厨余与园林废物共堆肥过程氮素转化及损失

2021-09-02 12:57薛晶晶李彦明常瑞雪彭粮欢
农业工程学报 2021年10期
关键词:铵态氮硝态厨余

薛晶晶,李彦明,常瑞雪,王 珏,彭粮欢

厨余与园林废物共堆肥过程氮素转化及损失

薛晶晶,李彦明※,常瑞雪,王 珏,彭粮欢

(中国农业大学资源与环境学院,农田土壤污染防控与修复北京市重点实验室,北京 100193)

为获得适用于厨余垃圾与园林废物的共堆肥工艺,采用密闭式好氧堆肥,在含水率75%和通风量0.2 L/(kg·min)的条件下,以厨余垃圾和园林废物为研究对象,探讨了两者干物质质量比为4∶1(N1)、3∶1(N2)和2∶1(N3)时对发酵温度、pH值、C/N、GI、氨气、全氮、有机氮、铵态氮与硝态氮等的影响,以期揭示二者共堆肥过程中氮素的转化与损失规律。结果表明,在厨余垃圾与园林废物共堆肥过程中,两者为2∶1时,不但升温速度快,有效提高了反应过程的最高发酵温度,高达63.4 ℃,无害化程度彻底,而且初始C/N较适宜,在第21天实现了完全腐熟状态,加速了发酵进程;N3较N1、N2处理分别减少了30.30%、12.96%的全氮损失与7.8%、15.71%的氨气挥发损失,有效促进铵态氮向有机氮和硝态氮转化,氮素损失最小。因此,厨余垃圾与园林废物为2∶1时,更利于促进二者协同发酵处理,为提升共堆肥产品氮素养分含量提供理论支持。

堆肥;氨挥发;氮素转化;氮素损失;厨余垃圾;园林废物

0 引 言

中国城镇化的快速发展致使生活垃圾清运量逐年增加,年清运量已高达2.3亿t,其中,部分城镇的厨余垃圾占比高达76%[1]。近年来,城镇绿化面积也在快速增加,绿化养护产生的园林垃圾约4000万t/a,且综合利用率尚不足10%,大量弃置的园林废物亦然成为城镇火灾隐患[2]。堆肥化是世界范围内资源化利用有机固体废弃物的重要途径[3],厨余垃圾游离态脂肪含量丰富、高水高盐等特性使其极易酸败变质,污染环境[4],难以单独好氧堆肥处理[5];园林废物单独堆肥也异常困难,但二者的生化特性正好互补[6-7]。因此,构建适用于二者协同处理的共堆肥工艺,有助于同步实现两种废弃物的资源化利用,促进中国城镇的可持续发展。

此外,由于厨余垃圾中蛋白质含量较高,且这类物质在堆肥发酵过程极易分解转换为游离铵,进而以氨挥发的形式造成氮素损失[8],研究表明厨余垃圾堆肥过程的氮素损失可高达60%,降低堆肥产品的肥料价值[9-10]。将二者进行共堆肥,不但可有效改善厨余垃圾的物理结园林废物富含纤维素、半纤维素、木质素等高含碳物质,构,而且还能降低堆肥过程氨挥发,减少氮素损失[11]。

目前还鲜见厨余垃圾与园林废物协同处理共堆肥的报道。为此,本文以厨余垃圾和园林废物为研究对象,通过揭示二者共堆肥过程的氮素转化和损失规律,以期为今后城镇厨余垃圾与园林废物共堆肥处理提供理论依据。

1 材料与方法

1.1 供试材料

厨余垃圾取自中国农业大学西校区食堂;园林废物(包括修剪废草和落叶)取于中国农业大学西校区垃圾转运站;分别将厨余和园林垃圾粉碎至≤2 mm后备用,供试物料的理化性质如表1所示。

