后中枢神经系统疾病患者的行为学改变与生物标志物的改变呈特定相关性,这些研究的报道可能为经颅磁治疗中枢神经系统疾病提供了更客观的代谢组学证据。

〔关键词〕 重复经颅磁刺激;生物标记物;神经系统;可塑性;神经递质;氨基酸;炎症;细胞凋亡

〔中图分类号〕R493;R28       〔文献标志码〕A       〔文章编号〕doi:10.3969/j.issn.1674-070X.2021.03.028

〔Abstract〕 Biomarkers are very important for the rational development of medicine, and have wide significance in scientific research and clinical practice. We summarized the literatures based on biomarker analysis in the study of repetitive transcranial magnetic stimulation in the treatment of central nervous system diseases in recent years, and found that the behavioral changes of patients with central nervous system diseases after treatment were specifically related to the changes of biomarkers. The reports of these studies may provide more objective metabonomics evidence for transcranial magnetic therapy of central nervous system diseases.

〔Keywords〕 repetitive transcranial magnetic stimulation; biomarkers; nervous system; plasticity; neurotransmitters; amino acids; inflammation; cell apoptosis

生物標志物是一种特征,可作为正常生物过程、致病过程和对暴露或干预(包括治疗干预)的反应的指标[1-2]。生物标志物检测在循证医学中发挥着核心作用,能够促进临床结果的改善,减轻经济负担[3]。代谢组学是近年出现的具有生命科学整体观念的研究方法,与经颅磁刺激整体调节的特点相契合[4-6]。代谢组学是一种系统生物学方法,它从整体的角度,通过对特定组织代谢物的定量分析,研究内源性代谢物质的代谢途径及其所受内在环境因素影响及动态变化规律[7-8]。蛋白组学与代谢组学作为生物标志物的检测手段,能够提高对疾病的诊断与预测,因此,被广泛应用于医学科学等领域[1]。

重复经颅磁刺激(repetitive transcranial magnetic stimulation, rTMS)作为一项非侵入性的神经电生理刺激技术,具有无痛无创、操作简便等优点[4],在脑卒中[9-11]、帕金森病[12-15]、情感障碍[16-19]、认知障碍[20-23]及神经科疾病[22,24-25]中广泛应用。rTMS能够促进神经发生与修复,提高大脑突触可塑性[26]。rTMS也可影响神经递质释放、蛋白质表达和基因活性的短暂与长久变化,达到治疗神经精神疾病的目的[5]。众所周知,rTMS通过引发长期增强(long-term potentiation, LTP)作用和长期抑制(long-term depression, LTD)作用来影响大脑的神经元可塑性。低频率rTMS主要刺激低阈值抑制神经元,而高频率rTMS激发投射神经元[5-6,26]。目前,关于rTMS作用机制的研究,多源于临床行为学评定,应用脑电、核磁等技术揭示其临床疗效及影像学机制,代谢组学与蛋白组学的机制研究主要集中在某些特定通路、常见代谢产物的改变等方面。目前,利用生物标志物分析的方法研究rTMS治疗神经精神疾病方面已有诸多报道,本文对近5年来rTMS治疗神经精神疾病研究中基于生物标志物分析的文献进行总结。

1 rTMS对脑卒中及其生物标志物的影响

rTMS作为一种无创性脑刺激技术,在脑卒中后运动功能障碍、认知/言语/偏侧忽略及相关并发症的临床康复中发挥着重要的作用。

Boonzaier等[27]在运用rTMS对脑卒中动物模型作用机制研究中发现,rTMS的效应可能与缺血耐受、神经保护、抗凋亡、神经发生、血管生成或神经可塑性相关。Baek等[28]探讨rTMS在体外神经元缺血/再灌注(ischemia/reperfution, I/R)损伤模型中的差异效应,用维甲酸诱导小鼠脑神经瘤细胞分化,建立体外缺氧缺糖/复氧(oxygen glucose deprivation/reperfusion, OGD/R)条件下I/R损伤模型,结果发现10 Hz rTMS通过激活细胞外信号调节激酶和蛋白激酶B(protein kinase B, PKB)信号通路促进细胞增殖、抑制OGD/R损伤细胞凋亡。此外,10 Hz rTMS增加Ca2+-CaMKⅡ-CREB信号通路,进一步导致OGD/R损伤细胞脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)表达和突触可塑性的改变。Luo等[29]用20 Hz rTMS干预大脑中动脉闭塞大鼠,发现高频rTMS显著促进了梗死周围纹状体的神经发生,并伴随着BDNF和磷酸化和酪氨酸激酶受体B(tyrosine kinase receptor B, TrkB)蛋白水平的升高。NⅡmi等[30]对脑卒中后上肢偏瘫患者行康复加rTMS联合治疗,结果发现联合治疗可使BDNF、基质金属蛋白酶9(matrix metalloprotein-9, MMP-9)水平升高,而对BDNF的前体无明显影响,但血清BDNF和MMP-9水平与运动功能改善无关。研究结果发现,BDNF及其前体也极有可能是脑卒中后运动恢复的潜在生物标志物,这些结果提示BDNF/TrkB信号通路与神经功能恢复的相关性。

