苄基异喹啉类生物碱的微生物合成研究进展及挑战

2021-11-29 06:40林芝胡致伟瞿旭东林双君
合成生物学 2021年5期
关键词:小檗前体酪氨酸

林芝,胡致伟,瞿旭东,林双君

(上海交通大学生命科学技术学院,微生物代谢国家重点实验室,教育部代谢与发育科学国际合作联合实验室,上海200240)

植物次生代谢产物种类丰富,广泛参与植物生长、发育、防御等生理活动,是天然药物以及先导物的重要来源[1-6]。许多植物次生代谢产物含有多个手性中心,结构复杂,虽然大部分可以通过化学全合成手段获得,但可以有效放大的并不多,多数仍依赖于从植物中分离提取。然而,植物生长周期长,组分复杂,从中提取往往面临着效率低、耗时长、成本高等问题,有些含量低的次生代谢产物更是难以获取,极大地制约了新型药物的研发。相较于植物,微生物生长周期短、遗传操作简单、易于培养,可结合代谢工程有效地富集目标分子,因此,通过在微生物宿主中重构植物代谢途径,以期形成经济、高效的植物次生代谢产物生产的替代途径,成为合成生物学研究领域的热点。近年来,植物代谢途径研究、酶工程以及生物技术的发展,促使植物次生代谢产物的微生物合成研究取得了多个突破性进展,最具代表性的例子就是通过酿酒酵母(Saccharomyces cerevisiae)生产抗疟药青蒿素的前体青蒿酸(artemisinin)[4],已进入工业化生产阶段,见证了微生物合成生产途径的发展潜力。

苄基异喹啉类生物碱(benzylisoquinoline alkaloid,BⅠA)是一类具有重要研究和药用价值的次生代谢产物,广泛分布于罂粟科、木兰科、芸香科、小檗科等植物,已被发现2500 多种。该类生物碱具有抗癌、镇痛、止咳、降压、抗菌、抗炎、免疫抑制等多种生理活性[7-12],目前成功应用于临床的就有镇痛药吗啡(morphine)和可待因(codeine),止咳药海罂粟碱(glaucine)、诺司卡品(noscapine),肌肉松弛剂罂粟碱(papaverine)以及用于帕金森病治疗的阿扑吗啡(apomorphine)等[6]。工业上生产BⅠA 主要依赖于从植物中直接提取或提取前体,经简单的化学半合成获得。其中,最为人熟知的BⅠA植物供体就是罂粟(Opium poppy),已经被人们广泛种植,用于提供吗啡、可待因和阿扑吗啡前体等。除此之外,大部分含有BⅠA 的植物属于野生资源,难以大规模种植,采集困难,受环境影响大。因此,研究人员致力于对BⅠA 的生物合成途径进行解析,在此基础上通过模拟植物中BⅠA 的合成途径在微生物里重构该类生物碱的合成途径,以期获得高效的BⅠA 生产途径和更多的活性衍生物。到目前为止,研究者们已经打通了多种BⅠA 的微生物合成途径,包括蒂巴因(thebaine)、木兰花碱(magnofluorine)等,为通过微生物工业化生产BⅠA 提供了基础。然而,由于多数BⅠA 结构复杂,代谢途径冗长,涉及到的催化酶对主代谢流途径上的BⅠA 中间体具有宽泛的选择性,导致代谢流不可控、目的化合物产量低等问题。本文对BⅠA 的微生物合成途径以及突破性成果进行总结,并结合相关酶体外催化特性的研究进展,指出在酶催化元件的选取和改进方面需要关注的问题和解决方案,希望能为后续推进BⅠA 微生物合成途径的工业化应用提供参考。

1 BIA的结构类型及生物合成途径概述

根据基本骨架类型,BⅠA 可大致分为7 类(图1):苄基异喹啉类(benzylisoquinoline)、双苄基异喹啉类(bisbenzylisoqunolines)、阿朴啡和异阿朴啡类(aporphines)、吗啡烷类(morphinane)、原小檗碱和小檗碱类(protoberberine)、普 罗 托 品 类 (protopine)、 苯 并 菲 啶 类(benzophenanthridines)[13-14]。BⅠA 虽然结构复杂多样,但是其生物合成途径的起始步骤却十分相似,大多是由酪氨酸的代谢产物多巴胺(dopamine)和4-羟基-苯乙醛(4-hydroxyphenyl acetaldehyde,4-HPAA)在去甲乌药碱合酶(NCS)的作用下,通过Pictet-Spengler反应先形成S-去甲乌药碱[(S)-norcoclaurine],随后经过3 个甲基转移酶(6OMT,CNMT,4'OMT) 和 1 个 细 胞 色 素 P450 氧 化 还 原 酶(NMCH)的作用形成关键的中间体S-牛心果碱[(S)-reticuline]。以上步骤可统称为上游共性化合成途径(图1)[15-17]。