表1 供试物料的理化性质

1.2 堆肥操作与试验设计

先将修剪废草和银杏树叶按照1∶1(干物质质量比)混合均匀后,即为园林废物;之后再将园林废物与厨余垃圾按照比例进行混合,混合均匀后将自制密闭式堆肥模拟反应器(专利号:202023234710.0)的发酵罐装满(图 1),连接好管路后,开启装置。厨余垃圾与园林废物的混合质量比设置为4∶1(N1)、3∶1 (N2)和2∶1(N3),混合物料的含水率设置为75%,容重为0.35kg/L,每个处理装填的干物料量相同,通风量设置为0.2 L/(kg·min),发酵周期设置为28d。

1.3 样品采集与分析方法

在堆肥的第0、3、7、14、21、28天进行翻堆操作和样品采集。每次采集样品不少于150g,所取样品分为2份处理,一份置于-20 ℃冰箱中保存备用,用于pH值、发芽率指数、硝态氮、铵态氮等指标测定;另一份样品用于风干总有机碳、总氮等指标测定。

温度:采用Pt100温度传感器和自动温度记录仪进行数据采集,采集频率为30 min记录1次;氨气:采用硼酸吸收法[11];pH值和电导率:按照固液比1∶10浸提样品,在室温条件下放入恒温振荡器中,以200 r/min水平密闭震荡30 min,静置2 h,提取上清液作为浸提液,分别将校准过的pH计电极和EC计电极插入浸提液;发芽率指数(Germination Index,GI):在培养皿内垫一张滤纸,加入5 mL提取的浸提液浸湿滤纸,均匀放入10粒饱满的水萝卜()种子,25 ℃下培养48 h后测定发芽率和根长,每个样品做3次重复,同时以蒸馏水作空白试验[12];铵态氮和硝态氮:称取5 g堆肥样品于三角瓶内,加入2 mol/L KCl 50 mL,震荡30 min,过滤取上清液,用流动分析仪测定;总有机碳和总氮的测定参照有机肥测定标准方法(NY 525-2012);灰分:样品烘干后经550℃灼烧4 h。

1.4 计算方法

根据物质守恒与氮素平衡原理,堆肥氮素损失的计算公式如下[13]:

Loss=100-100[12)/(21)] (1)

式中Loss为堆肥过程中氮素损失率,%;12为堆肥初始和最终的灰分质量分数,%;12为堆肥初始和最终的总氮浓度,g/kg。

氨挥发占氮素损失比例的计算公式如下[14]:

=[(1/TN)×(N分子量/NH3分子量)]×100% (2)

式中为氨挥发占氮素损失的比例,%;1为氨挥发总量,g;TN为初始物料的含氮总量,g。

N2O等其他的氮素损失量为氮素损失总量与氨挥发总量的差值。

应用Office Excel和SPSS 20.0进行数据处理与图表制作。

2 结果与分析

2.1 基础理化指标

各处理的温度变化如图2a所示,N1、N2和N3的温度均呈现先上升后下降的趋势。NH3的挥发主要发生在高温期,且温度越高,NH3挥发量越大。当温度大于60 ℃时,NH3多以气体的形式挥发,造成严重的氮素损失[13]。N2、N3处理超过50 ℃的时间分别为12、13 d,均达到国家堆肥无害化标准的要求(GB7959-2012),而N1处理达50 ℃以上的时间仅维持了7 d,与N2、N3处理差异显著(<0.05),这可能是由于厨余垃圾占比大,油脂附着在物料表面的含量高,其充当一层隔膜,阻碍了与空气的充分接触,进而减弱反应强度,延迟升温[15],N3处理升温最快且最先达到峰值温度63.4 ℃,N1处理升温缓慢,在第9天左右达到最高温度,仅为59.6 ℃。3个处理60 ℃以上的持续时间时间分别为0、2和3 d,表明随着园林废物比例增加,能缩短升温时间,延长高温期时长,加速堆肥发酵进程。