脑卒中后大脑启动内源性修复,细胞凋亡是其重要途径之一。Caglayan等[9]研究发现高频rTMS可以通过诱导脑的内源性修复和恢复机制来促进脑卒中患者的功能恢复。在脑卒中发病后3 d开始应用rTMS,持续28 d,发现实验动物的DNA碎片减少、梗死体积和脑血流量改善,这与B细胞淋巴瘤/白血病-xL(B cell lymphoma/leukemia-xL, BCL-xL)基因活性增加及B细胞淋巴瘤相关X蛋白(BCL2-associated X, BAX)、天冬氨酸特异性半胱氨酸蛋白酶1(cysteinyl aspartate specific proteinase-1, Caspase-1)和Caspase-3活性降低有关。Zong等[10]探讨rTMS对大鼠光血栓性脑卒中模型行为缺陷的影响及其潜在机制,研究表明rTMS能显著减少梗死周围皮质区的突触丢失和神经元变性,梗死周围区域抗炎细胞因子和线粒体超氧化物歧化酶(superoxide dismutase, SOD)的释放增加,有效地保护了梗死周围皮质线粒体膜的完整性,抑制了线粒体Caspase-9/3凋亡途径。Guo等[31]评估了rTMS对脑卒中后认知障碍的治疗效果,并探讨了其在大脑中动脉阻塞大鼠模型中的作用机制,结果表明rTMS增加同侧海马神经发生和减少凋亡的机制显著改善认知功能。Sasso等[32]研究rTMS对局灶性脑损伤模型的远侧退行性变、炎症及功能恢复的影响,采用rTMS方案治疗大鼠半小脑切除术7 d,结果显示rTMS能显著降低远端神经元死亡和胶质细胞活化,促进功能恢复。

上述研究发现,rTMS能够干预BDNF/TrkB、Ca2+-CaMKⅡ-CREB等神经保护的信号通路以及线粒体Caspase凋亡途径,因此,rTMS有可能在多通道、多靶点改善了相应代谢物的表达,从而促进脑卒中模型动物神经功能的恢复。

2 rTMS对抑郁症及其生物标志物的影响

目前,rTMS已经被美国FDA确认为治疗抑郁症安全有效的措施[33]。rTMS能调节氨基酸类与单胺类神经递质,其中对DA(dopamine, DA)能系统、γ-氨基丁酸(γ-aminobutyric acid, GABA)能系统与谷氨酸(glutamic acid, Glu)能系统的影响更大。GABA能系统和Glu能神经递质系统是抑郁症病理生理学的核心,是rTMS的潜在靶点[34]。