图1 BⅠA的骨架类型及其生物合成途径Fig.1 Skeletons of BⅠAs and the proposed pathways for their biosynthesis

S-牛心果碱通过异构、偶联、重排、甲基化、去甲基化等反应,几乎可以形成所有骨架类型的BⅠA,如S-牛心果碱通过小檗碱桥酶(BBE)作用可形成S-金黄紫堇碱[(S)-scoulerine][18],是原小檗碱类和小檗碱类、苄基异喹啉类、苯并菲啶类等BⅠA 生物碱的共同中间体,可在甲基转移酶(SOMT1)、P450 酶CAS 和黄素依赖的氧化酶(STOX)的催化下生成小檗碱(berberine)[19-20],或通过6 步酶反应形成血根碱(sanguinarine)。异构酶REPⅠ则可催化S-牛心果碱形成R-牛心果碱,后者是吗啡烷类生物碱的共同中间体[21-23],可在P450 酶SalSyn 作用下偶联形成吗啡烷的基本骨架[24];S-牛心果碱也可以通过 P450 酶 CTS 作用形成阿朴啡类生物碱[25]。虽然BⅠA 结构多样,但是每一个大类特征骨架的形成途径相同,骨架上的取代修饰类型也很少,主要包括羟基、甲基、甲氧基和亚甲二氧基等,对应的修饰酶的类型也十分相似,比如负责骨架6 位和7位羟基的甲基化都是由S-腺苷-L-甲硫氨酸[(S)-adenosyl-L-methionine,SAM]依赖的甲基化酶,负责6、7 位和3'、4'位亚甲基二氧基形成的都是P450 酶。后修饰酶性质以及底物的相似性,导致在微生物里重构植物中BⅠA 的天然合成途径时,常常发生交叉反应和代谢旁流。掌握BⅠA 生物合成途径中酶的催化特性,从而有目的地改进,将是在微生物中实现BⅠA 高效合成途径的关键点之一。

2 微生物合成BIA 及相关酶的体外催化特性研究进展

鉴于S-牛心果碱在BⅠA生物合成途径的重要性以及结构的稳定性,微生物合成BⅠA常常以S-牛心果碱的滴度作为上游合成途径效率的评估点。本综述中,作者将对S-牛心果碱的微生物合成途径进行单独的总结,在此基础上,延伸出对下游各个骨架类型的微生物合成途径研究进展的介绍。同时,我们将总结途径中关键酶的体外催化特性以及对代谢流的影响,为后续BⅠA 的微生物合成途径的优化提供参考。目前,BⅠA异源合成常用的微生物宿主为大肠杆菌(Escherichia coli)和酿酒酵母(Saccharomyces cerevisiae),以下主要介绍这两类微生物宿主生产BⅠA的研究进展。

2.1 S-牛心果碱

S-牛心果碱在植物中的生物合成途径起始于多巴胺和4-羟基苯乙醛(4-HPAA),两个底物在NCS 的作用下,通过Pictet-Spengler 反应形成S-去甲乌药碱,随后经6OMT 催化6位羟基甲基化形成S-乌 药 碱 [(S)-coclaurine], 再 经 CNMT 催 化氮上甲基化形成S型N-甲基乌药碱[(S)-N-methylcoclaurine],最后经NMCH和4'OMT依次催化4'位发生羟化和羟基的甲基化形成S-牛心果碱(图1)。由于细胞色素P450 酶NMCH 是膜蛋白,在大肠杆菌中表达难度大,是最初采用大肠杆菌合成牛心果碱的主要瓶颈。为了克服该瓶颈,2008 年,Minami 和Sato 等通过在大肠杆菌中引入多巴胺的单胺氧化酶(MAO)来替代NMCH,串联NCS、6OMT、CNMT 和 4'OMT 的编码基因,以多巴胺为前体,成功通过大肠杆菌合成了外消旋的牛心果碱(2 mg/L,1.3%)(图2)[26]。随后,上述团队通过提高体系中NCS 的表达水平以及稳定中间体,将牛心果碱的产量和产率分别提升至54 mg/L 和13%[27];同时,成功通过提高大肠杆菌中酪氨酸的产量,完成从简单的甘油前体到S-牛心果碱的合成,产量约为46 mg/L[28-30]。