pH值作为影响氮素损失的重要因素之一,会随着堆肥有机物的降解而发生变化,主要通过影响物料液相中铵离子与氨的平衡来影响氨气的挥发[16-17]。堆肥起始时,各处理pH值均在4.5以下,偏酸性环境,第7天,N1、N3处理的pH值由4.6迅速增加至7左右,而N2在第7天时,pH值仍旧保持酸性,直到第14天才增加至8,这必然影响微生物对有机质的降解,因此很可能是造成N2处理高温期(图2b)滞后的重要原因,但较低的pH能在一定程度上抑制NH3的挥发,减少氮素损失。Godwin的研究表明,当pH值小于9时,NH3的挥发量与pH值呈正相关[18]。堆肥后期,三个处理的pH值变化趋势相似,最终均维持在8.2左右,方差分析表明3个处理的pH值之间无显著性差异(>0.05)。

堆肥过程中C/N变化趋势如图2c所示,堆肥初期,N1、N2、N3处理的C/N分别为17.72、20.59和22.92,C/N较低时,会导致大量有机氮向气态氨转化,并以NH3形式挥发[18],继而造成严重的氮素损失;虽然有机碳也会被微生物分解矿化,但是含碳氮有机物的分解矿化合成并不同步,因此各处理C/N在整个堆肥过程中均呈下降趋势,堆肥结束时,N3处理的C/N显著高于N2和N1处理(<0.05),表明随着园林废物占比的增多,碳素的损失小于氮素损失,C/N上升。

发芽指数是评价有机固体废弃物经堆肥化处理后产物对植物是否具有生物毒性及其产品是否腐熟的重要指标。如图2d所示,随着堆肥发酵时间的增加,各处理的GI值均呈现上升的趋势。N3处理的GI值在第9和21天分别率先超过60%和80%,表明厨余与园林废物按适宜比例协同处理共堆肥工艺,可有效缩短堆肥物料的腐熟时间。堆肥结束时,三个处理的GI值分别为75.77%,81.54%和84.50%。N2、N3处理均达到完全腐熟的标准(>80%),而N1仅达到基本腐熟的标准(>60%),这说明堆肥产物中稳定腐殖质的含量会随着含有高木质纤维素园林废物占比的增加而增加[19]。因此,采用堆肥化处理厨余垃圾时,其比例不建议高于初始混合物料的80%。

2.2 氨气排放速率和累积排放量

各处理气态NH3的排放速率与累积排放量如图3a、3b所示。NH3挥发的高峰期为堆肥过程的第8~20天,此阶段各处理氨的排放速率有较大差异,N1、N2、N3处理的最大排放速率分别为2.15,1.41和1.59 g/d,N3因高温期提前,于第9天率先达到峰值,与达到发酵高温(图2a)的时间相吻合;而N1排放峰值最大,排放速率显著(<0.05)大于N2、N3处理,与N1处理堆肥后期pH值(图2b)较大密切相关,N1处理高NH3排放速率必然会造成高NH3释放累积量(13.29 g/kg),这是由多重因素所决定的,一方面,N1处理园林废物占比少,初始C/N低,可供消耗的碳素较少,氮素相对过剩且无法被微生物利用时,部分氮素就会转化成游离NH3并大量逸出。另一方面,氨挥发与氮素转化密切相关。堆肥初期,有机氮在高pH值条件下,经过氧化作用可转化为游离NH3,造成N1处理有机氮含量的迅速下降[19-21],随着有机质的降解,部分有机氮矿化为NH3(液)并结合H+,进而形成NH4+,进而提高液相底物的pH值[22],这是导致N1处理铵态氮含量峰值(图4c)与pH值(图2b)均较高的原因。当NH3(液)持续转移到水和气相的界面,且NH3/NH4+的pKa超过9.25时,便会以NH3(气)的形式挥发[23]。到堆肥后期,各处理的硝态氮含量相对初始时降低(图4d),表明各处理的硝化作用被抑制,致使NH4+未能在亚硝化细菌和硝化细菌的作用下转化为NO3-[24],Al-Jabi等[25]通过在食品废物堆肥中添加富含硝化微生物的腐熟堆肥,强化铵的硝化作用,使NH3挥发降低36%。因此,强化NH3/NH4+的微生物同化作用或添加强化硝化作用的外源改良剂,均可促进物料中无机氮向有机氮转化,降低氨气挥发,减少氮素损失。