Kim等[35]对慢性不可预测轻度应激(chronic unpredictable mild stress, CUMS)大鼠抑郁模型采用10 Hz rTMS治疗后,磁共振波谱显示其前额叶和海马GABA水平显著降低,结果表明rTMS治疗可逆转行为并带来神经化学改变。Tan等[36]用1 Hz rTMS治疗2周有效地缓解了年轻成年大鼠的抑郁样行为,表明rTMS可通过调节突触GABA的传递,促进兴奋性和抑制性(excitability/inhibition, E/I)活性之间的平衡的恢复。Levitt等[19]用10 Hz rTMS治疗难治性抑郁症患者,使用磁共振波谱来评估左前额叶背外侧皮质(dorsolateral prefrontal cortex, DLPFC)GABA水平的变化,结果表明rTMS治疗与左侧DLPFC刺激部位GABA水平升高有关,GABA变化程度与临床改善有关,同时接受GABA激动剂治疗的受试者对rTMS的反应较小。抑郁症的病理生理涉及重要的边缘结构(如脑岛),Guo等[31]研究rTMS诱导的E/I传递改变是否与额叶边缘连接改变有关,通过前额叶rTMS间歇性θ刺激模式对健康对照组的岛叶进行神经调节,结果发现间歇性θ刺激模式能显著抑制了两种体素的前岛连接和GABA/Glu。Dubin等[34]用磁共振波谱评价了10 Hz rTMS对抑郁症患者左侧DLPFC内侧前额叶皮质GABA和Glu联合共振的影响,发现抑郁症患者内侧前额叶皮质中GABA增加13.8%,rTMS对Glu无明显影响,GABA和Glu在重度抑郁症患者在基线水平中呈正相关,与中度抑郁症患者无相关性,在rTMS后也无显著性差异。Erbay等[18]评估rTMS对抑郁症患者的临床疗效,并研究了rTMS对N-乙酰天冬氨酸(N acetyl aspartate, NAA)、胆碱(choline, Cho)、肌酸(creatine, Cr)、乳酸(lactate, Lac)、肌醇(myo-inositol, mIns)、Glu、谷胱甘肽(glutathione, GSH)的影响,结果发现rTMS前后汉密尔顿抑郁量表评分差异有统计学意义,发现rTMS后NAA/Cr、GSH/Cr和Glu/Cr的峰值代谢率明显高于rTMS前。Leblhuber等[16]研究了老年抑郁症患者在前额叶皮层刺激后神经递质前体氨基酸利用率的变化,结果发现血清苯丙氨酸显著下降,表明rTMS对抑郁评分有显著影响,还表明其对苯丙氨酸羟化酶(phenylalanine hydroxylase, PAH)可能有影响,PAH在老年抑郁症相关神经递质前体的生物合成中起着关键作用。Zheng等[37]用磁共振波谱观察了对年轻抑郁症患者15 Hz rTMS前后前扣带回皮质的代谢,发现与健康对照组相比,干预前患者左前扣带回皮质中NAA和Cho含量显著降低,治疗后受试者左侧前扣带回皮质的NAA水平显著升高。有研究尝试通过体液的代谢组分分析来检测新生物标志物。Alesha等[38]发现α-氨基-正丁酸和3-甲基组氨酸可作为生物标记物,客观监测rTMS治疗抑郁症的疗效,用中等强度rTMS和盐酸氟西汀治疗嗅球切除小鼠模型,目前的研究结果表明高强度rTMS标准化了血浆α-氨基-正丁酸和3-甲基组氨酸的浓度,显示嗅球切除小鼠模型和中高等强度的rTMS治疗后,谷氨酰胺和谷氨酸信号传导发生了显著变化。还有研究发现,rTMS可以逆转海马神經元的凋亡,恢复下丘脑-垂体-肾上腺(hypothalamic-pituitary-adrenal, HPA)轴在治疗抑郁症中的平衡。Zhao等[39]对CUMS模型大鼠进行连续15 d的rTMS,CUMS组大鼠脑内BAX、促肾上腺皮质激素(adrenocorticotropic hormone, ACTH)和皮质醇(corticosteroid, CORT)水平升高,海马神经元形态异常、数量减少。rTMS逆转了这些变化,改善了抑郁样行为。Khodaie等[40]研究rTMS对海马和皮层扩散性抑郁的影响,发现长期应用rTMS能显著减少大鼠暗神经元的产生,增加正常神经元的平均体积,减少皮质区凋亡神经元的数量,提示rTMS对皮层扩散性抑郁所致大鼠大脑皮层和海马区损伤具有明显的预防和保护作用。

rTMS对血清中BDNF的影响存在争议。Lu等[41]研究发现双侧低频rTMS减轻广泛性焦虑症可能与脑内BDNF水平升高和5-羟色胺(5-hydroxytryptamine, 5-HT)释放有关,分析显示血清5-HT水平的升高与血清BDNF水平的升高呈正相关,焦虑评分的变化与血清BDNF、5-HT水平的变化呈负相关。与此同时,Jiang等[24]进行了一项荟萃分析,推测BDNF介导rTMS的治疗效果,但与以往的结果是矛盾的。rTMS治疗效应或许存在,但并不能提高血清BDNF水平。

上述研究提示rTMS干预抑郁,可能是与调控GABA水平、逆转海马神经元的凋亡、恢复HPA轴在治疗抑郁症中的平衡有关,但是与脑卒中的代谢组学机制不一样的是,与BDNF的相关性尚不明确。

3 rTMS对帕金森病及其生物标志物的影响

帕金森病是一种神经退行性疾病,其病理生理基础是纹状体DA的严重缺乏。

Dong等[42]探讨低频rTMS对帕金森病模型小鼠的神经保护作用,结果显示低频rTMS能显著改善黑质DA能神经元的变性和酪氨酸羟化酶的表达;低频rTMS还可促进BDNF和胶质细胞源性神经营养因子的表达。纹状体DA水平的波动和酪氨酸磷酸化的上调与左旋多巴诱导的帕金森病运动障碍有关。Ba等[43]制备左旋多巴诱发异动症大鼠模型,评估rTMS对异常非自愿运动的影响,结果表明rTMS能减少黑质DA能神经元的丢失和纹状体DA水平的波动,同时,rTMS可显著增加胶质细胞源性神经营养因子的表达,从而恢复DA能神经元的损伤。此外,rTMS还降低了左旋多巴诱发异动症大鼠模型纹状体损伤后酪氨酸磷酸化水平及其与酪氨酸激酶的相互作用。而在延迟折扣中,内侧前额叶皮质和纹状体DA神经传递均起重要作用。Cho等[44]用rTMS短暂激活前额叶皮质,测量其对纹状体DA的影响,发现前额叶皮质兴奋性的调节干扰纹状体的突触DA水平。