通过酿酒酵母合成牛心果碱也是在2008 年首次实现,由于当时还不能在酿酒酵母中表达出有活 性 的 NCS[31], 因 此 , Hawkins 和 Smolke 等 直接以外消旋的全去甲劳丹碱(norlaudanosoline)为前体,通过将6OMT、CNMT 和4'OMT 的编码基因导入酿酒酵母,获得了外消旋的牛心果碱(150 mg/L,10%),绕开了NCS 和NMCH 负责的两步催化[32-33]。除了NCS 的低活性,在酵母中从头合成牛心果碱还主要受限于L-酪氨酸3位无法羟化,导致多巴胺合成受阻(图2,紫色部分)。虽然在动物和植物里发现了酪氨酸3 位单加氧酶(tyrosine 3-monooxygenase;EC 1.14.16.2)可以催化L-酪氨酸3位发生羟化,但该反应需要辅因子四氢生物蝶呤(tetrahydrobiopterin)的参与,而酵母不能合成该辅因子[34]。另一个可催化L-酪氨酸3 位发生羟化的酶为酪氨酸酶(tyrosinase;EC 1.14.18.1),已经成功用于大肠杆菌合成牛心果碱,然而,该酪氨酸酶会催化L-3,4-二羟基-苯丙氨酸(L-3,4-dihydroxyphenylalanine,L-DOPA)进一步氧化生成大量的副产物黑色素(melanin),且不能在酵母中表达出活性蛋白[28,35-36]。上述瓶颈的突破是在2015 年,由两个团队分别采用了两种策略完成。其中,Dueber 和Martin 团队从甜菜(Beta vulgaris)中筛选到了一个可以在酵母中发挥活性的酪氨酸羟化酶,该酶野生型不需要四氢生物蝶呤辅因子,但会继续氧化L-DOPA 形成L-多巴醌(L-dopaquinone),导致副产物黑色素的形成。对此,该团队巧妙地利用了一个可以将L-DOPA转化成黄色荧光色素甜菜黄素(betaxanthin)的生物传感器,加快了随机突变优化的筛选速度,获得了L-DOPA氧化活性受到抑制的酪氨酸羟化酶突变体,将 L-DOPA 的产量提高了 2.8 倍[37]。而 Smolke团队则通过在酵母中表达褐家鼠(Rattus norvegicus)来源的酪氨酸合酶三突变体TyrHR37E/R38E/W166Y——突变后可减少L-酪氨酸和儿茶酚胺类化合物对酶的抑制,并在酵母中重构褐家鼠中四氢生物蝶呤的合成途径来完成L-酪氨酸3 位的羟化;同时,该团队也对初级代谢产物磷酸烯醇式丙酮酸(phosphoenolpyruvate, PEP) 和 赤 藓 糖 -4-磷 酸(erythrose-4-phosphate,E4P)到4-羟基-苯丙酮酸(4-hydroxy-phenylpyruvate,4-HPP)转化路径上的四个相关酶进行过表达和突变优化,提高了L-酪氨酸和 4-HPAA 的产量[21]。在此基础上,上述两个团队均将各自建立的L-DOPA 酵母合成途径,串联了L-DOPA 脱羧酶、NCS、6OMT、CNMT、NMCH 和4'OMT 的编码基因,在酵母中实现了从葡萄糖到S-牛心果碱的合成。虽然每升产量都在微克级别,与达到工业化生产水平差距甚大,但在实验水平上证实了酵母从头合成牛心果碱的可行性,对后续研究起到了极大的推动作用。

图2 S-牛心果碱的微生物合成途径总结及代谢流示意图Fig.2 Pathway for the microbial synthesis of benzylisoquinoline alkaloids