2.3 堆肥过程不同氮素形态的转化

堆肥过程中全氮的变化情况如图4a所示,第0天时,因含氮量高的厨余垃圾占比不同致使N3

有机氮的变化如图4b所示,N1、N2和N3处理初始有机氮分别为32.15、28.22和24.81 g/kg,占总氮的93.24%、90.73%和85.86%,表明在堆肥初期有机氮在堆体中占据绝对优势,微生物将无机氮合成有机氮的速率小于有机氮经过氧化作用转化为无机氮的速率,致使三个处理有机氮含量均呈下降趋势,N1处理下降幅度最大,因厨余垃圾占比大、含水率高,堆体局部厌氧致使部分有机氮进入渗滤液造成损失[22]。之后随着堆肥高温期的到来及氧化作用的加强,N2、N3处理有机氮含量逐步降低。堆肥后期,N1、N2、N3处理的有机氮含量均呈上升趋势,一方面可能是因为部分硝态氮被微生物吸收利用,通过细胞质合成作用生成有机氮所造成的[22];另一方面,铵态氮与碳源代谢的中间产物α-酮戊二酸在谷氨酸合成酶的作用下也会生成有机氮[21]。堆肥结束时三个处理有机氮含量分别为23.37、26.21、27.73 g/kg,处理之间性差异不显著(>0.05)。

图4 全氮、有机氮、铵态氮和硝态氮随时间变化

Jiang等[28]研究表明氨气的挥发和有机氮的矿化是影响铵态氮浓度的主要因素。如图4c所示,铵态氮含量随堆肥发酵进程均呈现先上升后下降的趋势,N1、N2、N3处理分别在第14、14和7天达到最大值6.08、5.87、5.94 g/kg,堆肥前期,由于有机氮的矿化导致铵态氮含量增加,这段时间称为铵态氮的积累期。随后N3最先下降且速率最快,与N1、N2差异显著(<0.05),这与N3升温最快且最先达到最高温度(图2a)有关。第21~28天,伴随着有机物降解速率和氨气挥发速率的减缓,各处理的铵态氮含量也逐渐减缓并趋于稳定,反应结束时,N1、N2、N3处理的铵态氮含量分别降低了58.44%、53.82%、82.39%。硝态氮含量如图4d所示,堆肥初期,N3的硝态氮含量最高(1.65 g/kg),其余处理的硝态氮含量则介于 1.04~1.14 g/kg之间,区别于N1处理平缓下降,N2、N3处理均呈现短暂的上升趋势,这可能是由于园林废物占比的增多使得堆体的厌氧区域相对较少,反硝化作用被抑制,硝态氮含量有所增加[22],堆肥后期随着物料降解、堆料颗粒变小以及孔隙度的降低,反硝化作用大于硝化作用,部分硝态氮转化为有机氮,含量不断降低[23]。堆肥结束时,各处理间硝态氮的浓度无明显差异(>0.05),分别为0.06、0.12、0.23 g/kg。