泛素-蛋白酶体系统功能异常是帕金森病的又一重要发病机制。Ba等[45]探讨rTMS对泛素-蛋白酶体系统损伤所致帕金森病大鼠模型是否具有神经保护作用,采用蛋白酶体抑制剂、乳酸菌素诱发帕金森病大鼠模型,结果显示rTMS能明显减轻乳酸菌素损伤的黑质酪氨酸羟化酶阳性DA能神经元的丢失,防止纹状体DA水平的丢失。此外,rTMS还降低了受损黑质中凋亡蛋白Caspase-3、炎症因子环氧化酶-2(cyclooxygenase-2, COX-2)和肿瘤坏死因子α的水平,提示rTMS可保护黑质DA能神经元免受泛素-蛋白酶体系统损伤所致的凋亡和抗炎分子机制的影响。

rTMS治疗可以对神经元基质产生长期的影响。Etiévant等[46]发现应用于觉醒小鼠额叶皮层的rTMS诱导了DA受体依赖的周期素依赖性蛋白激酶5和突触后致密蛋白95蛋白水平的持续变化,特别是在受刺激的脑区。重要的是,这些修饰与这些基因启动子组蛋白乙酰化的变化相关,并且通过给药组蛋白去乙酰化酶抑制剂来预防。rTMS还显示出调节局部脑活动的潜力。Pettorruso等[47]在左DLPFC区rTMS治疗两周后,发现纹状体区域的DA转运体有效性降低。Malik等[48]用1 Hz rTMS以岛叶皮层为靶点,可显著降低黑质、感觉运动纹状体和联合纹状体中的DA水平。还有研究者对帕金森病治疗的氨基酸代谢途径做了相关研究。Flamez等[12]研究1 Hz rTMS对晚期帕金森病患者脑代谢产物的影响,磁共振波谱检测体内代谢物,发现晚期帕金森病患者在SMA前右室低强度rTMS不改变NAA/Cr,但影响tCho/tCr比值,尤其是病程较短的患者。而多种炎症因子对rTMS有调节作用,Aftanas等[15]探讨了rTMS对帕金森病患者神经炎症相关细胞因子水平的可能作用机制,平行安慰剂对照研究观察了运动皮层(双侧)和左DLPFC的双靶点rTMS对血细胞自发合成促抗炎细胞因子和促有丝分裂原的治疗作用,结果显示rTMS组促炎细胞因子干扰素-γ和白介素-17(Interleukin-17, IL-17)的自发产生显著下降,rTMS对血清BDNF无显著影响。

综上,rTMS治疗帕金森病,机制可能与纠正纹状体DA的严重缺乏、调节泛素-蛋白酶体系统功能异常有关,rTMS治疗还可以对神经元基质产生长期的影响。

4 中医对中枢神经系统疾病及相关生物标志物的影响

中医治疗中枢神经系统疾病已有诸多报道。近年来,受到各学科交叉渗透趋势的影响,越来越多的学者将中医学研究与生物标记物的研究相结合。

Luo等[49]探讨针刺对慢性不可预测轻度应激大鼠抑郁行为的影响,发现增强海马和前额叶皮层中的胶质谷氨酸转运体是针刺抗抑郁作用的机制之一。Kim等[50]观察针刺对慢性束缚应激(chronic restraint stress, CIS)所致抑郁小鼠的抗抑郁作用,结果显示针刺可增加海马和杏仁核BDNF的表达,并改善小鼠的抑郁行为。Han等[51]发现电针可通过恢复海马CA1突触可塑性改善抑郁样行为,其机制主要是通过下调5-HT受体水平来实现的。Li等[52]用艾灸治疗脂多糖诱导的抑郁样行为大鼠,发现艾灸对色氨酸(tryptophan, Trp)转运和5-HT生成有明显的促进作用,长期治疗可促进脑内Trp的摄取,使Trp代谢向5-HT转化,从而有利于抗抑郁作用的发挥。傅锦华等[53]研究发现舒肝解郁胶囊能增强抑郁模型大鼠中枢5-HT和DA系统的功能,改善抑郁症状。

He等[54]用电针治疗缺血再灌注大鼠海马和前额叶皮层,发现可能通过提高NAA和cho的含量而改善学习记忆能力。Huang等[55]电针治疗脑缺血再灌注损伤小鼠后,星形胶质细胞和小胶质细胞/巨噬细胞P2嘌呤受体介導的梗死周围海马CA1区和感觉运动皮层神经炎症和增生减弱,运动和记忆行为改善。Jittiwat[56]发现激光针刺治疗能显著提高海马CA1和CA3的记忆和神经元密度,结果显示海马神经功能评分改善,GSH-Px、SOD活性提高,IL-6与肌动蛋白密度比值降低,提示激光针刺通过抗氧化和抗炎作用减轻局灶性脑缺血大鼠的认知功能障碍和运动功能障碍。Zhang等[57]发现电针对脑缺血再灌注后大鼠的认知修复有一定的作用,其作用机制可能是通过抑制Glu神经毒性和下调Glu受体的蛋白表达而减少Ca2+内流。Liu等[58]针刺大脑中动脉闭塞大鼠,发现针刺可有效降低缺血所致Glu的过度释放,维持GABA的内源性抑制活性。这种现象在针灸治疗的整个过程中都会出现,在针灸治疗结束后还会持续一段时间。