2020 年,Martin 团队在前期研究基础上,继续对酵母中莽草酸途径(shikimate pathway)、埃利希途径(Ehrlich pathway)和L-酪氨酸的代谢途径进行了连续20 多次的迭代优化,包括过表达莽草酸途径上分支酸合酶、预苯酸脱氢酶、苯丙酮酸脱羧酶和敲除旁支产物L-苯丙氨酸和L-色氨酸合成相关的预苯酸脱水酶、吲哚-3-甘油磷酸合酶来积累4-HPP;对埃利希途径上7 个相关的还原酶和氧化酶的编码基因进行敲除,从而阻止4-HPAA被还原和氧化等,结合酶突变抑制反馈调节以及发酵工艺的优化,将通过酵母从头合成S-牛心果碱的产量提高了57 000 倍,提升至4.6 g/L[38]。该研究成果标志着微生物合成S-牛心果碱已经达到了工业化生产水平,体现了微生物体系生产植物次生代谢产物的巨大潜力。

除去初级代谢相关途径,目前微生物合成S-牛心果碱途径中所涉及到的酶包括NCS、6OMT、CNMT、NMCT 和4'OMT 等,主要来源于罂粟(Papaver somniferum)、 花 菱 草 (Eschscholzia californica)、日本黄连(Coptis japonica)、黄唐松草(Thalictrum flavum)和南天竹(Nandina domestica)等植物。体外酶活测试研究表明野生型的NCS 催化活性低,立体选择性受底物自发反应影响,可能是 BⅠA 合成途径中的限速步骤[31];对 NCS 的氮端进行截短可以有效提高其在微生物体内的活性[39-41]。NCS 采用的酶催化机理是先结合多巴胺,再结合4-HPAA。其中,多巴胺结构基本包含在酶活性口袋中,导致NCS 对胺类底物的识别性较窄;4-HPAA 大部分结构在活性口袋之外,导致NCS对醛类底物的识别性十分宽泛[31-42]。比如C.japonica来源的CjNCS 可以识别苯乙醛类、3-吲哚乙醛类、烷基醛类等底物类似物[38,42-45];T. flavum来源的TfNCS 除了能识别醛类底物类似物外,还可以识别惰性更强的酮类底物类似物,包括环酮、苯基酮以及烷基酮等[44-51]。这两类 NCS 也是构筑 BⅠA微生物合成途径的常用酶,根据其对醛和酮类底物的杂泛性,预示着控制微生物体内相关类似物的合成,可能有助于提高BⅠAs 的产量。值得一提的是,近期有报道称NCS 对酵母具有一定的毒性[52],因此加大对该酶优化和挖掘的研究力度,可能是提高牛心果碱微生物合成产量的关键之一。

6OMT、4'OMT 和 CNMT 分别负责 BⅠA 骨架6 位羟基、4'位羟基和氮原子上的甲基化,均属于SAM 依赖的甲基化酶。自然界中,赋予BⅠA 结构多样性的除了基本骨架的重排、偶联导致骨架类型的不同之外,很大程度还依赖于甲基化酶杂泛性和专一性的随机交叉作用,比如全去甲劳丹碱,在上述三个简单的甲基化酶的作用下,就可能可以形成 20 多种不同的 BⅠA 结构[53],因此,对这些酶的底物杂泛性和区域选择性进行解析,选取选择性高的酶元件,对于确保微生物合成BⅠA 代谢流的方向、减少旁支产物十分重要。到目前为止已报道了 10 个 6OMT,分别来自于 7 个种属[54-63];8 个 CNMT,分别来自 4 个种属[26,56-57,59,64-66];5 个4'OMT, 分 别 来 自 3 个 种 属[54-56,59-60,66-67]。 多 数6OMT 和 4'OMT 对 3'、4'、6 或 7 位羟基存在交叉的区域选择性(图 3)[53],其中,P. somniferum和T.flavum来源的6OMT和4'OMT区域选择性较为专一,也是目前微生物合成牛心果碱最常用的甲基化酶元件。CNMT 虽然区域选择性较好,但是具有宽泛的底物识别性,对于S型和R型苄基异喹啉类底物都能识别,且不能很好地控制氮上甲基化的数量[64-65],在复杂BⅠA的微生物合成过程中,可能会导致多种氮上单甲基化和双甲基化的旁支产物。NMCH为P450膜蛋白,难以在大肠杆菌中异源表达,因此以大肠杆菌作为宿主构筑牛心果碱时常用MAO代替,但其可被用于酵母体系。对于NMCH,目前只报道了2个,分别来自E.californica(CYP80B1)和P. somniferum(CYP80B3),底物专一性都很强,只识别S型N-甲基乌药碱,对于R型以及氮上未甲基化底物都不能识别[68-69],这可能会使微生物合成牛心果碱途径中其他酶元件所产生的旁支产物不能被NMCH 催化回到主代谢流,导致整体产率的下降。