2.4 氮素平衡及物料损失

堆肥过程中氮素损失主要包括氨挥发、渗滤液中的离子态氨氮、硝氮以及气态NOX等,氮素平衡和物料损失如表2所示,各处理氨挥发占总氮素损失的比例分别为63.33%、65.66%、70.59%;由于在该研究中监测到的N2O排放量较少,故而将其合并到了其他N损失的部分。前人的研究表明厨余垃圾堆肥中由NOX排放造成的氮素损失仅占氮素损失的4%左右,渗滤液中氮素占总氮损失可达18.8%[29];由此可见氨挥发是堆肥过程氮素损失的主要途径。N3和N2较N1处理减少了30.30%和12.96%的全氮损失与7.8%和15.71%的氨挥发。表明园林废物占比量的增加不仅对NH3减排起到一定的促进作用,还有效降低离子态氮素的流失,还能提高堆肥产品的养分含量。减量化是固体废弃物进行堆肥化处理的主要目的之一,堆肥前后的物料质量变化可以直观地反映其减量化效果。N3与N1、N2处理差异显著(<0.05),可能是因为N3处理的堆体结构与好氧状态较好,提高了微生物活性[30],促进了有机物转化,所以N3处理高温持续时间和所达到的最高温度(图2a)均优于N1、N2处理。

表2 氮素平衡及物料损失

3 结 论

1)综上可知,随着厨余垃圾比例的降低和园林废物比例的上升,有利于改善堆体结构,促进有机物转化,减少氨挥发。厨余垃圾与园林废物协同堆肥处理比例为2∶1时,发酵温度可高达63.4 ℃,21 d可达到完全腐熟,减量化效果明显。

2)两者协同处理共堆肥可解决它们单独处理发酵难、效率低、氮素损失严重等难题,有助于铵态氮向有机氮和硝态氮转化,减少氨气排放和氮素损失,提升堆肥产品品质,增加肥料价值,为现代化城镇绿色高质量发展提供支撑。

[1] 杨娜,邵立,何品晶.我国城市生活垃圾组分含水率及特征分析[J].中国环境科学,2018,38(3):1033-1038.

Yang Na, Shao Li, He Pinjing. Analysis of water content and characteristics of municipal solid waste in China[J]. China Environmental Science, 2018, 38(3): 1033-1038. (in Chinese with English abstract)

[2] 刘瑜,戚智勇,赵佳颖,等. 我国城市园林废弃物及其资源化利用现状[J]. 再生资源与循环经济,2020(8):38-44.

Liu Yu, Qi Zhiyong, Zhao Jiaying, et al. Current situation of urban garden waste and its resource utilization in China[J]. Recycling Research, 2020(8): 38-44. (in Chinese with English abstract)

[3] Awasthi M K, Wang Q, Awasthi S K, et al. Influence of medical stone amendment on gaseous emissions, microbial biomass and abundance of ammonia oxidizing bacteria genes during biosolids composting[J]. Bioresource Technology, 2017, 247: 970-979.

[4] 炊春萌,李保国,刘莉,等. 餐厨垃圾厌氧发酵研究进展[J]. 食品与发酵科技,2020(4):60-64.

Chui Chunmeng, Li Baoguo, Liu Li, et al. Research progress on anaerobic fermentation of kitchen waste[J]. Food and Fermentation Sciences and Technology, 2020(4): 60-64. (in Chinese with English abstract)

[5] Xu F Q, Li Y Y, Ge X M, et al. Anaerobic digestion of food waste: Challenges and opportunities[J]. Bioresource Technology, 2017, 247: 1047-1058.

[6] Chen M L, Huan Y M, Liu H J, et al. Impact of different nitrogen source on the compost quality and greenhouse gas emissions during composting of garden waste[J]. Process Safety and Environmental Protection, 2019, 124: 326-335.

[7] 刘敏茹,郭华芳,林镇荣. 园林绿化废弃物联合餐厨垃圾好氧堆肥的“推流”工艺及应用研究[J]. 环境工程,2016,34(s1):743-746.

Liu Minru, Guo Huafang, Lin Zhenrong. Research on “Push flow” technology and application of landscaping waste combined with kitchen waste aerobic composting[J]. Environmental Engineering, 2016, 34(s1): 743-746. (in Chinese with English abstract)

[8] 杨延梅. 通风量对厨余堆肥氮素转化及氮素损失的影响[J]. 环境科学与技术,2010,33(12):1-4.