上述研究結果表明,中医学方法治疗抑郁症主要通过调节5-HT水平来实现,而治疗脑卒中的机制则与氨基酸类和单胺类神经递质有关。而且针刺同样具有与rTMS相似的长期作用。

5 小结

迄今为止,已经有众多研究者试探性地提出了一些rTMS治疗疾病的生物机制,尽管尚未很好地描述详细的机制,但是已经提出了几种可能。rTMS治疗脑卒中、抑郁症、帕金森等与神经递质、炎症因子、神经发生、细胞凋亡等改变呈相关性[4-6,59-63]。啮齿动物的实验证据表明,rTMS产生复杂的神经生化作用。这些分子作用可能会改变神经元的电生理特性,并重新编程神经递质及其同源受体的表达,从而导致与突触可塑性相关的持久变化,例如长期增强和抑制[5]。临床上与病人相关的实验数据则更多侧重于代谢标志物的发现[38],人们更倾向于找到一种标志物来指导临床治疗。同时也有代谢途径的探究,例如GABA能系统、Glu能系统[34]、BDNF/CREB通路[25]等。而在未来的研究中,生物标志物将不仅限于血液、尿液、脑脊液,脑-肠轴[64-66]及肠道微生物组学的发展,将与rTMS治疗神经精神系统疾病的发展密切关联。

参考文献

[1] CALIFF R M. Biomarker definitions and their applications[J]. Experimental Biology and Medicine (Maywood, N J), 2018, 243(3): 213-221.

[2] PITK?NEN A, EKOLLE NDODE-EKANE X, LAPINLAMPI N, et al. Epilepsy biomarkers toward etiology and pathology specificity[J]. Neurobiology of Disease, 2019, 123: 42-58.

[3] ZHANG Z L, LI R, YANG F Y, et al. Natriuretic peptide family as diagnostic/prognostic biomarker and treatment modality in management of adult and geriatric patients with heart failure: Remaining issues and challenges[J]. Journal of Geriatric Cardiology, 2018, 15(8): 540-546.

[4] DUAN X Q, YAO G, LIU Z L, et al. Mechanisms of transcranial magnetic stimulation treating on post-stroke depression[J]. Frontiers in Human Neuroscience, 2018, 12: 215.

[5] CIRILLO G, DI PINO G, CAPONE F, et al. Neurobiological after-effects of non-invasive brain stimulation[J]. Brain Stimulation, 2017, 10(1): 1-18.

[6] SOUNDARA RAJAN T, GHILARDI M F M, WANG H Y, et al. Mechanism of action for rTMS: A working hypothesis based on animal studies[J]. Frontiers in Physiology, 2017, 8: 457.

[7] SHAH N J, SURESHKUMAR S, SHEWADE D G. Metabolomics: A tool ahead for understanding molecular mechanisms of drugs and diseases[J]. Indian Journal of Clinical Biochemistry: IJCB, 2015, 30(3): 247-254.

[8] FATHI F, EKTEFA F, HAGH-AZALI M, et al. Metabonomics exposes metabolic biomarkers of Crohns disease by (1)HNMR[J]. Gastroenterology and Hepatology from Bed to Bench, 2013, 6(Suppl 1): S19-S22.

[9] CAGLAYAN A B, BEKER M C, CAGLAYAN B, et al. Acute and post-acute neuromodulation induces stroke recovery by promoting survival signaling, neurogenesis, and pyramidal tract plasticity[J]. Frontiers in Cellular Neuroscience, 2019, 13: 144.

[10] ZONG X M, DONG Y, LI Y Y, et al. Beneficial effects of Theta-burst transcranial magnetic stimulation on stroke injury via improving neuronal microenvironment and mitochondrial integrity[J]. Translational Stroke Research, 2020, 11(3): 450-467.

[11] ALAM M A, SUBRAMANYAM RALLABANDI V P, ROY P K. Systems biology of immunomodulation for post-stroke neuroplasticity:

Multimodal implications of pharmacotherapy and neurorehabili?tation[J]. Frontiers in Neurology, 2016, 7: 94.

[12] FLAMEZ A, WIELS W, VAN SCHUERBEEK P, et al. The influence of one session of low frequency rTMS on pre-supplementary motor area metabolites in late stage Parkinsons disease[J]. Clinical Neurophysiology, 2019, 130(8): 1292-1298.