图3 代表性的6OMT和4'OMT对3'、4'、6以及7位羟基的交叉区域选择性Fig.3 Cross-regioselectivity of 6OMT and 4'OMT to 3',4',6 and 7 hydroxyl groups

2.2 阿朴啡类

阿朴啡类生物碱含有特征性的联苯型四环结构骨架[图4(a)],广泛分布于自然界,具有抗癌、抗病毒、抗疟疾、抗炎等多种重要生理活性,目前已经在20 个科100 多种属植物中分离到了500 多个化合物[7-11,70]。阿朴啡结构的多样性很大程度依赖于骨架上多样的甲基化、亚二甲基化、羟化取代方式以及骨架氧化程度的差异,该类生物碱大部分生物合成途径没有被阐明,这也是限制该类生物碱在微生物底盘细胞中合成的主要原因。2008 年,Sato 等在C. japonica中发现了一个P450 酶 CYP80G2 可以催化S-牛心果碱的 8 位和2'位发生偶联完成联苯型四环骨架的构筑,形成S-紫堇块茎碱(corytuberine)[25],该酶底物专一性较强,对于R-牛心果碱和类似物大部分不能识别,与上游途径中NMCH一起,可能会导致大量旁支产物不能回到主代谢流;S-紫堇块茎碱可以在RNMT催化下进一步转化成木兰花碱(magnoflorine)[71]。基于此发现,该团队在建立了大肠杆菌牛心果碱合成途径的基础上,将CTS 和CNMT(可替代RNMT 行使氮上双甲基化功能)的编码基因转入酵母,通过共培养的方式完成了紫堇块茎碱和木兰花碱(7.2 mg/L)的微生物合成,成为首例微生物体系成功合成阿朴啡类生物碱[图4(b))[26]。由于该类生物碱生物合成途径研究的欠缺,尤其是R型结构和一些关键后修饰生物合成途径的未知,导致目前只有紫堇块茎碱和木兰花碱得以在微生物体系中合成。

图4 阿朴啡类生物碱的代表性骨架结构(a)和微生物合成途径(b)Fig.4 Skeletons of aporphines(a)and their microbial synthesis(b)

2.3 原小檗碱和小檗碱类以及苯并菲啶类

原小檗碱和小檗碱类以及苯并菲啶类属于BⅠA七大骨架类型中的两大类,具有抗微生物、降压、镇静、抗白血病和抗肿瘤等多种生理活性[72],大部分天然合成途径仍然未知。目前成功通过微生物合成的主要为小檗碱(berberine,原小檗碱和小檗碱类)和血根碱(sanguinarine,苯并菲啶类),两者的生物合成途径均是先由S-牛心果碱在黄素氧化酶BBE 的作用下形成共同中间体S-金黄紫堇碱[(S)-Scoulerine]。该酶对底物识别范围较窄,对R-牛心果碱以及大部分底物类似物都不能识别[73-74],但会催化S-牛心果碱发生六电子氧化形成脱氢金黄紫堇碱(dehydroscouierine)[75]。随后,S-金黄紫堇碱经甲基化酶SOMT1、P450 酶CAS 和氧化还原酶STOX 作用可以形成小檗碱[76-79];经四个 P450 酶 CFS、SPS、MSH 和 P6H,一个甲基化酶TNMT 和一个氧化还原酶DBOX 的作用下可