Yang Yanmei. Effect of ventilation rate on nitrogen conversion and nitrogen loss of kitchen waste composting[J]. Environmental Science & Technology, 2010, 33(12): 1-4. (in Chinese with English abstract)

[9] 杨延梅,杨志峰,张相锋,等. 底物含氮量对厨余堆肥氮素转化及其损失的影响研究[J].环境科学学报,2017,27(6):993-999.

Yang Yanmei, Yang Zhifeng, Zhang Xiangfeng, et al. Effect of substrate nitrogen content on nitrogen conversion and loss of kitchen waste composting[J]. Acta Scientiae Circumstantiae, 2017, 27(6): 993-999. (in Chinese with English abstract)

[10] Zhang H Y, Li G X, Gu J, et al. Influence of aeration on Volatile Sulfur Compounds (VSCs) and NH3emissions during aerobic composting of kitchen waste[J]. Waste Management, 2016, 58: 369-375.

[11] 张玉冬,张红玉,顾军,等. 通风量对厨余垃圾堆肥过程中H2S和NH3排放的影响[J]. 农业环境科学学报,2015,34(7):1371-1377.

Zhang Yudong, Zhang Hongyu, Gu Jun, et al. Influence of ventilation rate on H2S and NH3emission during composting of kitchen waste[J]. Journal of Agro-Environment Science, 2015, 34(7): 1371-1377. (in Chinese with English abstract)

[12] Michałowski T, Asuero A G. New approaches in modeling carbonate alkalinity and total alkalinity[J]. Critical Reviews in Analytical Chemistry, 2012, 42(3): 220-244.

[13] Paredes C, Roig A, Bernal M P, et al. Evolution of organic matter and nitrogen during co-composting of olive mill wastewater with solid organic wastes[J]. Biology and Fertility of Soils, 2000, 11(11): 6235-6248.

[14] 陈是吏. 低碳氮比鸡粪堆肥温室气体和 NH3排放规律影响研究[D]. 北京:中国农业大学,2017.

Chen Shili. Study on the Influence of Greenhouse Gas and NH3Emission Law of Low Carbon Nitrogen Ratio Chicken Manure Composting[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract)

[15] 贾军涛. 易腐垃圾连续式好氧生物转化工艺构建[D]. 北京:中国农业大学,2019.

Jia Juntao. Construction of Continuous Arobic Biotransformation Process for Perishable Garbage[D]. Beijing: China Agricultural University, 2019. (in Chinese with English abstract)

[16] Bernal M P, Alburquerque J A, Moral R. Composting of animal manures and chemical criteria for compost maturity assessment: A review[J]. Bioresource Technology, 2009, 100(22): 5444-5453.

[17] Wang X, Selvam A, Wong J W C. Influence of lime on struvite formation and nitrogen conservation during food waste composting[J]. Bioresource Technology, 2016, 217: 227-232.

[18] Godwin C M, Whitaker E A, Cotner J B. Growth rate and resource imbalance interactively control biomass stoichiometry and elemental quotas of aquatic bacteria[J]. Ecology, 2017, 98(3): 820-829.

[19] 常瑞雪,王骞,甘晶晶,等. 易降解有机质含量对黄瓜秧堆肥腐熟和氮损失的影响[J]. 农业工程学报,2017,33(1):231-237.

Chang Ruixue, Wang Qian, Gan Jingjing, et al. Influence of easily-degraded organic matter content on maturity and nitrogen loss during composting of cucumber vine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 231-237. (in Chinese with English abstract)

[20] Zhang H J, Matsuto, Toshihiko. Mass and element balance in food waste composting facilities[J]. Waste Management, 2010, 30(8/9): 1477-1485.

[21] 周海瑛,邱慧珍,杨慧珍,等. C/N比对好氧堆肥中NH3挥发损失和含氮有机物转化的影响[J]. 干旱地区农业研究,2020(2):69-77.