[13] WANG H J, TAN G, ZHU L N, et al. The efficacy of repetitive transcranial magnetic stimulation for Parkinson disease patients with depression[J]. The International Journal of Neuroscience, 2020, 130(1): 19-27.

[14] QIN B, CHEN H, GAO W, et al. Effectiveness of high-frequency repetitive transcranial magnetic stimulation in patients with depression and Parkinsons disease: A meta-analysis of randomized, controlled clinical trials[J]. Neuropsychiatric Disease and Treatment, 2018, 14: 273-284.

[15] AFTANAS L I, GEVORGYAN M M, ZHANAEVA S Y, et al. Therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) on neuroinflammation and neuroplasticity in patients with Parkinsons disease: A placebo-controlled study[J]. Bulletin of Experimental Biology and Medicine, 2018, 165(2): 195-199.

[16] LEBLHUBER F, STEINER K, FUCHS D. Treatment of patients with geriatric depression with repetitive transcranial magnetic stimulation[J]. Journal of Neural Transmission, 2019, 126(8): 1105-1110.

[17] YANG J J, WANG L, WANG F Q, et al. Low-frequency pulsed magnetic field improves depression-like behaviors and cognitive impairments in depressive rats mainly via modulating synaptic function[J]. Frontiers in Neuroscience, 2019, 13: 820.

[18] ERBAY M F, ZAYMAN E P, ERBAY L G, et al. Evaluation of transcranial magnetic stimulation efficiency in major depressive

disorder patients: A magnetic resonance spectroscopy study[J]. Psychiatry Investigation, 2019, 16(10): 745-750.

[19] LEVITT J G, KALENDER G, ONEILL J, et al. Dorsolateral prefrontal γ-aminobutyric acid in patients with treatment-resistant depression after transcranial magnetic stimulation measured with magnetic resonance spectroscopy[J]. Journal of Psychiatry & Neuroscience: JPN, 2019, 44(6): 386-394.

[20] XIANG S T, ZHOU Y, FU J X, et al. rTMS pre-treatment effectively protects against cognitive and synaptic plasticity impairments induced by simulated microgravity in mice[J]. Behavioural Brain Research, 2019, 359: 639-647.

[21] SHANG Y C, WANG X, LI F J, et al. rTMS ameliorates prenatal stress-induced cognitive deficits in male-offspring rats associated with BDNF/TrkB signaling pathway[J]. Neurorehabilitation and Neural Repair, 2019, 33(4): 271-283.

[22] ZHAI B H, FU J X, XIANG S T, et al. Repetitive transcranial magnetic stimulation ameliorates recognition memory impairment induced by hindlimb unloading in mice associated with BDNF/TrkB signaling[J]. Neuroscience Research, 2020, 153: 40-47.

[23] MA Q Y, GENG Y, WANG H L, et al. High frequency repetitive transcranial magnetic stimulation alleviates cognitive impairment and modulates hippocampal synaptic structural plasticity in aged mice[J]. Frontiers in Aging Neuroscience, 2019, 11: 235.

[24] JIANG B H, HE D M. Repetitive transcranial magnetic stimulation (rTMS) fails to increase serum brain-derived neurotrophic factor (BDNF)[J]. Clinical Neurophysiology, 2019, 49(4): 295-300.

[25] BAEK A, PARK E J, KIM S Y, et al. High-frequency repetitive magnetic stimulation enhances the expression of brain-derived neurotrophic factor through activation of Ca2+-calmodulin-dependent protein kinase Ⅱ-cAMP-response element-binding protein pathway[J]. Frontiers in Neurology, 2018, 9: 285.

[26] PENG S Y, LI W Q, LV L, et al. BDNF as a biomarker in diagnosis and evaluation of treatment for schizophrenia and depression[J]. Discovery Medicine, 2018, 26(143): 127-136.

[27] BOONZAIER J, VAN TILBORG G A F, NEGGERS S F W, et al. Noninvasive brain stimulation to enhance functional recovery after stroke: Studies in animal models[J]. Neurorehabilitation and Neural Repair, 2018, 32(11): 927-940.

[28] BAEK A, KIM J H, PYO S, et al. The differential effects of repetitive magnetic stimulation in an in vitro neuronal model of ischemia/reperfusion injury[J]. Frontiers in Neurology, 2018, 9: 50.

[29] LUO J, ZHENG H Q, ZHANG L Y, et al. High-frequency repetitive transcranial magnetic stimulation (rTMS) improves functional recovery by enhancing neurogenesis and activating BDNF/TrkB signaling in ischemic rats[J]. International Journal of Molecular Sciences, 2017, 18(2): E455.

[30] NIIMI M, HASHIMOTO K, KAKUDA W, et al. Role of brain-derived neurotrophic factor in beneficial effects of repetitive transcranial magnetic stimulation for upper limb hemiparesis after stroke[J]. PLoS One, 2016, 11(3): e0152241.