以生成血根碱[77-78,80]。由于小檗碱和血根碱下游途径中涉及到多个膜蛋白,包括BBE、多个P450酶等,因此常选用能表达膜蛋白的酿酒酵母体系作为异源合成的宿主。虽然在2008 年,通过将C.japonica中编码BBE的基因导入酿酒酵母,和产牛心果碱的大肠杆菌工程菌共培养,就已经实现通过微生物将多巴胺转化成S-金黄紫堇碱(8.3 mg/L,2.2%)[26];也 可 以通过将P. somniferum来源 的BBE 编码基因和T. flavum来源的 SOMT 和 CAS 的编码基因依次导入产牛心果碱的酿酒酵母工程菌,以外消旋的全去甲劳丹碱为前体,依次获得小檗碱合成途径中的中间体四氢非洲防己胺[(S)-tetrahydrocolumbamine](约60 mg/L)和四氢小檗碱 [(S)-canadine](约 30 mg/L,转化率 1%~2%)[32],后续研究报道四氢小檗碱可以自发形成小檗碱,但可能受限于当时的检测条件,并未报道有小檗碱的产生。直至2015 年,Smolke 等通过优化后者代谢通路上CAS 的表达量,结合密码子优化、酶元件的筛选以及发酵条件的优化,将四氢小檗碱产量提高了70 多倍,最终实现了小檗碱(39 μg/L)的微生物合成[81]。值得一提的是,该途径会积累较多的中间代谢产物,导入或缺失Berberis wilsonae来源的STOX 编码基因并不会对小檗碱的最终产量造成影响,表明该STOX可能并没有在酵母中行使功能。在酵母中异源表达出活性更好的STOX,可能有助于提高小檗碱的产量。

对于血根碱的微生物合成,2014 年,Martin团队将血根碱生物合成途径上6OMT、CNMT、4'OMT 以及 CFS、SPS、TNMT、MSH、P6H 的编码基因导入酿酒酵母,以外消旋的全去甲劳丹碱为前体,成功通过酿酒酵母合成了二氢血根碱(dihydrosanguinarine)及其氧化衍生物血根碱[33](图5)。该过程还产生了副产物N-甲基金黄紫堇碱(N-methylscoulerine)和N-甲基碎叶紫堇碱(N-methylcheilanthifoline),可能是TNMT 底物识别宽泛导致,因此该研究推测TNMT的底物宽泛性以及膜蛋白的表达活性可能是影响产量的主要原因。隔年,Smolke团队也基于相似的策略,通过对途径上左旋华紫堇碱[(S)-cheilanthifoline]的产量进行优化,从而获得了血根碱及代谢通路上的中间体,包括刺罂粟碱(stylopine,676 μg/L)、cis-N-甲基刺罂粟碱(cis-N-methylstylopine,548 μg/L)、原阿片碱(protopine,252 μg/L)和血根碱(80 μg/L)[82]。紧接着,Sato团队也通过将BBE、CFS和SPS的编码基因导入酿酒酵母,通过喂养外消旋的牛心果碱获得了血根碱的前体刺罂粟碱[83]。然而到目前为止,还未能通过微生物体系建立起原小檗碱和小檗碱类以及苯并菲啶类BⅠA的从头合成途径。

图5 小檗碱和血根碱的微生物合成途径Fig.5 Microbial synthesis of berberine and sanguinarine

2.4 诺司卡品等苄基异喹啉类生物碱

苄基异喹啉类是BⅠA 七大骨架类型之一,其中最具代表性的就是诺司卡品(noscapine)。诺司卡品最初由法国化学家Robiquet 在1817 年从P.somniferum中分离鉴定,已长期作为止咳药物应用于临床,生物安全性高,并在1998 年后陆续被报道具有抗肿瘤、抗癌等活性[84-89]。与小檗碱和血根碱相同,诺司卡品的生源途径也经由中间体S-金黄紫堇碱,随后在S9OMT(SOMT1)、CAS作用下形成小檗碱的前体四氢小檗碱,所需的酶与小檗碱合成途径相同;最后四氢小檗碱在TNMT、CYP82Y1、 CYP82X2、 AT1、 CYP82X1、 CXE1、SDR1 和N4'OMT 等8 个酶作用下形成诺司卡品[76,90-92]。 2016 年 , Smolke 团 队[93]报 道 了N4'OMT 是由两个基因编码的异源二聚体酶(OMT2/OMT3),突破了在微生物体内合成诺司卡品的最后一个瓶颈。通过在酵母中表达16 个诺司卡品生物合成的下游基因,以全去甲劳丹碱为前体,成功合成了诺斯卡品[(1.64±0.38)µmol/L]。催化四氢小檗碱到诺司卡品合成的多个酶均具有较为宽泛的底物选择性,会产生多种旁支产物,然而也因为没有底物专一性酶的限制,所以大部分旁支产物最终都会重新汇聚到主代谢流,形成诺司卡品(图6)。随后在2018 年,Smolke 团队将来自植物、细菌和动物的30多个基因导入酿酒酵母中,其中包括7个植物内质网定位酶基因;通过对异源途径各个酶表达水平的协调,优化发酵条件,成功通过酵母从头合成了诺司卡品(约2.8 mg/L),将产量提高了18 000倍。对此优化后的诺司卡品产生菌喂养卤素取代的酪氨酸类似物,可以得到对应卤素取代的苄基异喹啉类生物碱,表明了微生物合成在创造多种新颖BⅠA衍生物的潜在应用价值[40]。