Zhou Haiying, Qiu Huizhen, Yang Huizhen, et al. Effect of C/N ratio on NH3volatilization loss and nitrogen organic conversion in aerobic composting[J]. Agricultural Research in the Arid Areas, 2020(2): 69-77. (in Chinese with English abstract)

[22] 杨延梅. 易利用碳的添加对厨余堆肥氮素转化与氮素损失的影响[J]. 安徽农业科学,2011,39(32):19831-19833.

Yang Yanmei. Effect of easy use of carbon on nitrogen conversion and nitrogen loss of kitchen waste composting[J]. Journal of Anhui Agricultural Sciences, 2011, 39(32): 19831-19833. (in Chinese with English abstract)

[23] Wang S G, Zeng Y. Ammonia emission mitigation in food waste composting: A review[J]. Bioresource Technology, 2018, 248: 13-19.

[24] Chan M T, Selvam A, Wong J W C. Reducing nitrogen loss and salinity during ‘struvite’ food waste composting by zeolite amendment[J]. Bioresource Technology, 2016, 200: 838-844.

[25] Al-Jabi L F, Halalsheh M M, Badarneh D M. Conservation of ammonia during food waste composting[J]. Environmental Technology, 2008, 29(10): 1067-1073.

[26] 李赟,袁京,李国学,等. 辅料添加对厨余垃圾快速堆肥腐熟度和臭气排放的影响[J]. 中国环境科学,2017,37(3):1031-1039.

Li Yuan, Yuan Jing, Li Guoxue, et al. Effect of supplementary material addition on fast composting degree and odor emission of kitchen waste[J]. China Environmental Science2017, 37(3): 1031-1039. (in Chinese with English abstract)

[27] Jiang L, Ma L, Sui Y, et al. Effect of manure compost on the herbicide prometryne bioavailability to wheat plants[J]. Journal of Hazardous of Materials, 2010, 184(1/2/3): 337-344.

[28] Jiang T, Schuchardt F, Li G X, et al. Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting[J]. Journal of Environmental Science, 2011, 23(10): 1754-1760.

[29] 杨帆,欧阳喜辉,李国学,等. 膨松剂对厨余垃圾堆肥 CH4、N2O 和 NH3排放的影响[J]. 农业工程学报,2013,29(18):226-233.

Yang Fan, Ouyang Xihui, Li Guoxue, et al. Effects of leavening agent on CH4, N2O and NH3emissions from kitchenwaste composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 226-233. (in Chinese with English abstract)

[30] 郭秋月,常瑞雪,孙霞,等. 初始物料水溶性有机碳含量对番茄秧堆肥进程的影响[J]. 中国蔬菜,2018(5):42-47.

Guo Qiuyue, Chang Ruixue, Sun Xia, et al. Effect of initial water-soluble organic carbon content on composting process of tomato seedlings[J]. China Vegetables, 2018(5): 42-47. (in Chinese with English abstract)

Nitrogen transformation and loss during co-composting of kitchen and garden wastes

Xue Jingjing, Li Yanming※, Chang Ruixue, Wang Jue, Peng Lianghuan

(,,100193,)