[31] GUO F, LOU J C, HAN X H, et al. Repetitive transcranial magnetic stimulation ameliorates cognitive impairment by enhancing neurogenesis and suppressing apoptosis in the Hippocampus in rats with ischemic stroke[J]. Frontiers in Physiology, 2017, 8: 559.

[32] SASSO V, BISICCHIA E, LATINI L, et al. Repetitive transcranial magnetic stimulation reduces remote apoptotic cell death and inflammation after focal brain injury[J]. Journal of Neuroinflammation, 2016, 13(1): 150.

[33] PHILLIPS A L, BURR R L, DUNNER D L. rTMS effects in patients with co-morbid somatic pain and depressive mood disorders[J]. Journal of Affective Disorders, 2018, 241: 411-416.

[34] DUBIN M J, MAO X L, BANERJEE S, et al. Elevated prefrontal cortex GABA in patients with major depressive disorder after TMS treatment measured with proton magnetic resonance spectroscopy[J]. Journal of Psychiatry & Neuroscience: JPN, 2016, 41(3): E37-E45.

[35] KIM S Y, LEE D W, KIM H, et al. Chronic repetitive transcranial magnetic stimulation enhances GABAergic and cholinergic metabolism in chronic unpredictable mild stress rat model: 1H-NMR spectroscopy study at 11.7T[J]. Neuroscience Letters, 2014, 572: 32-37.

[36] TAN T, WANG W, XU H T, et al. Low-frequency rTMS ameliorates autistic-like behaviors in rats induced by neonatal isolation through regulating the synaptic GABA transmission[J]. Frontiers in Cellular Neuroscience, 2018, 12: 46.

[37] ZHENG H R, JIA F J, GUO G Q, et al. Abnormal anterior cingulate N-acetylaspartate and executive functioning in treatment-resistant depression after rTMS therapy[J]. The International Journal of Neuropsychopharmacology, 2015, 18(11): pyv059.

[38] HEATH A, LINDBERG D R, MAKOWIECKI K, et al. Medium- and high-intensity rTMS reduces psychomotor agitation with distinct neurobiologic mechanisms[J]. Translational Psychiatry, 2018, 8: 126.

[39] ZHAO L, REN H C, GU S N, et al. rTMS ameliorated depressive-like behaviors by restoring HPA axis balance and prohibiting hippocampal neuron apoptosis in a rat model of depression[J]. Psychiatry Research, 2018, 269: 126-133.

[40] KHODAIE B, SABA V. The neuroprotective effects of long-term repetitive transcranial magnetic stimulation on the cortical spreading depression-induced damages in rat's brain[J]. Basic and Clinical Neuroscience, 2018, 9(2): 87-100.

[41] LU R L, ZHANG C L, LIU Y Y, et al. The effect of bilateral low-frequency rTMS over dorsolateral prefrontal cortex on serum brain-derived neurotropic factor and serotonin in patients with generalized anxiety disorder[J]. Neuroscience Letters, 2018, 684: 67-71.

[42] DONG Q Y, WANG Y Y, GU P, et al. The neuroprotective mechanism of low-frequency rTMS on nigral dopaminergic neurons of Parkinson's disease model mice[J]. Parkinson's Disease, 2015, 2015: 564095.

[43] BA M W, KONG M, GUAN L N, et al. Repetitive transcranial magnetic stimulation (rTMS) improves behavioral and biochemical deficits in levodopa-induced dyskinetic rats model[J]. Oncotarget, 2016, 7(37): 58802-58812.

[44] CHO S S, KOSHIMORI Y, AMINIAN K, et al. Investing in the future: Stimulation of the medial prefrontal cortex reduces discounting of delayed rewards[J]. Neuropsychopharmacology, 2015, 40(3): 546-553.

[45] BA M W, MA G Z, REN C, et al. Repetitive transcranial magnetic stimulation for treatment of lactacystin-induced Parkinsonian rat model[J]. Oncotarget, 2017, 8(31): 50921-50929.

[46] ETIéVANT A, MANTA S, LATAPY C, et al. Repetitive transcranial magnetic stimulation induces long-lasting changes in protein expression and histone acetylation[J]. Scientific Reports, 2015, 5: 16873.

[47] PETTORRUSO M, DI GIUDA D, MARTINOTTI G, et al. Dopaminergic and clinical correlates of high-frequency repetitive transcranial magnetic stimulation in gambling addiction: A SPECT case study[J]. Addictive Behaviors, 2019, 93: 246-249.

[48] MALIK S, JACOBS M, CHO S S, et al. Deep TMS of the Insula using the H-coil modulates dopamine release: A crossover [11C] PHNO-PET pilot trial in healthy humans[J]. Brain Imaging and Behavior, 2018, 12(5): 1306-1317.