图6 诺司卡品的微生物合成途径Fig.6 Microbial synthesis of noscapine

2.5 吗啡烷类

吗啡烷类生物碱是目前临床上用于镇痛的主要药物之一,自1806 年吗啡被分离到后,其生物合成途径也逐渐被破解[94],该类生物碱的基本骨架是由R-牛心果碱偶联形成[6]。最初通过微生物合成吗啡烷类生物碱的主要瓶颈在于R-牛心果碱的生物合成途径未知,只能以一些R型或外消旋的中间体为前体,通过微生物转化而得,比如将P. somniferum来源的T6ODM、COR、CODM 编码基因导入酿酒酵母,以蒂巴因(thebaine)为喂养前体,获得一系列吗啡烷类产物[95-96]。直到2015 年,吗啡生物合成途径中负责将S-牛心果碱转化成R-牛心果碱的差向易构酶(REPⅠ)被解析[22-23],才使得通过微生物从头合成吗啡烷类生物碱得以实现(图7)。REPⅠ是由N 端的细胞色素P450 结构域和C 端的醛酮还原酶(aldo-keto reductase)结构域融合而成,也被简写成STORR。Smolke 团队和其他两个课题组共同报道了REPⅠ的发现。通过在酵母中导入来源于植物、动物、细菌以及酵母的21 条和23 条相关合成基因,Smolke 团队分别在酵母中实现了从糖到蒂巴因和氢可酮(hydrocodone)的合成。虽然产量上只有 7.8 µg/L 和 0.3 µg/L,距离工业应用还需要大幅度的优化,但该工作为吗啡的微生物合成的可行性提供了有利的证据[21]。隔年,Minami团队以大肠杆菌为宿主,由于REPⅠ在大肠杆菌中表达活性不佳,该团队通过自发Pictet-Spengler反应提供R-牛心果碱和四步阶段发酵方式,从甘油合成了蒂巴因,是酵母合成体系产量的300倍;在此基础上继续引入T6ODM和MorB编码基因,利用尼奥平酮(neopinone)到可待因酮(codeinone)的自发反应,合成了氢可酮[97]。

图7 吗啡烷类生物碱的微生物合成途径Fig.7 Microbial synthesis of morphinane

R-牛心果碱在 SalSyn、SalR 和 SalAT 的作用下形成蒂巴因的前体氢化沙罗泰里啶-7-O-乙酸(salutaridinol 7-O-acetate)[98-101],该前体在前期研究中被认为是自发转化成蒂巴因,且受pH 的影响,在pH=8~9 时有利于转化为蒂巴因,在pH=6~7时,会自发转化成副产物[102]。直至2018年在罂粟中发现可以催化该步转化发生的蒂巴因合酶THS,以全去甲劳丹碱为前体,在合成蒂巴因的酵母工程菌加入THS,蒂巴因产量是缺失THS的24倍,表明在植物体内该步反应是有酶参与的[103]。蒂巴因接着在T6ODM 作用下转化成尼奥平酮[104],可自发异构形成可待因酮(codeinone),继续在COR和CODM 的作用下依次形成可待因(codeine)和吗啡(morphine)[105]。由于 COR 和 CODM 底物识别十分宽泛,因此在通过微生物合成吗啡烷类生物碱时很难控制代谢流的方向,获取单一组分,早期合成吗啡烷类生物碱的酵母工程菌产生的生物碱超过50%是副产物[24,95,104-105]。近期,在罂粟中又发现一个异构酶NⅠSO 可以催化尼奥平酮到可待因酮的转化,在酵母工程菌中导入CODM、T6ODM、COR 和NⅠSO 编码基因可以获得7.6 µg/(L·OD)的可待因,产量是未导入NⅠSO 编码基因的42 倍;继续导入Pseudomonas putidaM10 来源的morB可获得35µg/(L·OD)氢可酮(hydrocodone),是前期不加NⅠSO编码基因的30倍,表明NⅠSO在植物体作用可能是加速尼奥平酮向可待因酮的转换,促进可待因和吗啡等生物碱的积累,减少旁支产物的生成[95,106-107]。吗啡烷类生物碱的微生物合成途径的研究进展,深刻体现了BⅠA植物次生代谢产物生物合成途径的解析对构建微生物合成途径的重要性。