A large amount of kitchen and garden wastes is ever increasing, with the rapid development of urbanization in China. Kitchen waste is characterized by rich free fat content, high water and salt content. The inappropriate pore structure and organic composition can inhibit the organic degradation during aerobic composting, thereby leading to nitrogen loss in the form of ammonia volatilization. Garden waste is rich in cellulose, hemicellulose, lignin, and high-carbon substances, particularly hard to be degraded directly. Alternatively, a co-composting of kitchen and garden wastes can improve the physicochemical characters to make the mixed materials more suitable for composting. Therefore, the current work aims to investigate the co-composting feasibility of kitchen and garden wastes. The ratios of kitchen and garden wastes were set as 4∶1 (N1), 3∶1 (N2), and 2∶1 (N3) (dry weight basis). A 28-day experiment was conducted in the self-developed closed system of aerobic composting. The total material weight, the moisture content, and the aeration rate of composting mixtures were 2.5kg, 75%, and 0.2L/(kg·min), respectively. Some indexes were recorded during the process, including the fermentation temperature, pH, C/N, Germination Index (GI), NH3and cumulative emissions, total N, organic N, ammonium N, and nitrate nitrogen. The specific rule was revealed to the nitrogen transformation and ammonia volatilization loss. The results showed that the temperature increased faster than other treatments, when the ratio of kitchen and garden waste was 2∶1 (N3), indicating the highest fermentation temperature (63.4℃). Meanwhile, the GI in N3 treatment exceeded 80% on the 21stday, meaning that the fermentation was significantly accelerated. The GI values of three treatments at the end of the process were 75.77%, 81.54%, and 84.50%, respectively. The products in the N2 and N3 treatment reached the standard of complete decomposing (>80%), while, those in the N1 only met the standard of basic decomposing (>60%). Therefore, a strong recommendation was given that the proportion of kitchen waste should not be higher than 80% of materials in the process of waste co-composting. The total nitrogen content decreased in the N1 and N2 treatment, whereas, it increased in the N3 fermentation. A high pH of products was obtained, due mainly to the fact that part of organic nitrogen was converted into ammonium nitrogen. The total nitrogen loss in N3 was the lowest at the end of composting, especially lower than that in the N1 and N2 by 30.30% and 12.96%, respectively. The nitrogen transformation demonstrated that the high fraction of garden waste reduced the NH3emission and the loss of ionic nitrogen, thereby promoting the conversion of ammonium nitrogen to organic nitrogen and nitrate nitrogen, indicating a higher nitrogen content in compost products. An optimal ratio of kitchen waste to garden waste was 2∶1, indicating the treatment is feasible. The co-fermentation of kitchen and garden wastes can greatly contribute to the reduction of nitrogen loss. The finding can provide potential theoretical support to the co-composting for kitchen and garden wastes.

composting; ammonia emission; nitrogen transformation; nitrogen loss; kitchen waste; garden waste

10.11975/j.issn.1002-6819.2021.10.023

X705

A

1002-6819(2021)-10-0192-06

薛晶晶,李彦明,常瑞雪,等. 厨余与园林废物共堆肥过程氮素转化及损失[J]. 农业工程学报,2021,37(10):192-197.doi:10.11975/j.issn.1002-6819.2021.10.023 http://www.tcsae.org

Xue Jingjing, Li Yanming, Chang Ruixue, et al. Nitrogen transformation and loss during co-composting of kitchen and garden wastes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(10): 192-197. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.10.023 http://www.tcsae.org

2021-01-19

2021-04-22

“十三五”国家重点研发计划课题任务书:易腐有机固废多组份协同好氧降解转化技术及装备(2018YFC1901000)

薛晶晶,研究方向为废弃物处理与资源化。Email:xjj_0602@126.com

李彦明,副教授,博士生导师,研究方向为废弃物处理与资源化。Email:liym@cau.edu.cn

猜你喜欢
铵态氮硝态厨余
离子型稀土尾矿深层土壤剖面铵态氮污染特征及影响因素*
河北太行山山前平原葡萄园土壤硝态氮累积特征及影响因素
基于厨余垃圾处理实践活动开展生态环保教育的探究
锰离子对引黄灌区不同质地土壤铵态氮吸附影响
不同电子受体反硝化除磷的研究进展
基于文献分析的氮肥用量对小麦玉米轮作体系硝态氮淋溶的影响*
姑苏区最大厨余垃圾处理项目试运营 日处理能力达100吨
浅谈中国厨余垃圾商业再利用意识的觉醒与发展
灌溉定额对春播裸燕麦土壤氮素的影响
食物废料处理器