[49] LUO D, MA R, WU Y N, et al. Mechanism underlying acupuncture-ameliorated depressive behaviors by enhancing glial glutamate transporter in chronic unpredictable mild stress (CUMS) rats[J]. Medical Science Monitor, 2017, 23: 3080-3087.

[50] KIM Y, LEE H Y, CHO S H. Antidepressant effects of pharmacopuncture on behavior and brain-derived neurotrophic factor (BDNF) expression in chronic stress model of mice[J]. Journal of Acupuncture and Meridian Studies, 2017, 10(6): 402-408.

[51] HAN X K, WU H G, YIN P, et al. Electroacupuncture restores hippocampal synaptic plasticity via modulation of 5-HT receptors in a rat model of depression[J]. Brain Research Bulletin, 2018, 139: 256-262.

[52] LI H, SANG L, XIA X, et al. Therapeutic duration and extent affect the effect of moxibustion on depression-like behaviour in rats via regulating the brain tryptophan transport and metabolism[J]. Evidence-Based Complementary and Alternative Medicine: ECAM, 2019, 2019: 7592124.

[53] 傅錦华,刘  勇.舒肝解郁胶囊对抑郁模型大鼠脑内5-HT、DA及其代谢产物水平的影响[J].湖南中医药大学学报,2016,36(6):47-51.

[54] HE J, ZHAO C K, LIU W L, et al. Neurochemical changes in the Hippocampus and prefrontal cortex associated with electroacupuncture for learning and memory impairment[J]. International Journal of Molecular Medicine, 2018, 41(2): 709-716.

[55] HUANG J, YOU X F, LIU W L, et al. Electroacupuncture ameliorating post-stroke cognitive impairments via inhibition of peri-infarct astroglial and microglial/macrophage P2 purinoceptors-mediated neuroinflammation and hyperplasia[J]. BMC Complementary and Alternative Medicine, 2017, 17(1): 1-13.

[56] JITTIWAT J. Baihui point laser acupuncture ameliorates cognitive impairment, motor deficit, and neuronal loss partly via antioxidant and anti-inflammatory effects in an animal model of focal ischemic stroke[J]. Evidence-Based Complementary and Alternative Medicine: ECAM, 2019, 2019: 1204709.

[57] ZHANG Y, MAO X, LIN R H, et al. Electroacupuncture ameliorates cognitive impairment through inhibition of Ca2+-mediated neurotoxicity in a rat model of cerebral ischaemia-reperfusion injury[J]. Acupuncture in Medicine, 2018, 36(6): 401-407.

[58] LIU J, WU Y Y, YU X L, et al. Temporal effect of acupuncture on amino acid neurotransmitters in rats with acute cerebral ischaemia[J]. Acupuncture in Medicine, 2019, 37(4): 252-258.

[59] KOCH G, MARTORANA A, CALTAGIRONE C. Transcranial

magnetic stimulation: Emerging biomarkers and novel therapeutics in Alzheimer's disease[J]. Neuroscience Letters, 2020, 719: 134355.

[60] DOMENICI E, WILLé D R, TOZZI F, et al. Plasma protein biomarkers for depression and schizophrenia by multi analyte profiling of case-control collections[J]. PLoS One, 2010, 5(2): e9166.

[61] MIKELL C B, SINHA S, SHETH S A. Neurosurgery for schizophrenia: An update on pathophysiology and a novel therapeutic target[J]. Journal of Neurosurgery, 2016, 124(4): 917-928.

[62] VAL-LAILLET D, AARTS E, WEBER B, et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity[J]. NeuroImage Clinical, 2015, 8: 1-31.

[63] LI C T, HUANG Y Z, BAI Y M, et al. Critical role of glutamatergic and GABAergic neurotransmission in the central mechanisms of Theta-burst stimulation[J]. Human Brain Mapping, 2019, 40(6): 2001-2009.

[64] CHU C, MURDOCK M H, JING D Q, et al. The microbiota regulate neuronal function and fear extinction learning[J]. Nature, 2019, 574(7779): 543-548.

[65] WANG YF, ZHENG LJ, LIU Y, et al. The gut microbiota-inflammation-brain axis in end-stage renal disease: perspectives from default mode network[J]. Theranostics, 2019,9(26): 8171-8181.

[66] DURGAN DJ, LEE J, MCCULLOUGH LD, et al. Examining the Role of the Microbiota-Gut-Brain Axis in Stroke[J]. Stroke, 2019,50(8): 2270-2277.

猜你喜欢
标志物海马帕金森病
海马
多项肿瘤标志物联合检测在健康体检中的应用价值
肿瘤标志物的认识误区
帕金森病不只是手抖这么简单,这些“非运动症状”你留意到了吗
肿瘤标志物,你该知道这些事儿
焦虑、抑郁或是帕金森病先兆
“帕金森”不止是“抖”
萌萌哒之长满痘痘的豆丁海马
手不抖,也可能是帕金森病
肿瘤标志物正常不等于没有肿瘤