3 挑战与机遇

在过去十多年时间里,我们见证了苄基异喹啉类生物碱的微生物合成途径从无到有、产量从低到高的发展历程,每一步都离不开天然生物合成途径的解析,每一个突破都伴随着关键酶催化反应及其机理的阐明。因此,大部分BⅠA 生物合成途径认知的缺失,如杷碱类(pavine)、枯拉灵类(cularine)以及骨架上的修饰途径等(图1),为未来发展BⅠA 的微生物合成途径带来了巨大挑战。除此之外,BⅠA微生物合成途径中酶活性低和底物选择性差等导致的代谢流不可控、产率低等问题也是我们亟待解决的难题。所幸的是,基因测序技术和生物技术的发展大大加快了我们对天然产物生物合成途径解析的速度,也为发展BⅠA的微生物合成途径积累了越来越多可供筛选的酶学元件;与此同时,酶工程和晶体学的发展也极大地提高了酶催化性能的优化效率。研究者们也开发了多种方案去解决酶底物选择性差引起的代谢流不可控问题,包括适当地调整代谢流通量以及通过时间和空间的调整,阻止酶与有干扰的代谢中间体的接触,从而减少副产物的生成等[14]。前者常用的调整方式有运用不同强度的启动子,控制基因的拷贝数等;后者则可通过将酶放在不同细胞器以及菌株中进行表达从而有效地隔离酶与有干扰的代谢中间体,以及通过调控酶在不同时间点表达,率先积累某一目标代谢中间体,再启动后续途径中酶的表达,从而促进代谢中间体的进一步转化,有效防止代谢旁流。此外,研究者们也采用选取底物识别宽泛的酶以及通过酶工程去拓展各个酶的底物识别能力,从而将旁支产物重新转化至主代谢流上的化合物,提高微生物合成BⅠA的产量。

目前,微生物合成BⅠA 的途径设计基本都是模拟其在植物体中的天然生物合成途径,因此,代谢途径冗长、酶元件的选择也十分局限,且依赖于生物合成途径的解析。由于植物遗传操作不便,大多基因不成簇以及存在内含子等因素,造成了植物生物合成途径解析较为困难。随着酶催化反应知识的不断增长和可获得的基因序列的积累,研究者们对BⅠA 微生物合成途径的设计不再仅局限于传统上效仿自然的设计思路,逐渐开始创造全新的人工微生物合成途径,如通过对亚胺还原酶进行筛选和改造,获得了可立体专一性地还原1-苄基二氢异喹啉类化合物形成1-苄基四氢异喹啉类化合物的亚胺还原酶库,经CNMT 催化可进一步形成牛心果碱类似物,从而建立了一条便捷高效的牛心果碱类似物的微生物合成途径[108-109],可作为多种BⅠA 微生物合成的中间体,比如阿朴啡类生物碱、小檗碱等。这些全新的BⅠA 人工微生物合成途径的设计,为发展该类生物碱的生产途径提供了更加广泛的启示,也是突破和超越现有BⅠA 微生物合成途径研究成果的机遇。

猜你喜欢
小檗前体酪氨酸
Taxonomic synopsis of Berberis (Berberidaceae) from the northern Hengduan mountains region in China,with descriptions of seven new species
展向压力分布可控的前体/压缩面气动设计方法及其流动特性
GDM孕妇网膜脂肪组织中Chemerin的表达与IRS-1及其酪氨酸磷酸化分析
N-末端脑钠肽前体与糖尿病及糖尿病相关并发症呈负相关
小檗碱治疗非酒精性脂肪肝病相关通路的研究进展
祛白胶囊联合脾氨肽治疗对白癜风患者IL-10、IL-17、酪氨酸酶IgG的影响
四氢嘧啶对酪氨酸酶的抑制作用机制及类型※
不同迎角下脊形前体绕流数值模拟研究
贵州野生小檗属植物土壤与植株微量元素相关性及富集特征
T中枢记忆前体可控制克隆优势